• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation and optimization of the cylinder head water jacket based on the two-phase flow boiling heat transfer

    2015-04-22 07:24:52CHENGYing程穎WANGJiawu王家武
    關(guān)鍵詞:王家

    CHENG Ying(程穎), WANG Jia-wu(王家武)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Numerical simulation and optimization of the cylinder head water jacket based on the two-phase flow boiling heat transfer

    CHENG Ying(程穎), WANG Jia-wu(王家武)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    Boiling heat transfer and the controllability of the thermal load of the cylinder head were studied. The thermodynamic phase change characteristics of the cylinder head coolant were considered and the mass, momentum and energy transfers between two phases were calculated with the interface transfer sub-models by using the computational fluid dynamics software CFX. Results showed that compared with the single-phase flow without considering the boiling heat transfer, the sub-cooled boiling heat transfer of the cylinder head was greatly increased. According to the results of the numerical simulation, an optimized structure of the water jacket was proposed. Finally, temperature and velocity of coolant, diameter of flow passage and mean bubble diameter that influences sub-cooled boiling were studied using the orthogonal experiment method.

    cylinder head; sub-cooling boiling; optimization; orthogonal design; simulation

    The structure of the water jacket is complicated and the coolant flow inside the jacket cannot be easily observed and measured. The CFD is turned to be an effective mean for estimating and optimizing the water jacket system. But how to get accurate results is researchers’ goal. Nowadays, the numerical simulation of the engine cooling generally assumes that only single-phase forced convection heat transfer exists in the water jacket, ignoring the effect of boiling heat transfer. However, sub-cooled boiling heat transfer inevitably occurs in the heavy-duty diesel engine. Whether the sub-cooled boiling is taken into account exerts a great influence on the results of analyzing the heat transfer.

    Based on the two-phase boiling model, we studied sub-cooled boiling heat transfer of the diesel cylinder head. The results showed that taking into account the effect of boiling phenomenon was necessity. According to the results of numerical simulation, an optimized structure of the water jacket was proposed. Finally, a simplified cylinder head was modeled according to the boiling zones of the original one, and the temperature and velocity of coolant, diameter of flow passage and mean bubble diameter that influences sub-cooled boiling were studied using the orthogonal experiment method.

    1 Boiling heat transfer models

    The boiling phenomenon occurred in the cylinder head is complex. Models for multidimensional theoretical description and analysis of sub-cooling boiling flow include Euler homogeneous flow boiling models, single-phase flow boiling models, and Euler two-fluid flow boiling models.

    Euler homogeneous flow boiling models assumes that the vapor phase and the liquid phase have the common velocity field and the temperature field. The coolant is composed of vapor and liquidwith a fixed volume fraction[1]. Single-phase flow boiling models assumes that the scale of bubbles is very tiny and the bubbles intensively mixed with the liquid. The influences of the bubble movement to the liquid flow can be ignored[2]. The aforementioned two boiling models are relatively easy with mature solving technologies. They also have higher computing and convergence speed than the Euler two-fluid flow boiling models. But the assumption had a significant difference with the actual situation.

    Euler two-fluid boiling models use two sets of conservation equations to govern the balance of mass, momentum and energy of each phase. By introducing the concept of the phase volume fraction, the macroscopic fields of one phase are not independent of the other phase and the interaction terms which couple the inter-phase transfer of mass, momentum and energy across the interfaces appear in governing equations. The first and most well-known model of this kind was formulated by Kurul and Podowski[3]. In this model, a number of the sub-models of the overall mechanistic model were taken from correlations. The sub-models include[4]: the model that describes the heat flux from the wall to the liquid, the model of wall nucleation site density, the correlation for bubble departure diameter, the correlation for bubble detachment frequency, the model that describes the bubble waiting time, the model that describes area influence factors, the model that describes convective heat transfer, the model of quenching heat transfer, the model of evaporation rate, etc. In this way, we used Euler two-fluid flow boiling models to precisely describe the complex heat transfer mechanisms. We applied Euler two-fluid flow boiling models to the cylinder head, the computational efficiency and convergence speed cannot be accepted because the structure of the water jacket is extraordinary complicated. However, the model is suitable for cylinder heads that use the drilling cooling whose flow passage cross section is circular.

