• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wideband acoustic source localization using multiple spherical arrays: anangular-spectrum smoothing approach

    2015-04-24 05:30:22WANGFangzhou王方洲PANXi潘曦

    WANG Fang-zhou(王方洲), PAN Xi(潘曦)

    (School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Wideband acoustic source localization using multiple spherical arrays: anangular-spectrum smoothing approach

    WANG Fang-zhou(王方洲), PAN Xi(潘曦)

    (School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    A novel algorithm using multiple spherical arrays based on spherical harmonic analysis is proposed to localize wideband acoustic sources. In the novel spherical harmonic algorithm, the received microphone signals are firstly used to do the spherical Fourier transformation. Then, the multiple signal classification (MUSIC) algorithm is applied to the spherical components to obtain the angular-spectrum. Finally, the angular-spectrum smoothing technique is proposed to obtain the accurate localization of wideband sources. In contrast to the traditional single spherical array, the multiple spherical arrays used in this paper consist of several randomly distributed spheres in a given plane. The microphones are uniformly placed on each sphere, the same as the usual single spherical array. Simulation comparison of wideband sources localization between a single spherical array and multiple spherical arrays based on the novel algorithm is carried out to validate our proposed method.

    multiple spherical array; spherical harmonicanalysis; wideband sources; source localization

    The algorithms based upon the concept of signal-subspace are widely used for the estimation of the direction of arrival (DOA) of wideband signals in the past few decades[1].

    One of the simplest approaches exploiting the concept of signal subspace, which is proposed in literature to deal with the wideband problem, is referred to as incoherent signal-subspace method (ISSM)[2]. The key idea of the method is to decompose the received wideband signals into nonoverlapping narrowband portions and at each frequency the narrowband techniques are applied to estimate the DOA of the impinging waves. Then, the partial results are averaged to yield the final estimation according to various methods[3]. The method, though simple, can’t resolve coherent signals which are extremely likely to appear due to multiple propagations. To solve the problem, Wang and Kaveh[4]propose a technique referred to as coherent signal-subspace method (CSSM), which transforms the cross-spectrum matrices at many frequency portions into one general cross-spectrum matrix at one focusing frequency by using a focusing matrix. The design of focusing matrix requires the knowledge of the exact DOAs, which are the final objective of the whole estimation procedure. An improved design procedure for the focusing matrices was proposed[5].

    All those methods are based on the design of the focusing matrices which requires the initial DOA values, and the estimation performance of CSSM is very sensitive to those initial values. Considering that the spherical microphone arrays offer an ideal tool for capturing and analyzing three-dimensional wavefields[6]. Numerous studies for the localization of wideband sources using spherical microphone arrays are carried out[7]. By decomposing the wavefield into spherical harmonics, the frequency-dependent components in the spherical harmonic domain are decoupled from the angular-dependent components which are extremely useful for frequency smoothing of wideband case[8].

    In this paper, a novel algorithm using spherical array based on spherical harmonic analysis is discussed, and the core of the algorithm is the initially proposed angular-spectrum smoothing technique (ASST). Notice that all the former related studies of the localization of wideband sources using spherical harmonic analysis are based on a single spherical microphone array, in our application, the algorithm with multiple spherical arrays consisting of several randomly distributed spheres was developed, hoping to obtain better estimation stability and performance. The simulation results verify our expectations.

    1 Wavefield decomposition

    Fig.1 depicts the geometric model of a planar wave impinging on a spherical aperture of radiusrfrom a far field sourceS(Ωs=(θs,φs)). The source generates a unit magnitude plane wave with wave number vectorkat the observation point,P(Ωp=(θp,φp)),on the surface of the sphere. So the incident field at the observation pointPon the sphere surface can be expressed as[9-10]

    (1)

    where i2=-1,r=(rcosφpsinθp,rsinφpsinφp,rcosθp)Tare the positions of the microphones on the sphere,jn(kr) is thenth order spherical Bessel function, andk=‖k‖=2πf/cis the wave number which is related to the frequency of the plane wave, andcis the sound speed. * denote complex conjugation,Ynmdefined by

    wherePn|m|(cosθp) is the associated Legendre function.Ynmis the spherical harmonics of ordernand degreem. In practical application, the order of spherical harmonics can’t be infinite, so we can replace it withNwhich is mainly determined by the number of microphones on the sphere.

