• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Matching analysis of combined charging of an opposed-piston two-stroke engine

    2015-04-24 05:30:22DONGXuefei董雪飛ZHAOChanglu趙長(zhǎng)祿ZHANGFujun張付軍ZHAOZhenfeng趙振峰WUTaotao吳滔滔

    DONG Xue-fei(董雪飛), ZHAO Chang-lu(趙長(zhǎng)祿), ZHANG Fu-jun(張付軍), ZHAO Zhen-feng(趙振峰), WU Tao-tao(吳滔滔)

    (Fundamental Science on Vehicular Power System Laboratory, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Matching analysis of combined charging of an opposed-piston two-stroke engine

    DONG Xue-fei(董雪飛), ZHAO Chang-lu(趙長(zhǎng)祿), ZHANG Fu-jun(張付軍), ZHAO Zhen-feng(趙振峰), WU Tao-tao(吳滔滔)

    (Fundamental Science on Vehicular Power System Laboratory, Beijing Institute of Technology, Beijing 100081, China)

    To experimentally match performance and structural features of an opposed-piston two-stroke engine (OPTSE), two calculation models, a one-dimensional (1-D) model and a three-dimensional (3-D) model, of the combined charging matching simulation of an OPTSE was established by using the GT-Power software. To test and verify the one dimensional model, the three-dimensional computational fluid dynamics simulation model was established using AVL FIRE software. Cylinder pressure curves in these two models match perfectly, showing that it is reasonable to use the one-dimensional model to simulate the work process of an OPTSE. Moreover, the effects of delivery ratio, nozzle ring diameter and exhaust back pressure on brake specific fuel consumption (BSFC) were studied.

    opposed-piston; combined charging; uniflow scavenging; delivery ratio; exhaust back pressure

    Unlike four-stroke engines, the exhaust gas in an opposed-piston two-stroke diesel engine (OPTSE) is not pushed out from the cylinder, but swept by the pre-compressed air. So the air must be provided by an external scavenge blower[1]which consumes some of the engines power, though turbochargers can perform this function at some operating points. The blower power requirement reduces the engine’s brake output and increases brake specific fuel consumption (BSFC) of the engine.

    Given the scavenging characteristics of an OPTSE, principle prototype experiments adopt combined charging to simulate the intake, exhaust, and charging systems. In this paper, the combined charging matching and the influence of the major parameter on BSFC were studied.

    Fig.1 Principle construction diagram of an OPSDE

    1 OPTSE principle and construction

    An OPTSE has three features: uniflow scavenging, asymmetric port timing, and controlled boosting. The uniflow scavenging is achieved with the intake and exhaust ports placed on the two extreme sides of the cylinder. The principle construction diagram of an OPTSE is shown in Fig.1 and the characteristics are given in Tab.1.

    For OPTSE without crankcase scavenging, assistance to provide the intake boost pressure is necessary to start the engine before the turbine receives enough energy from the exhaust gas to drive the compressor. The engine is thus supercharged and turbo compounded rather than turbocharged in the true sense.

    Tab.1 Engine characteristics

    2 Supercharging system

    The basic design of the gas exchange system (Fig.2) consists of a variable geometry turbocharger (VGT). A Rotrex centrifugal compressor is geared to the motor and controlled by electronic control unit (ECU) and an intercooler. The Rotrex centrifugal compressor also reduces intake system weight as well as the duration for the assisted boosting during the engine startup period. At a transient state when the engine needs to increase torque output, compared to the blower geared to the crankshaft, the centrifugal compressor driven by the motor would increase the intake pressure much faster and result in a faster engine transient response.

    Fig.2 Layout scheme of the gas exchange system

    3 Modeling and matching calculation

    3.1 Modeling equivalent and assumption

    Given that there is no physical model available for OPTSE, an equivalent transformation from traditional engine model was proposed in this paper, based on the following three principles: ①the piston characteristic of motion is invariant; ②the cylinder geometry parameters are unchangeable, including cylinder bore, stroke, and compression ratio; ③working volume change characteristic remains the same as the OPTSE working volume, this is because that the volume change law would affect the calculation precision of in-cylinder pressure. The equivalent transformations were proceeded as follows.