    2 Numerical method

    The research was carried out in a diesel cylinder head, whose material was GJV300. We drilled circular flow passages in high temperature zones of cylinder head and cooled there. In this way, the regions of high temperature were cooled effectively[5]. Fig.1 shows the geometry model and finite model of the water jacket of the single cylinder.

    Fig.1 Geometry model and finite model of water-jacket

    The composition of the coolant was distilled water. The calculations were performed with the finite volume and the steady state computational model was used. The liquid phase was dominant and described as continuous while the vapor bubbles were described as dispersed phase. Boundary conditions of a no slip for the liquid phase and a free slip for the vapor phase were used. The κ-εturbulencemodelwasemployedforthecontinuousphasewhilethedispersedvaporphaseremainedlaminar.TheSato’seddyviscositymodel[6-7]wasadoptedtocomputethebubbleinducedturbulenceviscosity.Theflowrate,thecoolanttemperatureintheinletofthewaterjacketandtheaverageoutletstaticpressurewereobtainedfromtheexperiments.

    Constantthermalboundaryconditionwasadoptedontheheatedwall.Thethermalboundaryconditionsoftheflame-deckcanbedeterminedasfollows:Theinstantaneousgas-sidetemperatureTgandtheheattransfercoefficientofflame-deckhg,asshowninFig.2,wereobtainedbyGT-Powersoftware,andtheaveragevaluesweregainedas

    (1)

    (2)

    wherehgmis the weighted average heat transfer coefficient of the gas in a cycle, τ0isthecrankangle,andTgmistheaveragetemperatureofthegasinacycle.

    Fig.2 Instantaneous gas-side temperature and heat transfer coefficient of flame-deck

    Fig.3 Zones in flame-deck

    Thesurfaceoftheflame-deckwasdividedinto9zonesaccordingtothetemperaturedistributionasshowninFig.3.Theaveragegas-sidetemperaturewassetastheflamedeck’ssurfacetemperature.Theheattransfercoefficientofeachregionwasadjustedaccordingtothefollowingequation

    (3)

    untilthecalculatedvaluesandexperimentalvaluesatthemeasuringpointswerealmostequal.InEq.(3),Aiandhiare the areas and the heat transfer coefficient of each zone, respectively;Ais the total area of the flame-deck.

    3 Results analysis

    3.1 Forced convection results

    Fig.4 Pressure and temperature distribution of water jacket

    The coolant of the cylinder head near the flame-deck was exposed to the heat flux from the gas side. The coolant temperature in thin-wall annular flow passage around the injector hole was very high due to the present of the flow stagnation zone and need to be further optimized[5]. Flow passages near the exhaust valve side were affected by the high temperature exhaust gas. Reasons mentioned above led to the high temperature of coolant in these areas. As shown in Fig.4, pressures of these regions were between 112 400 Pa-138 900 Pa, and the corresponding boiling point of water were 377.96 K-382.47 K. Obviously, there was boiling heat transfer occurred in some areas, and was quite necessary to consider sub-cooling boiling heat transfer in numerical simulation.

    3.2 Comparison of the forced convection results and the sub-cooling boiling results

    The water jacket was calculation with and without considering the sub-cooling boiling heat transfer, and the water flow field and the temperature of the cylinder head were compared accordingly. Fig.5 shows that the temperature distributions of the cylinder head were identical in both cases, namely, with and without considering the boiling heat transfer. The peak temperature occurs both in the bridge between the two exhaust valves. However, after considering boiling heat transfer, the peak temperatures of the cylinder head and the water jacket dropped 27.6 K and 48.6 K, respectively, as shown in Fig.5 and Fig.6.

    As shown in Tab.1, the average heat flux of each zone in the flame-deck was improved greatly after considering boiling heat transfer among which the most obvious zone was in the area ofA4that rise by 10.24%. It can be concluded that the sub-cooling boiling enhanced the transfer of

    heat flux and contributed to cooling of the high temperature region of cylinder head, producing a more uniform temperature field and reducing the temperature gradient of flame-deck. Therefore, the boiling heat transfer plays an important role in the simulation of the thermal load of the cylinder head.