    Fig.1 Planar wave impinging on a spherical aperture

    Spherical harmonics describe an orthonormal decomposition of the pressure of sound field. By applying an inverse spherical Fourier transform[11]to Eq.(1) mathematically, the pressure field presented on the spherical aperture can be integrated to obtain the expression for the pressure on the spherical aperture due to the incoming plane wave[12]. The expression can be calculated as

    (2)

    It is independent from the radial and angular information of the observation point and dependent on the frequency and direction of the source. As the information of the source can’t be obtained initially, the integration was applied to calculate the sound field in terms of spherical harmonics expansion:

    (3)

    In practical application, the spherical integration can’t be worked out, soGnm(kr,Ωs) is measured by the spherical microphone array. Considering a sphere withM×Huniformly distributed microphones (Ωpt=(θpt,φpt)(t=1,2,…,M×H)), then Eq.(3) can be rewritten as:

    (4)

    whereαtis the coefficient to make sure the accuracy of approximation from the integral to the summation, andαtcan be expressed as

    αt=sinθptΔθptΔφpt

    (5)

    where Δθpt=π/M,Δφpt=2π/H.

    2 Wideband source localization algorithm

    In this paper, a multiple spherical array structure is proposed to estimate the directions of multiple wideband sources. Assuming that there areLirregularly placed spheres of radiusrwith the same uniform distribution of microphones on each of them, while their self-coordinates are randomly located on a plane as shown in Fig.2. SupposeT=M×Hmicrophones on each sphere.

    Fig.2 Geometry of three spherical arrays

    ConsideringQsources with directionsΩsq=(θsq,φsq)(q=1,2,…,Q), in the case of multiple spherical array, the pressure owing to multiple sources can be obtained based on Eqs.(4)(5):

    (6)

    whereysq=(cosφsqsinθsq,sinφsqsinθsq,cosθsq)Tis the direction vector with respect to theqth source, androlis the direction vector from the origin of the coordinate to the center of thelth sphere whilertis the direction vector from the center of the sphere to thetth microphone on the sphere.

    According to Eq.(2), in the presence of an additive noise the model commonly used in array processing is

    (7)

    wheres(k) is the amplitude of the incoming plane wave andn(k) is the noise signal at the microphone that is assumed to be uncorrelated with the signal. Notice that the steering matrix on the right side of Eq.(7),Gnm(kr,Ωs), contains frequency and angular information simultaneously, therefore, to decouple the frequency-dependent components from the angular-dependent components, Eq.(7) by can be simply divided byjn(kr) to get

    (8)

    Combining Eq.(6) and Eq.(8), the steering matrixWcan be obtained as:

    W=[B×C(1),B×C(2),…,B×C(l),…,B×C(L)]

    (9)

    whereBis a (N+1)2×Tmatrix expressed as

    andC(l)is aT×Qmatrix defined as

    So the steering matrixWis aL(N+1)2×Qmatrix. Eq.(8) can be rewritten in the form of matrix as

    anm(k)=W×S(k)+n(k)

    (10)

    where the vector of signal waveform is defined as

    S(k)=[s1(k),s2(k),…sQ(k)]T

    (11)

    Now,anmcan be applied to do the DOA estimation using MUSIC algorithm through the following processes. First, the correlation matrix can be acquired

    (12)

    Taking eigenvalue decomposition ofRnm

    eigen(Rnm)=[Ea,En]

    (13)

    whereEaandEnare the signal subspace and noise subspace respectively. Then we can get the angular-spectrum equation with respect to the direction of the source

    (14)

    whereais the steering vector which is a column ofWfor any direction. By scanningΩsqthe peaks of the spectrum will be in conformity to the signals’ directions.

    In wideband case, the wide ranges of thekrowing to the source bandwidth can cause estimation errors. Noticing the angular-spectrum characteristics of differentkr, we propose the angular-spectrum smoothing method to obtain accuracy estimation. Supposing that the frequency range includesXfrequency sectors, the correspondingXvalues ofkrcan be averaged to get the final angular-spectrum

    (15)

    Now, scanningΩsq, the peaks of the smoothed angular-spectrum will be in conformity to the wideband sources’ directions.