    ① Two opposed pistons in the cylinder were replaced by only one piston whose to crankshaft angle were now the sum of the previous two pistons.

    ② The TDC are defined as the point when the relative displacement between two opposed pistons is 0. By setting this point as a benchmark, the piston relative displacements in the cycle could be determined. More details can be seen in Fig.3.

    Fig.3 Equivalent model transformation

    ③ Suppose that working medium state in cylinder is homogenous, working medium is perfect gas, the gas that inflows and outflows of cylinder is 1-D compressible flow and the kinetic energy of working medium at the inlet port and outlet port is negligible. Inside the system boundary, the thermodynamic state and chemical composition at different positions were considered to be exactly the same, namely, 0-D model. Atmospheric temperature and pressure are defined according to international standards.

    3.2 1-D modeling and setting boundary

    The 1-D GT-POWER simulation model is established[2], with the model settings and the boundary conditions shown in Tab.2.

    Tab.2 Main initial parameters

    3.3 Model verify

    To test and verify the one-dimensional model, the three-dimensional computational fluid dynamics simulation model was established using AVL FIRE software[3].

    During the gas exchange process, air delivered is complex three-dimensional viscous flow, and there are vortex, separation and other complex flow phenomenon[4]. So thek-ζ-fmodel is chosen as the turbulence model, which has been developed by Hanjalic, Popovac and Hadziabdic[5]. And the Eddy Break-up model as described by Magnussen and Hjertager[6]is chosen as the combustion model. The chemical reactions usually have time scales that are very short compared to the characteristics of the turbulent transport processes. Thus, it can be assumed that the rate of combustion is determined by the rate of

    intermixing on a molecular scale of the eddies containing reactants and those containing hot products.

    The Meshes model based on AVL FIRE is established as shown in Fig.4, and the boundary conditions are shown in Tab.3.

    Fig.4 Meshes of the scavenging system

    Tab.3 Boundary conditions of the CFD mode

    According to Tabs.1-3, and Refs.[7-8], the initial parameters are setup, and the two kinds of simulation software define the same boundary conditions for the simulation calculation.

    Fig.5 shows the comparison of 1-D GT-Power and 3-D CFD simulation pressure curves in cylinder for a selected engine operation condition, and the cylinder pressure curves in these two models match perfectly. So it is reasonable to use the one-dimensional model to simulate the work process of OPTSE. With high confidence gained, the calibrated GT-Power simulation model is not only used for future predictions but is also very helpful in identifying any weak points and, therefore, directions for future improvements.

    Fig.5 Comparison between 1-D GT-Power and 3-D CFD simulation results

    4 Simulation results

    4.1 Parameter study

    The purpose of this simulation study is to seek the optimum match between the opposed-piston two-stroke engine and supercharging system. Parameter studies are proceeded under three engine speeds, so as to consider the influences of delivery ratio (Δ), turbine orifice diameter (Dt) and exhaust back pressure (Pex) on brake specific fuel consumption and trapped A/F. In this study, under the same speed, no matter how these parameters changed, the output power should be ensured to be the same. Tab.4 shows the three parameters range and corresponding working conditions.

    Tab.4 Simulation parameters input

    The centrifugal compressor is not geared to the crankshaft but driven bya motor, and a key evaluation indicator in the OPTSE performance matching is BSFC (b) which can be calculated from engine speed (n), fuel consumption (m) per cycle, brake effective power (P) and scavenging blower consumed power (Pe).

    (1)

    4.1.1 Effect of turbine orifice diameter on BSFC and trapped A/F

    The influence of turbine orifice diameter on BSFC and trapped A/F is shown in Fig.6 and Fig.7.

    Fig.6 Influence of turbine orifice diameter on BSFC

    Fig.7 Influence of turbine orifice diameter on trapped A/F

    The simulation results show that turbine orifice diameter has a strong influence on the engine BSFC and a smaller influence on trapped A/F in these three typical cases, so the fuel economy and the trapped A/F could be improved via increasing the turbine orifice diameter as shown in Fig.7 and Fig.8.