    Fig.5 Temperature distribution of the cylinder head in different cases

    Fig.6 Temperature distribution of water jacket in different cases

    Tab.1 Comparing heat flux in difference cases W·m-2

    3.3 Analysis of two-phase flow in the water jacket

    Fig.7 shows the distributions of the void fraction in the cross-sections of the water jacket. The locations of the cross sections are illustrated in Fig.1. There existed a large number of vapor bubbles in the flow passages of the exhaust valve side while there were hardly any in the intake valve side. The exhaust valve side withstood the heat flux transferred from the high temperature gas which caused boiling and producing more vapor bubbles.

    In the passages of No.2, 3, and 4, as shown in Fig.7, which were closed to the flame-deck or the bridge between the two exhaust valves, presented a large number of vapor bubbles and the highest void fraction even reached 90% because the high temperature on the surfaces of these areas. As shown in Fig.8, the flow rates of these passages were relatively high (about 4 m/s) which could carry away bubbles in time and avoid blocking of coolant passages. The void fraction in the passage of No.1 was high as well, but the flow rate here was quite low which might block this passage and deteriorate cooling of cylinder head. It should be further optimized.

    Fig.7 Void fraction distribution

    Fig.8 Velocity distribution

    3.4 Optimization of the water jacket

    Based on the analysis in previous section, measures to improve the flow condition of water jacket were taken as shown in Fig.9.

    Measure 1: Reduced the flow passage’s diameter by 2 mm, which is the access to the upper of the cylinder head in the exhaust side directly.

    So the greater flow of coolant through the passages that located in the bottom of the cylinder head firstly.

    Measure 2: Changed the center circle of thin-walled annular flow passage into waterways, forcing the water flow through the injector bore around, eliminating the flow stagnation zone, as shown in Fig.9.

    Fig.9 Modified model of water jacket

    Measure 3: Added an outlet in the exhaust side to reduce the flow energy loss, and strengthen the exhaust side cooling.

    As can be seen from Tab.2,Vp1is the velocity ofP1,VCis the velocity of center circle flow passage,Tfdis the temperature of flame-deck,Te-eis the temperature of the wall of exhaust passage,hwjis the heat transfer coefficent of the wall of water jacket.

    Tab.2 Parameters comparison between the original and modified model

    Fig.10 Temperature distribution of the exhaust passage

    The locations of the points are illustrated in Fig.8, the optimized model had a significant improvement in the flow rate than the original model and the flow stagnation zone was eliminated. The temperature field of the exhaust passage became more uniform, as shown in Fig.10.

    4 Factors influencing the boiling heat transfer

    According to the actual work of the cylinder head, the flow rate, the temperature of coolant in the inlet of the water jacket, the cross section diameter of coolant passage and the bubble diameter are the main factors affecting the boiling heat transfer[8]. The orthogonal design method, which took the peak temperature in the cylinder head as the reference indicator, was adopted to study these factors. The L9(34) orthogonal table was chosen[9], and the results are demonstrated in Tab.3.

    Tab.3 Orthogonal design table and the result

    To reduce the calculation scale, based on the results of the previous analysis, the cylinder head and the cooling water jacketabout this type of diesel engine were simplified. The phenomenon of boiling heat transfer mainly occurs in the coolant passages close to flame-deck. Thus the simplified model maintained the flame-deck structure, and the coolant passage near the flame-deck remained unchanged, as shown in Fig.11.

    Fig.11 Simplified model

    According to the values ofK1,K2andK3, each factor’s influences to the reference indicator can be obtained: as the flow rate in the inlet increases, the value of reference indicator trends to decrease. This may be attributed to the fact that higher velocities in the flow passage produce highly turbulent flow, thus, reduce the boundary layer thickness. Moreover, the bubbles can be carried into the bulk flow and condensed in time, hence improves the heat transfer coefficient of the wall. As the temperature of inlet flow goes up, the maximum temperature of cylinder head increases. For the fixed wall temperature, as the bulk temperature increases, the temperature difference between the wall and bulk reduces, hence heat flux carried by the coolant decreases. When boiling bubbles diameter increases, the void fraction in the flow passage increases, and the disturbance between the two phases is reduced. In this way, the cooling effect of the cylinder head is suppressed.