    3 Simulations

    In this section, single spherical array (SSA) and multiple spherical arrays (MSA) simulations are provided to illustrate the efficiency of our novel algorithm. For all the following simulations, The comparison of performance is given in terms of root mean square error (R) (averaged over the sources).

    (16)

    3.1 Angular-spectrum smoothing technique

    Twenty microphones are placed on a sphere of radius 0.01 m, six microphones are distributed on each latitude and two microphones on the two poles as shown in Fig.2.

    Two sound signals (S1,S2) impinge from approximate directions (θs,φs)=(120°,120°),(270°,60°) respectively. Assuming that 1 kHz

    When the pitch angleφsof the two sources are fixed at 120° and 60°, their angular-spectrum in this direction can be obtained by scanning the azimuth angleθsof them. Fig.3 shows the spectrum of the azimuth angleθsfor differentkr. Notice that differentkrcan cause various spectrums, and each spectrum indicates some characteristics of the directions of one or both the sources. As we have assumed that there are 200 frequency sectors and correspondingly 200kr, Eq.(15) can be used to obtain the smoothed angular-spectrum in this direction as Fig.4 shown. The smoothed angular-spectrum can show the azimuth angle values of the sources through its’ two extremely obvious peaks, and the simulation results areθs1=119.5° andθs2=271.4° when their actual values areθs1=120° andθs2=270° respectively.

    Fig.3 Angular-spectrum of the azimuth angle θs for different kr

    Fig.4 Smoothed angular-spectrum of the azimuth angle θs

    3.2 Single and multiple spherical array

    In this part, the microphones on the single spherical array was distributed as the same as the former part. As for the multiple spherical arrays model, three spheres are placed in the limited field randomly, twenty microphones are distributed on each sphere with the same arrangement as a single spherical array. The results of DOA estimation based on the angular-spectrum smoothing technique using single and multiple spherical arrays are shown in Fig.5 and Fig.6 respectively. Showing that both the structures can estimate the directions of wideband sources by using the novel algorithm. However, the 3-D angular-spectrum of multiple arrays has more clear and pointed peaks than that of the single array; the spectrum of single array has many peaks at one direction simultaneously, indicating that the single array will lead to estimation deviations while the multiple arrays can obtain accuracy estimation results efficiently.

    TheSof the two sources range from -15 dB to 5 dB can be made simultaneously. For differentS, 200 times simulations are performed in order to get RMSE and estimation probability. As Fig.7 shows, when theSincreases, theRdegrades. The multiple spherical arrays have a more accurate estimation than the single array through theSwhich can improve the robustness of the angular-spectrum smoothing algorithm.

    Fig.5 DOA estimation using single spherical array

    Fig.6 DOA estimation using multiple spherical arrays

    Fig.7 RMSE vs SNR curves

    All the above comparative simulations within single and multiple arrays are based on the fact that the total number of microphones for the two structures are different, the multiple arrays have more microphones than that of the single array.

    3.3 Various number of arrays

    In this part, microphones are placed on sphere of radius 0.1 m. Four structures consisting of different numbers of spheres are designed; the total number of microphones in any structure are kept as the same, each structure has 18 microphones. The distributions of microphones on each sphere are varying from structure to structure, while the distributions are identical within the same structure. The 1st structure: one sphere, 5×36 distribution; the 2nd structure: two spheres,5×18 distribution on each sphere; the 3rd structure: three spheres, 5×12 distribution on each sphere; the 4th structure: four spheres, 5×9 distribution on each sphere.( Fora×b,adepicts the five latitude on the sphere whilebindicates the number of microphones on each latitude ). The distribution of microphones on each latitude is referred to as equal-angle distribution. Six sound sources with the frequency ranging from 0.5 kHz to 3 kHz are applied in those simulations. Their directions are(120°,60°), (180°,120°), (60°,150°), (30°,30°), (300°,60°) and (240°,150°) respectively. 250 frequency sectors are included, and the (SNR) for the six sound signals are all 0 dB.

    As shown in Figs.8-11, when the number of sound source increases to six, the single array can hardly distinct them while the multiple arrays can have higher distinction with more spheres in the structure, even under the condition that the total number of microphones in each structure are the same. The more the number of spheres in the structure, the more pointed the spectrum peak, which is very helpful in practical application.