    Fig.8 Influence of exhaust back pressure on BSFC

    When increasing the turbine orifice diameter with constant delivery ratio and exhaust manifold pressure, the flow mass and pressure of compressed gas increase, then Rotrex supercharger consumed power reduces, which results in BSFC decrease.

    However, the diameter range is limited by exhaust pressure and the trapped A/F which must achieve the designed target in the entire engine speed range. With the diameter increasing, the turbine flow capacity is amplified, thus maintaining the high exhaust pressure is difficult at lower engine speed. For example, in order to keep thePex=0.145 MPa in the scavenging phase and the trapped A/F>18 at 1 600 r/min, the optimum diameter range is from 33 mm to 39 mm.

    4.1.2 Effect of exhaust back pressure on BSFC and trapped A/F

    The influences of exhaust back pressure on BSFC and trapped A/F are shown in Fig.8, and Fig.9.

    Fig.9 Influence of exhaust back pressure on trapped A/F

    The simulation results show that exhaust back pressure has a strong influence on trapped A/F and a smaller influence on BSFC in the three typical cases, so the main method of increasing the trapped A/F is to improve the exhaust pressure. When increasing exhaust pressure with the constant delivery ratio and turbine orifice diameter in the three typical cases, the pressure in the cylinder at the end of the scavenging process increase and the density rises, and then the trapped A/F increases.

    When decreasing exhaust pressure(<0.16 MPa) at 2 500 r/min in Fig. 9, the pressure in the cylinder at the end of the scavenging process decrease, which decreases the trapped air mass and worsens in-cylinder combustion. To output the same power from crankshaft, the consumed fuel mass increases, then the BSFC rise. However, with exhaust pressure(>0.16 MPa) continuing to go up at 2 500 r/min, the pressure difference of the inlet port and outlet port must be increased to maintain the constant delivery ratio, then super charger consumed power increases, which results in BSFC rise.

    4.1.3 Effect of delivery ratio on BSFC and trapped A/F

    Fig.10 Influence of delivery ratio on BSFC

    Fig.11 Influence of delivery ratio on trapped A/F

    The simulation results of delivery ratio on BSFC and trapped A/F are shown in Fig.10 and Fig.11. The simulation results show that delivery ratio has a strong influence on BSFC and little influence on trapped A/F in the three typical cases. At the different engine speeds the influence is that the higher the speed, the larger the influence on BFSC. The reason is that, with increasing engine speed, scavenging time interval per cycle reduces continuously and the air consumption improves continually. Therefore the pressure difference between inlet port and outlet port needs to be increased to maintain the constant delivery ratio, resulting in BSFC increase.

    Fig.12 Delivery ratio in the entire engine speeds

    Delivery ratio is limited by inlet manifold pressure and exhaust manifold pressure. With the constant exhaust manifold pressure, inlet manifold pressure has a stronger influence on delivery ratio. The larger the scavenging pressure is, the larger the delivery ratio is, which results in the BSFC rises. To the contrary, if the delivery ratio is too small, the exhaust gas is unable to be cleaned out the cylinder completely. So it is important to ensure the appropriate delivery ratio at different engine speeds. The delivery ratios are confirmed by Ref.[9] as shown in Fig.12.

    4.2 Engine performance prediction

    With increasing engine speed, the consumed power by Rotrex supercharger rises as shown in Fig.13. The main reason is that the higher engine speed is, the shorter space of time of the scavenging process per cycle is. So it is necessary to improve the pressure difference between inlet port and outlet port by using a supercharger, especially at high engine speeds as shown in Fig.13. Because the influence of Rotrex supercharger is larger at high speed ranges, Rotrex is used in the entire engine speed ranges.

    Fig.13 Simulated full load torque curve, Rotrex power curve and differential pressure curve

    Fig.14 Flow matching characteristic of supercharger and engine at full load

    Compressor working points are plotted on the manufacturer-provided compressor map as shown in Fig.14 and Fig.15, which demonstrate a very good match between the engine and the compressor map.