    When the flow passage diameter increases, the wall heat transfer coefficient increases and enhances heat transfer; however, for the same inlet flow quantity, as the flow passage diameter increases, the flow rate in the passage will decrease, causing weakened cooling effect. According to the above two aspects, when the flow passage diameter increases to a certain size range, heat transfer of the cylinder head can be enhanced. But after the flow passage diameter increases beyond a certain level, the heat transfer coefficient drops because decreasing flow rate overwhelms the raises caused by the increasing diameter. Consequently, the heat flux decreases.

    Range analysis results in Tab.3 show that the temperature of coolant and the cross section diameter of the coolant passage influence the peak temperature of the cylinder head in a larger degree than other factors.

    5 Conclusion

    In the heavy duty diesel engine, sub-cooling boiling heat transfer phenomena occurs inevitably. It exerts a greater impact on the simulation results and could not be ignored. According to the results of the numerical simulation, an optimized structure of the water jacket was proposed. The coolant flow rate, temperature, average bubble diameter and diameter of the coolant passage affects the boiling heat transfer. The temperature of coolant and the cross section diameter of the coolant passage are the main factors to the peak temperature of the cylinder head.

    [1] Bo T. CFD homogeneous mixing flow modelling to simulate sub-cooled nucleate boiling flow, SAE paper 2004-0l-1512 [R]. Warrendale, PA, USA: Society of Automotive Engineering, 2004.

    [2] Berezhkovskii L M, Zitserman V Y. Multidimesional theroy of homogeneous boiling of pure liquids[J]. Colloid and Interface Science, 1993,156(1):153-156.

    [3] Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels[C]∥ANS Proc. 27th National Heat Transfer Conference, Minneapolis, MN, USA, 1991.

    [4] ANSYS Inc. ANSYS CFX-Solver theory guide[M]. Canonsburg, PA, USA: ANSYS Inc, 2009.

    [5] Yao Xiugong, Chen Ying, Gai Hongwu. Simulation and analysis of thermal load for diesel cylinder head[J]. Vehicle Engine, 2003(1):61-65. (in Chinese)

    [6] Sato Y, Sadatomi M, Sekoguchi K. Momentum and heat transfer in two-phase bubble flow[J]. International Journal of Multiphase Flow, 1981, 7(2):167-177.

    [7] Erfeng Chen, Yanzhong Li, Xianghua Cheng. CFD simulation of upward subcooled boiling flow of refrigerant-113 using the two-fluid model[J]. Applied Thermal Engineering, 2009, 29(11/12):2508-2517.

    [8] Yang Shiming, Tao Wenquan. Heat transfer[M]. Beijing: Higher Education Press, 2006: 301-335. (in Chinese)

    [9] Pan Lijun, Cheng Jingquan. Expermental design & date processing[M].Nanjing: Southeast University Press,2008:73-87.(in Chinese)

    (Edited by Cai Jianying)

    DOI: 10.15918/j.jbit1004-0579.201524.0307

    TK 422 Document code: A Article ID: 1004- 0579(2015)03- 0328- 07

    Received 2013- 12- 30

    Supported by the National Key Basic Research Program of China (1030021210710)