    Fig.8 DOA estimation using the 1st structure

    Fig.9 DOA estimation using the 2nd structure

    Fig.10 DOA estimation using the 3rd structure

    Fig.11 DOA estimation using the 4th structure

    4 Conclusions

    Based on spherical harmonics decomposition of the sound field, a novel algorithm is proposed for estimating the directions of wideband sources, and the core of the algorithm is the proposed angular-spectrum smoothing technique which averages the angular-spectrums of all theXfrequency sectors to obtain the smoothed angular-spectrum for the accurate DOA estimation. Furthermore, a multiple spherical arrays structure consisting of several randomly distributed spheres in a given plane is developed. Simulation results show that both the single and multiple spherical array can localize the wideband sources while the multiple spherical arrays can be more accurate for its’ lower sidelobe and more pointed peaks in the angular-spectrum.

    Only open sphere was introduced in this paper, for an extension of the presented method to multiple rigid spherical baffles, some more investigations were needed for its’ more complicated scattered field which is caused by the multiple arrays structure. Future work includes the influence of the placement of the spheres located in the multiple spherical arrays especially the multiple rigid spherical baffles and the research of blind signals processing using the novel algorithm in noisy and reverberant environments.

    [1] Xu Y G, Liu Z W. Joint estimation of 2-D DOA and polarization by using the linear array with diverse polarization[J]. Journal of Beijing Institute of Technology, 2006,15(1):102-105.

    [2] Wax M,Shan T J, Kailath T. Spatio-temporal spectral analysisby eigenstructure methods[J]. IEEE Trans Acoust Speech Signal Process,1984, 32:817-827.

    [3] Claudio E D, Parisi R. Waves: weighted average of signalsubspaces for robust wideband direction finding[J]. IEEE Trans Speech Signal Process, 2001, 49: 2179-2190.

    [4] Wang H, Kaveh M. Coherent signal-subspace processing forthe detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, ASSP-33: 823-831.

    [5] Fabrizio S. Robust auto-focusing wideband DOA estimation[J]. Signal Process, 2006,86: 17-37.

    [6] Teutsch H, Kellermann W. Detection and localization of multiple wideband acoustic sources based on wavefield decomposition using spherical apertures[C]∥Proc IEEE International conference on Acoustics Speech, and Signal Processing (ICASSP), 2008: 5276-5279.

    [7] Meyer J, Elko G W. A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield[C]∥Proc IEEE International Conference on Acoustics Speech, and Signal Processing (ICASSP), 2002: 1781-1784.

    [8] Khaykin D, Rafaely B. Coherent signals direction-of-arrival estimation using a spherical microphone array: Frequency smoothing approach[C]∥Proc IEEE Workshop on Applications of Signal Processing to Audio and Acoustics(WASPAA), 2009: 221-224.

    [9] Trees H L V. Optimum array processing Part IV of detection,estimation, and modulation theory[M]. New York, NY: John Wiley Sons,Inc., 2002.

    [10] Teutsch H, Kellermann W. Eigen-beam processing for direction-of-arrival estimation using spherical apertures[C]∥Proc Joint Workshopon Hands-Free Communication and Microphone Arrays, 2005:c-13-c-14.

    [11] Williams E G. Fourier acoustics: sound radiation and nearfieldacoustic holography[M].New York, NY: Academic Press, 1999.

    [12] Teutsch H. Modal array signal processing: principles and applications of acoustic wavefield decomposition[M]. Berlin: Springer, 2007.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0104