    Fig.15 Flow matching characteristic of turbocharger and engine at full load

    5 Conclusions

    Based on the simulation results, the following conclusions can be made:

    ① The combined charging system is effective to improve engine performance and satisfies the corresponding delivery ratio demand at the entire engine speed ranges.

    ② Compared with exhaust back pressure, theturbine orifice diameter and delivery ratio have the major influence on BSFC. The main way to decrease BSFC is to increase the turbine orifice diameter in a certain range or reduce the delivery ratio.

    ③ Compare with delivery ratio and the turbine orifice diameter, the exhaust back pressure has larger influence on trapped A/F. The main way to produce more power is to improve the exhaust back pressure appropriately.

    [1] Jean P, Martin F. Opposed piston engines: evolution, use, and future applications[M]. Warrendale:

    SAE International, 2010: 17-80.

    [2] Liu Yongchang. A modification to the “fully mixed/layers formed” compound scavenging model in a two-stroke diesel engine with constant pressure Charging[J]. Internal Combustion Engine Engineering, 1985, 4(2): 33-41. (in Chinese)

    [3] Zhu Tao, Wang Yang, Zhang Zhong. Gas flow simulation of hydraulic free piston engine[J]. China Mechanical Engineering, 2010, 21(18):2196-2201. (in Chinese)

    [4] Chen Wenting, Zhu Weilin, Zhang Yangjun, et al. Simulation on the scavenging process of the opposite two-stroke diesel engine[J]. Journal of Aerospace Power, 2010, 25(6): 1322-1326. (in Chinese)

    [5] Hanjalic K, Popovac M, Hadziabdic M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD [J]. International Journal of Heat and Fluid Flow, 2004,25(6):1047-1051.

    [6] Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[C]∥Sixteenth International Symposium on Combustion, Pittsburgh, 1977.

    [7] Herold R, Wahl M, Regner G, et al. Thermodynamic benefits of opposed-piston two-stroke engines, SAE paper 2011-01-216[R]. Detroit: Society of Automotive Engineers, 2011.

    [8] Zhou Longbao. Principle in internal combustion engine[M]. Beijing: China Machine Press,2003:48-79. (in Chinese)

    [9] Matthew G, McGough E, Robert F. Experimental investigation of the scavenging performance of a two-stroke opposed-piston diesel tank engine, SAE paper 2004-01-1591[R]. Detroit: Society of Automotive Engineers,2004.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0109

    TK 421.8 Document code: A Article ID: 1004- 0579(2015)01- 0058- 07

    Received 2013-12- 13

    Supported by the National Natural Science Foundation of China (B2220110005)