    E-mail: chengy@bit.edu.cn

    猜你喜歡
    王家
    王家樂(lè)剪紙作品選
    江西教育(2022年32期)2022-10-17 09:03:42
    王家新的詩(shī)
    作品(2020年9期)2020-12-09 05:43:39
    王家灣
    王家春:一場(chǎng)“自我”的繪畫(huà)
    王家銀的創(chuàng)意人生
    漫畫(huà)欣賞
    中老年保健(2018年1期)2018-05-30 09:20:11
    也無(wú)風(fēng)雨也無(wú)晴
    讀者(2018年8期)2018-04-03 04:48:42
    輕松一閱
    中老年保健(2017年7期)2017-05-30 12:38:17
    輕松一閱
    中老年保健(2017年9期)2017-05-30 11:25:46
    【輕松一閱】
    中老年保健(2017年2期)2017-05-30 08:38:44
    性少妇av在线| 97精品久久久久久久久久精品| 自线自在国产av| 国产又色又爽无遮挡免| av网站免费在线观看视频| 亚洲av成人精品一二三区| 国产高清国产精品国产三级| 国产日韩欧美亚洲二区| 欧美精品高潮呻吟av久久| 亚洲精品美女久久av网站| 美女脱内裤让男人舔精品视频| 国产精品偷伦视频观看了| 日韩av免费高清视频| av电影中文网址| 丝袜在线中文字幕| 亚洲国产日韩一区二区| 欧美bdsm另类| 成人漫画全彩无遮挡| 亚洲一区中文字幕在线| 亚洲国产看品久久| 精品人妻偷拍中文字幕| av一本久久久久| 丝袜脚勾引网站| 老女人水多毛片| 人妻 亚洲 视频| 熟女电影av网| 一级毛片 在线播放| 国产av国产精品国产| 黄网站色视频无遮挡免费观看| 亚洲精品久久成人aⅴ小说| 日本免费在线观看一区| 啦啦啦在线观看免费高清www| 人妻人人澡人人爽人人| 国产免费又黄又爽又色| 亚洲内射少妇av| 亚洲国产看品久久| 一级片免费观看大全| 大码成人一级视频| 久久久久精品性色| 午夜福利一区二区在线看| 国产成人精品久久二区二区91 | 深夜精品福利| 只有这里有精品99| 午夜免费鲁丝| 三上悠亚av全集在线观看| 国产不卡av网站在线观看| 午夜福利网站1000一区二区三区| 多毛熟女@视频| 中文乱码字字幕精品一区二区三区| 老女人水多毛片| 欧美精品av麻豆av| 亚洲国产色片| 久久精品aⅴ一区二区三区四区 | 嫩草影院入口| 熟妇人妻不卡中文字幕| 欧美日韩一区二区视频在线观看视频在线| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片我不卡| av在线app专区| 亚洲成色77777| 日韩不卡一区二区三区视频在线| 国产免费视频播放在线视频| 精品亚洲成a人片在线观看| 亚洲人成77777在线视频| 制服诱惑二区| av国产精品久久久久影院| 国产成人欧美| 国产成人精品在线电影| 久久久久国产一级毛片高清牌| 久久 成人 亚洲| 中文字幕亚洲精品专区| 色网站视频免费| 亚洲伊人久久精品综合| 亚洲成人手机| 一个人免费看片子| 男的添女的下面高潮视频| 男女边吃奶边做爰视频| 在线观看www视频免费| 免费在线观看完整版高清| av在线观看视频网站免费| 国产亚洲午夜精品一区二区久久| 免费黄色在线免费观看| 美女中出高潮动态图| 午夜福利网站1000一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 亚洲天堂av无毛| 国产亚洲欧美精品永久| 国产片特级美女逼逼视频| 亚洲三级黄色毛片| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| av电影中文网址| www.熟女人妻精品国产| 国产国语露脸激情在线看| 性少妇av在线| 久久99热这里只频精品6学生| 91精品伊人久久大香线蕉| 黄色毛片三级朝国网站| 在线观看三级黄色| 91精品国产国语对白视频| 飞空精品影院首页| 宅男免费午夜| 成人毛片60女人毛片免费| 少妇人妻 视频| 亚洲情色 制服丝袜| 人妻少妇偷人精品九色| 国产野战对白在线观看| 男女无遮挡免费网站观看| 亚洲精品一二三| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频 | 亚洲综合精品二区| 精品国产超薄肉色丝袜足j| 巨乳人妻的诱惑在线观看| 成年人免费黄色播放视频| 亚洲精品aⅴ在线观看| 日本wwww免费看| 两个人看的免费小视频| 最近手机中文字幕大全| 国产精品久久久久久久久免| 亚洲国产精品成人久久小说| 亚洲国产精品国产精品| 国产精品 国内视频| 成人漫画全彩无遮挡| 女的被弄到高潮叫床怎么办| 寂寞人妻少妇视频99o| 亚洲精品国产一区二区精华液| 亚洲国产最新在线播放| 久久久久国产精品人妻一区二区| 亚洲图色成人| 国产精品二区激情视频| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 精品少妇久久久久久888优播| 免费看av在线观看网站| 国产成人一区二区在线| 中文欧美无线码| 丰满乱子伦码专区| 777久久人妻少妇嫩草av网站| 新久久久久国产一级毛片| 国产成人一区二区在线| 90打野战视频偷拍视频| 成年美女黄网站色视频大全免费| 国产熟女午夜一区二区三区| www.