    TN 912 Document code: A Article ID: 1004- 0579(2015)01- 0018- 08

    Received 2013- 09- 24

    E-mail: panxi@bit.edu.cn

    亚洲aⅴ乱码一区二区在线播放| 国产私拍福利视频在线观看| 天天躁日日操中文字幕| 色av中文字幕| 激情在线观看视频在线高清| 亚洲精品成人久久久久久| 国产一区二区激情短视频| 亚洲欧美清纯卡通| 国产在视频线在精品| 国产精品人妻久久久久久| 亚洲一区二区三区色噜噜| 热99在线观看视频| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播| 在线国产一区二区在线| 91午夜精品亚洲一区二区三区 | 欧美性猛交╳xxx乱大交人| av女优亚洲男人天堂| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费| 日韩欧美国产一区二区入口| 乱人视频在线观看| 国产69精品久久久久777片| 麻豆一二三区av精品| 亚洲电影在线观看av| 少妇被粗大猛烈的视频| 久久久久久大精品| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 国内精品美女久久久久久| 国产主播在线观看一区二区| 亚洲国产精品成人综合色| 色视频www国产| 看片在线看免费视频| 不卡一级毛片| 88av欧美| 女人十人毛片免费观看3o分钟| 中亚洲国语对白在线视频| 欧美黑人巨大hd| 亚洲av熟女| 国产伦人伦偷精品视频| 丝袜美腿在线中文| 免费搜索国产男女视频| 欧美xxxx黑人xx丫x性爽| 国产精品久久视频播放| 日本撒尿小便嘘嘘汇集6| 亚洲精品456在线播放app | 久9热在线精品视频| 亚洲人成伊人成综合网2020| 美女 人体艺术 gogo| 亚洲人成伊人成综合网2020| 国产精品久久电影中文字幕| 国产成人啪精品午夜网站| 久久人妻av系列| 丁香六月欧美| 搡老熟女国产l中国老女人| 国产精品乱码一区二三区的特点| 少妇高潮的动态图| 精品国产亚洲在线| 日韩欧美三级三区| 给我免费播放毛片高清在线观看| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 国产91精品成人一区二区三区| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 9191精品国产免费久久| 深夜a级毛片| 午夜亚洲福利在线播放| 欧美3d第一页| 婷婷精品国产亚洲av| 午夜福利欧美成人| 十八禁人妻一区二区| 高清在线国产一区| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 欧美中文日本在线观看视频| 国产精品98久久久久久宅男小说| 久久中文看片网| 日韩欧美精品免费久久 | 精品久久国产蜜桃| 日韩有码中文字幕| 日韩欧美在线乱码| 国产真实伦视频高清在线观看 | 一级黄片播放器| 亚洲中文日韩欧美视频| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 亚洲综合色惰| 精品一区二区三区视频在线| 麻豆一二三区av精品| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 亚洲一区高清亚洲精品| 好看av亚洲va欧美ⅴa在| 自拍偷自拍亚洲精品老妇| 亚洲熟妇中文字幕五十中出| 搡老妇女老女人老熟妇| 欧美午夜高清在线| 国产午夜精品论理片| 国产探花极品一区二区| 一个人看的www免费观看视频| 精品一区二区三区视频在线观看免费| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人中文| 久久久久久九九精品二区国产| 亚洲美女黄片视频| 91麻豆精品激情在线观看国产| 国产三级黄色录像| 国产精品久久视频播放| 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 日韩免费av在线播放| 国产精品日韩av在线免费观看| x7x7x7水蜜桃| 欧美乱色亚洲激情| 黄片小视频在线播放| 欧美黑人巨大hd| a在线观看视频网站| 久久亚洲精品不卡| 十八禁网站免费在线| 日韩欧美免费精品| 麻豆国产97在线/欧美| 色哟哟·www| 一个人免费在线观看电影| 一本一本综合久久| 麻豆av噜噜一区二区三区| 国产久久久一区二区三区| 中文字幕久久专区| 特级一级黄色大片| 国产高清视频在线播放一区| 国产精品av视频在线免费观看| 国产精品日韩av在线免费观看| 久久久久久久精品吃奶| 可以在线观看的亚洲视频| 国产大屁股一区二区在线视频| 欧美+日韩+精品| 精品一区二区三区人妻视频| 少妇丰满av| 国产一区二区三区在线臀色熟女| 午夜福利视频1000在线观看| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频| 