    E-mail: clzhao@bit.edu.cn

    亚洲男人的天堂狠狠| 亚洲av熟女| 亚洲中文字幕日韩| 人妻丰满熟妇av一区二区三区| 亚洲人与动物交配视频| 国内毛片毛片毛片毛片毛片| 天堂动漫精品| 午夜福利高清视频| ponron亚洲| 搞女人的毛片| 成人精品一区二区免费| 欧美大码av| 日韩欧美一区二区三区在线观看| 少妇丰满av| 又黄又爽又免费观看的视频| 精品国内亚洲2022精品成人| 欧美日韩福利视频一区二区| 十八禁网站免费在线| 无遮挡黄片免费观看| 老汉色∧v一级毛片| 亚洲精品乱码久久久v下载方式 | 美女 人体艺术 gogo| 黄片大片在线免费观看| 岛国在线免费视频观看| 亚洲狠狠婷婷综合久久图片| www.999成人在线观看| 91麻豆精品激情在线观看国产| 国产成人系列免费观看| 人人妻,人人澡人人爽秒播| ponron亚洲| 老熟妇仑乱视频hdxx| 国产高清视频在线播放一区| 色综合亚洲欧美另类图片| 少妇的逼好多水| 日韩欧美一区二区三区在线观看| 国产男靠女视频免费网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产日韩欧美精品在线观看 | 又黄又爽又免费观看的视频| 国产欧美日韩精品一区二区| 久久人妻av系列| 国产高清三级在线| 亚洲av成人精品一区久久| 日本在线视频免费播放| 欧美日韩一级在线毛片| 欧美激情在线99| 亚洲狠狠婷婷综合久久图片| 日韩欧美三级三区| 99久久久亚洲精品蜜臀av| 麻豆成人av在线观看| 国产亚洲精品一区二区www| 午夜福利成人在线免费观看| 99热6这里只有精品| 国产欧美日韩一区二区精品| 性色avwww在线观看| 欧美在线一区亚洲| 日日干狠狠操夜夜爽| 乱人视频在线观看| 一个人免费在线观看的高清视频| 国产精品三级大全| 亚洲熟妇中文字幕五十中出| 欧美一区二区国产精品久久精品| 午夜亚洲福利在线播放| 黄片大片在线免费观看| 69av精品久久久久久| 在线观看66精品国产| 男人舔奶头视频| 狂野欧美激情性xxxx| 十八禁网站免费在线| 波多野结衣高清无吗| 好看av亚洲va欧美ⅴa在| 老熟妇乱子伦视频在线观看| 精品电影一区二区在线| 精品国产美女av久久久久小说| 麻豆国产97在线/欧美| 欧美一区二区精品小视频在线| 亚洲 国产 在线| 99国产极品粉嫩在线观看| 久久久久久久久大av| 国内精品美女久久久久久| 欧美日本亚洲视频在线播放| 亚洲精品国产精品久久久不卡| 免费人成视频x8x8入口观看| 欧美中文日本在线观看视频| 亚洲色图av天堂| 村上凉子中文字幕在线| 欧美激情在线99| 日本黄色片子视频| 99国产精品一区二区三区| 亚洲自拍偷在线| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产 | 婷婷精品国产亚洲av| 少妇丰满av| 91久久精品国产一区二区成人 | 日日摸夜夜添夜夜添小说| www日本在线高清视频| 日本黄色视频三级网站网址| 99久久精品热视频| 亚洲性夜色夜夜综合| 日本一二三区视频观看| 国产av一区在线观看免费| 99久久99久久久精品蜜桃| 麻豆成人av在线观看| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 黄色片一级片一级黄色片| 国产综合懂色| 欧美区成人在线视频| 美女大奶头视频| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 日本三级黄在线观看| 亚洲无线观看免费| 国产中年淑女户外野战色| 真实男女啪啪啪动态图| 国产老妇女一区| 在线视频色国产色| 69人妻影院| 久久久久性生活片| 国产午夜精品论理片| 国产高清视频在线播放一区| 在线视频色国产色| 狠狠狠狠99中文字幕| 无人区码免费观看不卡| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 欧美黑人欧美精品刺激| 青草久久国产| 人妻丰满熟妇av一区二区三区| 黄色日韩在线| 日韩欧美一区二区三区在线观看| 国模一区二区三区四区视频| 99久国产av精品| 韩国av一区二区三区四区| 身体一侧抽搐| 亚洲精品美女久久久久99蜜臀| 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 国内精品一区二区在线观看| 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| 国产麻豆成人av免费视频| 男女那种视频在线观看| 精品国产超薄肉色丝袜足j| www.