精华液| 丰满少妇做爰视频| 欧美 日韩 精品 国产| 午夜福利一区二区在线看| 黄频高清免费视频| 26uuu在线亚洲综合色| 久久午夜综合久久蜜桃| 欧美 亚洲 国产 日韩一| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 日韩熟女老妇一区二区性免费视频| 色吧在线观看| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 免费观看av网站的网址| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| av有码第一页| 免费av中文字幕在线| 欧美亚洲日本最大视频资源| 天堂中文最新版在线下载| 夫妻午夜视频| 欧美 日韩 精品 国产| 丝袜美腿诱惑在线| 久久影院123| 国产爽快片一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 中文精品一卡2卡3卡4更新| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 亚洲欧美成人综合另类久久久| av不卡在线播放| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 午夜91福利影院| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 国产精品 国内视频| 亚洲 欧美一区二区三区| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 色播在线永久视频| 在线观看免费视频网站a站| 青草久久国产| 99久国产av精品国产电影| 欧美变态另类bdsm刘玥| 少妇人妻久久综合中文| 国产乱来视频区| 女性生殖器流出的白浆| 国产亚洲最大av| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 国产野战对白在线观看| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 在线观看人妻少妇| av福利片在线| 美女国产高潮福利片在线看| 亚洲中文av在线| 国产男人的电影天堂91| 国产欧美日韩一区二区三区在线| 一级片免费观看大全| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂| 国产精品 国内视频| 啦啦啦在线免费观看视频4| 国产精品麻豆人妻色哟哟久久| 国产黄色免费在线视频| 久久国内精品自在自线图片| 午夜福利,免费看| 亚洲av男天堂| 五月开心婷婷网| 久久久国产欧美日韩av| 大话2 男鬼变身卡| 亚洲国产欧美网| 赤兔流量卡办理| 精品一区二区免费观看| 少妇熟女欧美另类| 边亲边吃奶的免费视频| 亚洲欧美一区二区三区久久| 亚洲精品美女久久久久99蜜臀 | 国产熟女午夜一区二区三区| 国产精品久久久久久精品电影小说| 黄色配什么色好看| 成人18禁高潮啪啪吃奶动态图| 亚洲av综合色区一区| 成人午夜精彩视频在线观看| 国产成人av激情在线播放| 成年人午夜在线观看视频| 国产精品蜜桃在线观看| 欧美成人午夜免费资源| 国产免费又黄又爽又色| 精品福利永久在线观看| 一边亲一边摸免费视频| 免费日韩欧美在线观看| 一个人免费看片子| 永久免费av网站大全| 国产男人的电影天堂91| 丝袜脚勾引网站| av视频免费观看在线观看| 亚洲av中文av极速乱| 亚洲国产精品一区三区| 国产精品免费视频内射| 国产精品麻豆人妻色哟哟久久| 美女大奶头黄色视频| 成人漫画全彩无遮挡| 亚洲国产毛片av蜜桃av| 亚洲欧洲国产日韩| 免费看av在线观看网站| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 日本-黄色视频高清免费观看| 国产av国产精品国产| 午夜福利一区二区在线看| 极品人妻少妇av视频| 性色av一级| 欧美精品一区二区大全| 国产精品久久久久成人av| 国产探花极品一区二区| 中文字幕最新亚洲高清| 成人午夜精彩视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 成年人免费黄色播放视频| 久久久久国产一级毛片高清牌| 少妇人妻精品综合一区二区| 少妇被粗大的猛进出69影院| 国产 一区精品| 国产片特级美女逼逼视频| videosex国产| 国产综合精华液| 午夜精品国产一区二区电影| 国产精品国产三级专区第一集| 日本欧美国产在线视频| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 国产精品久久久av美女十八| 久久久久久伊人网av| 香蕉精品网在线| 91午夜精品亚洲一区二区三区| 又黄又粗又硬又大视频| 