永久网站在线| 欧美bdsm另类| 亚洲av第一区精品v没综合| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美在线乱码| 激情在线观看视频在线高清| av天堂在线播放| 国产欧美日韩精品亚洲av| 亚洲最大成人手机在线| 99热这里只有精品一区| 成人高潮视频无遮挡免费网站| 少妇裸体淫交视频免费看高清| 极品教师在线免费播放| 国产爱豆传媒在线观看| 又粗又爽又猛毛片免费看| www日本黄色视频网| 国产91精品成人一区二区三区| 九色成人免费人妻av| 精品久久久久久,| 我要看日韩黄色一级片| 国产成人av教育| 99精品在免费线老司机午夜| 黄色日韩在线| 国产不卡一卡二| 日日干狠狠操夜夜爽| 午夜福利视频1000在线观看| 免费观看的影片在线观看| 直男gayav资源| 中文资源天堂在线| 麻豆久久精品国产亚洲av| 亚洲自偷自拍三级| 午夜免费激情av| 亚洲第一欧美日韩一区二区三区| 欧美激情久久久久久爽电影| 精品国产三级普通话版| 免费搜索国产男女视频| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 久久婷婷人人爽人人干人人爱| 久久亚洲真实| 极品教师在线视频| 亚洲色图av天堂| 国产一区二区在线观看日韩| 最近中文字幕高清免费大全6 | 国产精品日韩av在线免费观看| 三级毛片av免费| 欧美日韩国产亚洲二区| 久久久久久九九精品二区国产| 我的女老师完整版在线观看| 欧美成人性av电影在线观看| 99热6这里只有精品| 国产成+人综合+亚洲专区| 嫩草影视91久久| 国产精品女同一区二区软件 | 国内精品久久久久久久电影| 99热精品在线国产| 亚洲 欧美 日韩 在线 免费| 丰满的人妻完整版| 一个人免费在线观看电影| 51国产日韩欧美| 亚洲欧美日韩高清在线视频| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 真人一进一出gif抽搐免费| 尤物成人国产欧美一区二区三区| 亚洲电影在线观看av| 五月玫瑰六月丁香| 一边摸一边抽搐一进一小说| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区av网在线观看| 欧美日韩黄片免| 18禁黄网站禁片免费观看直播| 我要看日韩黄色一级片| 中国美女看黄片| 欧美国产日韩亚洲一区| 天天一区二区日本电影三级| 免费看a级黄色片| 亚洲狠狠婷婷综合久久图片| 国产成人aa在线观看| 丁香六月欧美| 日本黄大片高清| 99热只有精品国产| 国产亚洲精品久久久com| 脱女人内裤的视频| 成年女人看的毛片在线观看| 一二三四社区在线视频社区8| 午夜福利在线观看吧| 看免费av毛片| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 成人性生交大片免费视频hd| 成人欧美大片| 日韩欧美国产一区二区入口| 变态另类丝袜制服| 午夜激情福利司机影院| 午夜日韩欧美国产| 又粗又爽又猛毛片免费看| 哪里可以看免费的av片| 亚洲最大成人手机在线| 日本在线视频免费播放| 动漫黄色视频在线观看| av欧美777| 中亚洲国语对白在线视频| 色视频www国产| 伦理电影大哥的女人| 婷婷六月久久综合丁香| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 男人舔奶头视频| 国产精品三级大全| 97热精品久久久久久| 亚洲国产精品久久男人天堂| 日本成人三级电影网站| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器| 好看av亚洲va欧美ⅴa在| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件 | 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区三区四区免费观看 | 亚洲精品粉嫩美女一区| 亚洲av免费高清在线观看| 如何舔出高潮| 久久国产精品影院| 九九久久精品国产亚洲av麻豆| 天天躁日日操中文字幕| 亚洲在线观看片| 91午夜精品亚洲一区二区三区 | 超碰av人人做人人爽久久| 动漫黄色视频在线观看| 久久精品国产清高在天天线| 久久久久九九精品影院| 免费在线观看日本一区| 精品不卡国产一区二区三区| 高清日韩中文字幕在线| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 亚洲欧美日韩无卡精品| 欧美激情在线99| 国产高清三级在线| 亚洲真实伦在线观看| 露出奶头的视频| 婷婷丁香在线五月| 国内精品美女久久久久久| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| 波野结衣二区三区在线| 久久久久久久久大av| 精品熟女少妇八av免费久了| 亚洲,欧美,日韩| 