色视频.com| 亚洲av熟女| 两人在一起打扑克的视频| 免费人成在线观看视频色| 麻豆成人av在线观看| 3wmmmm亚洲av在线观看| а√天堂www在线а√下载| 日本撒尿小便嘘嘘汇集6| 国产av麻豆久久久久久久| 久久精品91蜜桃| 久久精品国产亚洲av香蕉五月| а√天堂www在线а√下载| 亚洲一区高清亚洲精品| 少妇的逼水好多| 精品一区二区三区av网在线观看| 亚洲精品456在线播放app | 亚洲人成网站在线播| 一级黄色大片毛片| 18禁国产床啪视频网站| 免费观看的影片在线观看| 内地一区二区视频在线| 又黄又爽又免费观看的视频| 男人舔女人下体高潮全视频| 亚洲精品影视一区二区三区av| 亚洲avbb在线观看| h日本视频在线播放| 亚洲片人在线观看| 欧美xxxx黑人xx丫x性爽| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 久久国产乱子伦精品免费另类| 国产一区二区激情短视频| 久久九九热精品免费| 精品久久久久久久久久久久久| 特级一级黄色大片| 国产野战对白在线观看| 嫩草影院精品99| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址| 亚洲中文字幕日韩| 黄色女人牲交| 免费观看的影片在线观看| 18+在线观看网站| 国产不卡一卡二| 毛片女人毛片| 国产精品国产高清国产av| 精品国产美女av久久久久小说| 欧美日韩福利视频一区二区| 国产精品98久久久久久宅男小说| 九九热线精品视视频播放| 校园春色视频在线观看| 成人国产一区最新在线观看| 欧美成人a在线观看| 国内精品久久久久精免费| 午夜免费成人在线视频| 美女cb高潮喷水在线观看| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 午夜老司机福利剧场| 可以在线观看毛片的网站| 精品久久久久久,| 一区二区三区免费毛片| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久久久久久久久| 亚洲专区中文字幕在线| 成人无遮挡网站| 99久久精品一区二区三区| 成人三级黄色视频| bbb黄色大片| www日本在线高清视频| 国产精品一区二区三区四区久久| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 日韩高清综合在线| 久久精品国产亚洲av涩爱 | 国产精品嫩草影院av在线观看 | 99久久综合精品五月天人人| 1000部很黄的大片| 国产精品 国内视频| a级一级毛片免费在线观看| 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 亚洲一区二区三区色噜噜| 叶爱在线成人免费视频播放| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 欧美精品啪啪一区二区三区| 亚洲av电影在线进入| 国产精品 欧美亚洲| 日本免费一区二区三区高清不卡| 日韩高清综合在线| 老熟妇乱子伦视频在线观看| 免费大片18禁| 美女被艹到高潮喷水动态| 男女下面进入的视频免费午夜| 久9热在线精品视频| 免费看光身美女| 国内精品久久久久精免费| 精品人妻1区二区| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲,欧美精品.| 在线看三级毛片| 亚洲国产欧美网| 国产真人三级小视频在线观看| 俺也久久电影网| 久久国产精品人妻蜜桃| 亚洲国产精品999在线| 一本一本综合久久| 一级黄色大片毛片| 亚洲黑人精品在线| 搞女人的毛片| 午夜福利免费观看在线| 国产精品野战在线观看| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 日韩精品青青久久久久久| 久久久久国内视频| 亚洲av五月六月丁香网| 性色av乱码一区二区三区2| 国产激情偷乱视频一区二区| 十八禁网站免费在线| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 夜夜爽天天搞| 伊人久久精品亚洲午夜| 天天添夜夜摸| 18+在线观看网站| 亚洲18禁久久av| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 日韩欧美精品免费久久 | 亚洲av成人不卡在线观看播放网| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片| 午夜亚洲福利在线播放| 成人精品一区二区免费| 天堂√8在线中文| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| 欧美色欧美亚洲另类二区| 三级国产精品欧美在线观看| 母亲3免费完整高清在线观看| 久久久久免费精品人妻一区二区| 亚洲av电影在线进入| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 欧美中文综合在线视频| 3wmmmm亚洲av在线观看| 婷婷丁香在线五月| 欧美在线黄色| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 国产日本99.