女人久久www免费人成看片| 两个人看的免费小视频| 日韩一区二区视频免费看| 十分钟在线观看高清视频www| 久久久久久久大尺度免费视频| 亚洲精品自拍成人| 一二三四在线观看免费中文在| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 美女脱内裤让男人舔精品视频| av国产精品久久久久影院| 人妻 亚洲 视频| av又黄又爽大尺度在线免费看| 999久久久国产精品视频| 汤姆久久久久久久影院中文字幕| 侵犯人妻中文字幕一二三四区| 日本免费在线观看一区| 亚洲欧美清纯卡通| 亚洲成人av在线免费| 高清不卡的av网站| 大香蕉久久网| xxxhd国产人妻xxx| 国产探花极品一区二区| xxxhd国产人妻xxx| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 午夜福利一区二区在线看| 在线观看三级黄色| 波多野结衣av一区二区av| 亚洲欧美成人综合另类久久久| 黄色视频在线播放观看不卡| 亚洲第一青青草原| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 热99久久久久精品小说推荐| 波多野结衣一区麻豆| 啦啦啦在线免费观看视频4| 自线自在国产av| 男女免费视频国产| 国产精品一区二区在线不卡| 香蕉精品网在线| 肉色欧美久久久久久久蜜桃| √禁漫天堂资源中文www| 婷婷色av中文字幕| 最近中文字幕2019免费版| 国产精品免费大片| 飞空精品影院首页| 成年美女黄网站色视频大全免费| 久久午夜综合久久蜜桃| 亚洲精品一区蜜桃| 日韩中字成人| av国产久精品久网站免费入址| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 亚洲国产色片| 五月开心婷婷网| av网站在线播放免费| 秋霞在线观看毛片| 波野结衣二区三区在线| 国产成人精品婷婷| 妹子高潮喷水视频| 在线天堂最新版资源| 成人影院久久| 乱人伦中国视频| 国产精品 国内视频| 亚洲精品av麻豆狂野| 国产精品麻豆人妻色哟哟久久| 久久99精品国语久久久| 亚洲婷婷狠狠爱综合网| 午夜福利一区二区在线看| 性少妇av在线| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 永久网站在线| 成年人午夜在线观看视频| 国产麻豆69| 妹子高潮喷水视频| 最黄视频免费看| 久久久久久人人人人人| 在线精品无人区一区二区三| 国产成人91sexporn| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 国产精品秋霞免费鲁丝片| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 高清黄色对白视频在线免费看| 久久韩国三级中文字幕| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| a 毛片基地| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人添人人爽欧美一区卜| 一级毛片我不卡| av有码第一页| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 777米奇影视久久| 自线自在国产av| 免费观看a级毛片全部| 久久久久国产精品人妻一区二区| 日本免费在线观看一区| 久久99热这里只频精品6学生| 蜜桃在线观看..| av网站在线播放免费| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 亚洲国产最新在线播放| 久久久国产精品麻豆| 久久影院123| 国产xxxxx性猛交| 中文字幕人妻熟女乱码| 少妇 在线观看| 永久网站在线| 最近中文字幕高清免费大全6| 亚洲欧美成人精品一区二区| 美女国产视频在线观看| 另类精品久久| 中文天堂在线官网| 人妻人人澡人人爽人人| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 亚洲精品,欧美精品| a级毛片黄视频| 午夜福利在线免费观看网站| 久久影院123| 国产淫语在线视频| 亚洲综合色惰| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 欧美 亚洲 国产 日韩一| 看十八女毛片水多多多| 国产一区二区 视频在线| 欧美日韩av久久| 亚洲中文av在线| 精品第一国产精品| 午夜免费观看性视频| 久久久精品国产亚洲av高清涩受| 国产日韩欧美视频二区| 亚洲精品久久久久久婷婷小说| 国产 精品1| 精品酒店卫生间| 综合色丁香网| 久久久欧美国产精品| av免费在线看不卡| 国产成人欧美| 午夜日本视频在线| 超碰成人久久| 夫妻性生交免费视频一级片| 午夜免费鲁丝| 蜜桃在线观看..