少妇丰满av| 成人午夜高清在线视频| 日本三级黄在线观看| 在线观看66精品国产| 亚洲av免费在线观看| 在线观看美女被高潮喷水网站 | 婷婷精品国产亚洲av| 欧美成人a在线观看| 97人妻精品一区二区三区麻豆| 99久久精品热视频| 国产精品女同一区二区软件 | 久久伊人香网站| 国产亚洲精品av在线| 午夜影院日韩av| 国产高清有码在线观看视频| 亚洲av不卡在线观看| 亚洲一区二区三区不卡视频| 精品国产三级普通话版| 亚洲五月婷婷丁香| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看| 成人欧美大片| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 最新在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 欧美一区二区国产精品久久精品| 亚洲av第一区精品v没综合| 成人无遮挡网站| 国产探花在线观看一区二区| 深夜a级毛片| 99国产综合亚洲精品| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| 日本精品一区二区三区蜜桃| 在线免费观看不下载黄p国产 | 欧美色欧美亚洲另类二区| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| av国产免费在线观看| aaaaa片日本免费| 日本黄色视频三级网站网址| 亚洲黑人精品在线| 一个人看视频在线观看www免费| 国产三级黄色录像| 窝窝影院91人妻| 国产不卡一卡二| 国产精品亚洲av一区麻豆| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 欧美日韩亚洲国产一区二区在线观看| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩高清专用| 亚洲最大成人中文| 69人妻影院| 精品一区二区三区av网在线观看| 午夜a级毛片| 少妇裸体淫交视频免费看高清| 午夜福利成人在线免费观看| 91字幕亚洲| 嫁个100分男人电影在线观看| 久久久色成人| 精品日产1卡2卡| 尤物成人国产欧美一区二区三区| 啦啦啦观看免费观看视频高清| 欧美高清性xxxxhd video| netflix在线观看网站| 老司机深夜福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美 国产精品| 国产精品98久久久久久宅男小说| 国产精品野战在线观看| 黄色配什么色好看| 国产三级在线视频| 97超视频在线观看视频| 亚洲欧美日韩无卡精品| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va | 亚洲av.av天堂| 中文字幕熟女人妻在线| 99精品久久久久人妻精品| 校园春色视频在线观看| 亚洲av中文字字幕乱码综合| 午夜两性在线视频| 少妇丰满av| а√天堂www在线а√下载| 能在线免费观看的黄片| 天堂影院成人在线观看| 少妇的逼水好多| 色5月婷婷丁香| 欧美一级a爱片免费观看看| 精品久久久久久久久久久久久| 久久国产精品人妻蜜桃| 好看av亚洲va欧美ⅴa在| 国产精品乱码一区二三区的特点| 免费在线观看影片大全网站| 日韩成人在线观看一区二区三区| 国产91精品成人一区二区三区| 精品免费久久久久久久清纯| 国产真实乱freesex| 国产精品久久电影中文字幕| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av涩爱 | 18禁在线播放成人免费| 少妇的逼水好多| 九色成人免费人妻av| 中文在线观看免费www的网站| 亚洲av.av天堂| 欧美成人免费av一区二区三区| 97碰自拍视频| 能在线免费观看的黄片| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| 18+在线观看网站| 嫩草影院精品99| 国产精品电影一区二区三区| 极品教师在线免费播放| 少妇熟女aⅴ在线视频| 性色av乱码一区二区三区2| 亚洲av成人精品一区久久| 久久这里只有精品中国| 欧美3d第一页| 老熟妇仑乱视频hdxx| 国产中年淑女户外野战色| 国产极品精品免费视频能看的| 日韩亚洲欧美综合| 精品国产亚洲在线| 午夜福利在线观看吧| 99视频精品全部免费 在线| 免费人成视频x8x8入口观看| 伊人久久精品亚洲午夜| 欧美zozozo另类| 国产午夜精品论理片| 亚洲av成人av| 成人精品一区二区免费| 国产av不卡久久| 99久久99久久久精品蜜桃| 十八禁网站免费在线| 亚洲人成网站高清观看| 久久精品综合一区二区三区| 国产精品野战在线观看| av在线天堂中文字幕| 日日摸夜夜添夜夜添小说| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器| 麻豆成人av在线观看| 乱人视频在线观看| 国产伦精品一区二区三区四那| a级毛片a级免费在线| 久久久久精品国产欧美久久久| 国产不卡一卡二| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 成人亚洲精品av一区二区| 久久婷婷人人爽人人干人人爱| 色综合欧美亚洲国产小说| 欧美午夜高清在线| 精品久久久久久久久久久久久| 99热只有精品国产| 99久久成人亚洲精品观看| 亚洲,欧美精品.