免费观看| 国产免费一级a男人的天堂| 精品久久久久久久末码| 亚洲无线观看免费| 国内毛片毛片毛片毛片毛片| 欧美日韩国产亚洲二区| 天天添夜夜摸| 搡老熟女国产l中国老女人| 国产一区二区在线av高清观看| 尤物成人国产欧美一区二区三区| 日本 av在线| 欧美丝袜亚洲另类 | 婷婷亚洲欧美| 狠狠狠狠99中文字幕| 国产午夜精品论理片| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 欧美黄色片欧美黄色片| 两个人看的免费小视频| 黄片小视频在线播放| 亚洲久久久久久中文字幕| 日韩成人在线观看一区二区三区| 亚洲人与动物交配视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久国产高清桃花| av福利片在线观看| 日本 欧美在线| 国产精品乱码一区二三区的特点| 噜噜噜噜噜久久久久久91| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 国产精品 欧美亚洲| 亚洲精品成人久久久久久| 在线看三级毛片| 国内少妇人妻偷人精品xxx网站| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 日韩欧美精品免费久久 | 国产三级在线视频| xxxwww97欧美| 男女午夜视频在线观看| 久久久久性生活片| 亚洲乱码一区二区免费版| 在线免费观看不下载黄p国产 | 精品国产超薄肉色丝袜足j| www.www免费av| 欧美最新免费一区二区三区 | 日韩亚洲欧美综合| 日韩欧美 国产精品| 精品欧美国产一区二区三| 日韩中文字幕欧美一区二区| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 欧美成人一区二区免费高清观看| 熟女电影av网| 久久九九热精品免费| 精品国产亚洲在线| 亚洲av免费高清在线观看| 精品国产超薄肉色丝袜足j| 男插女下体视频免费在线播放| 黄色日韩在线| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频| 在线观看66精品国产| 母亲3免费完整高清在线观看| 欧美日韩精品网址| 国产精品 国内视频| 亚洲av二区三区四区| 亚洲黑人精品在线| 小说图片视频综合网站| 亚洲成av人片免费观看| ponron亚洲| 99精品久久久久人妻精品| 国产免费一级a男人的天堂| 久久久国产成人免费| 日韩欧美 国产精品| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 热99re8久久精品国产| 久久精品人妻少妇| 欧美3d第一页| 中文字幕人成人乱码亚洲影| 国产精品久久电影中文字幕| 国产欧美日韩一区二区三| 国产在视频线在精品| 美女黄网站色视频| 成人一区二区视频在线观看| 成人特级av手机在线观看| 人人妻人人看人人澡| 国产精品精品国产色婷婷| 在线观看舔阴道视频| 超碰av人人做人人爽久久 | 丰满乱子伦码专区| 91九色精品人成在线观看| 观看美女的网站| 特级一级黄色大片| 天天躁日日操中文字幕| 99久久九九国产精品国产免费| 老鸭窝网址在线观看| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 少妇人妻精品综合一区二区 | 九九久久精品国产亚洲av麻豆| 久久伊人香网站| 色综合亚洲欧美另类图片| 男女那种视频在线观看| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 中文亚洲av片在线观看爽| 真人一进一出gif抽搐免费| 日韩人妻高清精品专区| 国产视频内射| 欧美bdsm另类| 国产aⅴ精品一区二区三区波| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品av在线| 床上黄色一级片| 国产成人a区在线观看| 少妇的逼好多水| 看黄色毛片网站| 黄色视频,在线免费观看| 在线播放无遮挡| 亚洲av一区综合| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 在线天堂最新版资源| av女优亚洲男人天堂| 又粗又爽又猛毛片免费看| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 成年女人毛片免费观看观看9| 欧美bdsm另类| 国产成人a区在线观看| 国产亚洲欧美在线一区二区| 国产伦一二天堂av在线观看| 法律面前人人平等表现在哪些方面| 中文字幕人成人乱码亚洲影| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 看黄色毛片网站| 欧美日韩乱码在线| 精品不卡国产一区二区三区| 