| 国产精品免费大片| 欧美av亚洲av综合av国产av | 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 纯流量卡能插随身wifi吗| 成人亚洲欧美一区二区av| 欧美精品av麻豆av| 天天影视国产精品| 七月丁香在线播放| 欧美成人精品欧美一级黄| 免费高清在线观看视频在线观看| 成年人午夜在线观看视频| 国产精品av久久久久免费| av电影中文网址| av.在线天堂| 欧美国产精品va在线观看不卡| 欧美黄色片欧美黄色片| 日韩中字成人| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久免费av| 久久久久视频综合| 亚洲国产成人一精品久久久| 亚洲人成电影观看| 国产成人aa在线观看| 成人毛片60女人毛片免费| 春色校园在线视频观看| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 亚洲国产最新在线播放| 美女高潮到喷水免费观看| 青春草亚洲视频在线观看| 午夜福利一区二区在线看| 一边亲一边摸免费视频| 午夜影院在线不卡| 中文字幕色久视频| 久久久国产欧美日韩av| 日本wwww免费看| 中文字幕制服av| 2022亚洲国产成人精品| 9热在线视频观看99| 永久网站在线| av电影中文网址| 欧美日韩综合久久久久久| av国产精品久久久久影院| 99re6热这里在线精品视频| 久久影院123| 欧美老熟妇乱子伦牲交| 国产亚洲最大av| 久久这里有精品视频免费| 午夜久久久在线观看| 美女午夜性视频免费| 久久久久视频综合| 91成人精品电影| 日韩一卡2卡3卡4卡2021年| 免费黄网站久久成人精品| 免费观看a级毛片全部| 婷婷色av中文字幕| 男人操女人黄网站| 国产精品久久久久久精品古装| 91国产中文字幕| 欧美亚洲日本最大视频资源| 亚洲精品乱久久久久久| 亚洲男人天堂网一区| 午夜老司机福利剧场| 日韩一本色道免费dvd| 纯流量卡能插随身wifi吗| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三级黄色毛片| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 日本wwww免费看| 国产深夜福利视频在线观看| 一级毛片黄色毛片免费观看视频| 久久精品久久精品一区二区三区| 亚洲精品美女久久久久99蜜臀 | 亚洲国产精品999| 搡老乐熟女国产| 熟女av电影| 青青草视频在线视频观看| 欧美+日韩+精品| 国产综合精华液| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 国产成人精品福利久久| av在线播放精品| 国产成人精品福利久久| av卡一久久| 国产欧美亚洲国产| 国产成人a∨麻豆精品| 亚洲成色77777| 99香蕉大伊视频| 亚洲国产欧美日韩在线播放| 亚洲av国产av综合av卡| 一级a爱视频在线免费观看| 国产伦理片在线播放av一区| 制服人妻中文乱码| 蜜桃在线观看..| 人人澡人人妻人| 精品少妇黑人巨大在线播放| 国产av国产精品国产| 国产免费现黄频在线看| 精品国产国语对白av| 香蕉丝袜av| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 91国产中文字幕| 如何舔出高潮| 久久这里只有精品19| 极品少妇高潮喷水抽搐| 精品午夜福利在线看| 久热这里只有精品99| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 国产视频首页在线观看| 熟女av电影| 亚洲色图综合在线观看| 午夜福利在线免费观看网站| 我要看黄色一级片免费的| 男女下面插进去视频免费观看| 亚洲欧美精品综合一区二区三区 | 亚洲情色 制服丝袜| 黄色配什么色好看| av国产久精品久网站免费入址| 黄频高清免费视频| 黄色视频在线播放观看不卡| 亚洲人成电影观看| 亚洲国产成人一精品久久久| 少妇人妻久久综合中文| 免费少妇av软件| 国产精品欧美亚洲77777| 深夜精品福利| 午夜福利视频精品| 人体艺术视频欧美日本| 欧美国产精品va在线观看不卡| 麻豆av在线久日| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 丝袜脚勾引网站| 久久精品亚洲av国产电影网| 蜜桃国产av成人99| 亚洲精品日韩在线中文字幕| 国产成人aa在线观看| 男的添女的下面高潮视频| 女性被躁到高潮视频| 久久99一区二区三区| 亚洲国产精品成人久久小说| 天天操日日干夜夜撸| 在现免费观看毛片| 纵有疾风起免费观看全集完整版| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 久久精品夜色国产| 亚洲综合色惰| 1024香蕉在线观看| av卡一久久| 国产成人精品久久二区二区91 | 91精品伊人久久大香线蕉| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 一本—道久久a久久精品蜜桃钙片| av视频免费观看在线观看| 一级毛片我不卡| 亚洲精品视频女| 欧美成人精品欧美一级黄| 国产成人一区二区三区免费视频网站| 久久久久亚洲av毛片大全| x7x7x7水蜜桃| 国产野战对白在线观看|