| 精品人妻一区二区三区麻豆 | 99久久成人亚洲精品观看| 欧美bdsm另类| 久久草成人影院| 久久这里只有精品中国| www.熟女人妻精品国产| 亚洲自偷自拍三级| 亚洲在线自拍视频| 亚洲自偷自拍三级| 中文资源天堂在线| 亚洲av一区综合| 老熟妇乱子伦视频在线观看| 毛片一级片免费看久久久久 | 两性午夜刺激爽爽歪歪视频在线观看| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 赤兔流量卡办理| 亚洲熟妇熟女久久| 9191精品国产免费久久| 我要搜黄色片| 久久久久久久久中文| 欧美激情在线99| 欧美日韩黄片免| 亚洲最大成人手机在线| 人人妻,人人澡人人爽秒播| 少妇人妻精品综合一区二区 | 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式| 草草在线视频免费看| 精品久久久久久久久久免费视频| 欧美精品国产亚洲| 一个人看视频在线观看www免费| 偷拍熟女少妇极品色| 日本成人三级电影网站| a在线观看视频网站| 日韩人妻高清精品专区| 免费在线观看成人毛片| www.色视频.com| 亚洲天堂国产精品一区在线| 亚洲av美国av| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| 精品福利观看| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看吧| 亚洲中文字幕日韩| 毛片女人毛片| 最好的美女福利视频网| 国产69精品久久久久777片| 久久精品久久久久久噜噜老黄 | 亚洲精品456在线播放app | 久久精品国产自在天天线| 色综合欧美亚洲国产小说| 自拍偷自拍亚洲精品老妇| 亚洲成a人片在线一区二区| 精华霜和精华液先用哪个| 极品教师在线视频| 国产成年人精品一区二区| 老女人水多毛片| 天堂√8在线中文| 特级一级黄色大片| 一区二区三区四区激情视频 | 深爱激情五月婷婷| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 人妻夜夜爽99麻豆av| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区| 99久久精品热视频| 欧美成人一区二区免费高清观看| 中出人妻视频一区二区| 黄色一级大片看看| 色综合亚洲欧美另类图片| 成年免费大片在线观看| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 国产成人欧美在线观看| 欧美不卡视频在线免费观看| 90打野战视频偷拍视频| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6 | 亚洲专区国产一区二区| 丰满人妻一区二区三区视频av| 男人的好看免费观看在线视频| 亚洲成av人片在线播放无| 一级毛片久久久久久久久女| 搞女人的毛片| 在现免费观看毛片| 精华霜和精华液先用哪个| 亚洲成a人片在线一区二区| 日本与韩国留学比较| 亚洲久久久久久中文字幕| 综合色av麻豆| 一区二区三区激情视频| 国产成人av教育| 久久精品国产亚洲av香蕉五月| 久久人妻av系列| 免费观看人在逋| 又黄又爽又免费观看的视频| 真人一进一出gif抽搐免费| 精品人妻1区二区| 级片在线观看| 久久精品综合一区二区三区| 欧美区成人在线视频| bbb黄色大片| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3| 一级毛片久久久久久久久女| 三级男女做爰猛烈吃奶摸视频| 成人鲁丝片一二三区免费| 国产精品久久久久久精品电影| 特级一级黄色大片| 高清毛片免费观看视频网站| 久久国产乱子伦精品免费另类| 欧美国产日韩亚洲一区| 亚洲性夜色夜夜综合| 身体一侧抽搐| 欧美黄色淫秽网站| 亚洲熟妇中文字幕五十中出| 搡老熟女国产l中国老女人| 亚洲成av人片免费观看| 国产精品久久久久久亚洲av鲁大| 欧美高清性xxxxhd video| 国产一区二区在线av高清观看| 亚洲欧美日韩东京热| 国产精品久久久久久人妻精品电影| 日本黄色视频三级网站网址| 欧美另类亚洲清纯唯美| 午夜a级毛片| 色5月婷婷丁香| 欧美成人一区二区免费高清观看| 亚洲成人精品中文字幕电影| 久久久久精品国产欧美久久久| 51午夜福利影视在线观看| 国产毛片a区久久久久| 亚洲av电影在线进入| 99久久精品一区二区三区| 国产高清视频在线观看网站|