欧美日韩一级在线毛片| 少妇人妻一区二区三区视频| 国产精品 欧美亚洲| 88av欧美| 午夜免费男女啪啪视频观看 | 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 国产一区二区在线观看日韩 | av国产免费在线观看| 国产高清videossex| www.999成人在线观看| 一区二区三区国产精品乱码| 一个人免费在线观看电影| 老司机在亚洲福利影院| 久久久国产成人免费| 国产三级在线视频| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 制服人妻中文乱码| 久久久久久久午夜电影| 免费看光身美女| 最后的刺客免费高清国语| 一区二区三区高清视频在线| 夜夜夜夜夜久久久久| 一a级毛片在线观看| 观看免费一级毛片| 嫩草影院精品99| www日本在线高清视频| 男插女下体视频免费在线播放| 欧美+亚洲+日韩+国产| 欧美成人免费av一区二区三区| 国产精品免费一区二区三区在线| 免费av观看视频| av视频在线观看入口| 久久香蕉精品热| 国产中年淑女户外野战色| 久久精品国产自在天天线| 99热这里只有是精品50| 18禁在线播放成人免费| 免费无遮挡裸体视频| 欧美色视频一区免费| 日本与韩国留学比较| 法律面前人人平等表现在哪些方面| 亚洲熟妇中文字幕五十中出| 国产熟女xx| 一边摸一边抽搐一进一小说| 国产三级中文精品| 亚洲人成网站在线播| 老汉色av国产亚洲站长工具| 欧美乱色亚洲激情| 久久性视频一级片| av天堂在线播放| 国产成人啪精品午夜网站| 亚洲熟妇熟女久久| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 2021天堂中文幕一二区在线观| 亚洲第一欧美日韩一区二区三区| 亚洲18禁久久av| 欧美+日韩+精品| 男人的好看免费观看在线视频| 精品人妻1区二区| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 欧美激情久久久久久爽电影| tocl精华| av国产免费在线观看| 亚洲在线自拍视频| 精品免费久久久久久久清纯| 久久精品91蜜桃| 欧美丝袜亚洲另类 | 一a级毛片在线观看| 免费在线观看日本一区| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区色噜噜| www国产在线视频色| 丰满人妻一区二区三区视频av | 国产av不卡久久| 成人高潮视频无遮挡免费网站| 真人一进一出gif抽搐免费| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 人妻夜夜爽99麻豆av| 亚洲欧美精品综合久久99| 97超视频在线观看视频| 国产探花极品一区二区| tocl精华| 少妇丰满av| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区成人 | 禁无遮挡网站| 亚洲精品日韩av片在线观看 | 国产精品久久久久久精品电影| 中文字幕av在线有码专区| 一区二区三区免费毛片| av中文乱码字幕在线| 久久国产精品人妻蜜桃| 男女之事视频高清在线观看| 国产高潮美女av| 校园春色视频在线观看| 成人特级av手机在线观看| 亚洲专区国产一区二区| 桃色一区二区三区在线观看| 国产精品,欧美在线| 韩国av一区二区三区四区| 亚洲五月婷婷丁香| 亚洲成人精品中文字幕电影| 高潮久久久久久久久久久不卡| 久久6这里有精品| 在线观看av片永久免费下载| 亚洲第一电影网av| 乱人视频在线观看| 亚洲精品在线美女| 欧美极品一区二区三区四区| 亚洲国产欧美人成| 亚洲av二区三区四区| 国产日本99.免费观看| 岛国视频午夜一区免费看| 国产熟女xx| 男人和女人高潮做爰伦理| 欧美在线黄色| 亚洲中文日韩欧美视频| 亚洲五月婷婷丁香| 国产真人三级小视频在线观看| 看片在线看免费视频| 欧美xxxx黑人xx丫x性爽| 午夜影院日韩av| 日韩大尺度精品在线看网址| 母亲3免费完整高清在线观看| 国产精品影院久久| 国产成人a区在线观看| 69av精品久久久久久| 中文字幕av成人在线电影| 尤物成人国产欧美一区二区三区| 国内毛片毛片毛片毛片毛片| 悠悠久久av| 高清在线国产一区| 一个人免费在线观看电影| ponron亚洲| 午夜久久久久精精品| 18禁美女被吸乳视频| 一区二区三区高清视频在线| 尤物成人国产欧美一区二区三区| 欧美日韩乱码在线| 在线观看av片永久免费下载| 一本精品99久久精品77| 亚洲七黄色美女视频| 嫩草影视91久久| 亚洲天堂国产精品一区在线| 69人妻影院| 此物有八面人人有两片| 亚洲在线自拍视频| 嫩草影院入口| 日韩欧美精品v在线| 国产探花在线观看一区二区| 午夜福利在线观看吧| 最好的美女福利视频网| 国产成人av激情在线播放| 日韩av在线大香蕉| 午夜影院日韩av|