• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on compression stroke characteristics of free-piston engine generator

    2015-04-22 07:24:52ZUOZhengxing左正興XUDatao許大濤FENGHuihua馮慧華

    ZUO Zheng-xing(左正興), XU Da-tao(許大濤), FENG Hui-hua(馮慧華)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Experimental study on compression stroke characteristics of free-piston engine generator

    ZUO Zheng-xing(左正興), XU Da-tao(許大濤), FENG Hui-hua(馮慧華)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation, and the leak loss, heat loss and friction loss were considered. Through solving numerical equations, the in-cylinder pressure of compression stroke under different compression ratios was calculated, energy transfer and conversion process was analyzed, and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the compressed gas accounted for about 70%. The compression energy gradually increased with the increasing compression ratio. When the compression ratio was more than 7.5, the actual compression energy increased slowly and the energy error between simulation and test decreased.

    free-piston engine generator; compression stroke; experimental study; energy conversion

    A free-piston engine generator is a novel power mechanism, which is a combination of the piston of free piston engine and the mover of linear generator. It does not have a connecting rod as in a traditional engine, which can make the kinetic energy of piston’s linear motion output to the external load conversion device directly, so it has a broad application prospect in the electric field[1]. Moreover, it has many advantages such as compact structure, high power density, wide fuel types and emissions of good quality. Therefore, it has gradually become the focus of research in recent years[2-7].

    The cylinder gas organization of a free-piston engine generator is significant different from a crankshaft engine because of its special piston motion. A free-piston engine generator can freely adjust the engine working stroke, which directly affects the combustion process and performance[6]. In the thermodynamic cycle of cylinder gas, the compression stroke is one of the key factors influencing the startup, the subsequent working process and the combustion.

    Based on a developed free-piton engine generator and considering the leak loss, heat loss and friction loss, we established a mathematical model of compression stroke. The compression stroke under different compression ratios conditions was analyzed. The simulation results and experimental results were compared, and the changing characteristics of the in-cylinder pressure and compression energy were analyzed. Make sure the influencing factors of the whole process so as to obtain a more accurate model of compression stroke, it is essential for in-depth research on the performance and the establishment of stable control strategy of free-piston engine generator, and it can provide reference in order to improve the startup process of engine.

    1 Structure characteristic of free-piston engine generator

    The load device of a free-piston engine generator is the linear generator connected with the generator mover and the free piston. The kinetic energy of piston obtained from the fuel combustion is directly converted into electrical energy by electromagnetic energy conversation. The object in this research is a two stroke dual-piston opposed-type free piston engine generator. The structure is shown in Fig.1. Two pistons and the mover of a linear generator are rigidly attached to constitute a piston assembly though a connecting rod.

    Fig.1 Free-piston engine generator configuration

    When the free-piston engine generator is starting, the motor drives the mover and the free piston to move in order to achieve the fundamental conditions of mixture combustion. Mixed gas is provided by the fuel system and enters the cylinder though the inlet. When the piston is closed to the top dead center of one side, compression stroke is about to the end, the control system implements the spark plug ignited, and the combustion of this side cylinder is realized. Meanwhile, the motor is converted into generator mode. Then, the gas explosion pressure promotes the piston backward movement to conduct the working process. The other side cylinder is turned into the scavenging and subsequent compression stroke, and the piston is pushed back after the cylinder combustion. Thus, both sides of the cylinder are ignited alternately; free piston can move continuously between the two dead centers, and the continuous inductive power can be obtained to achieve energy conversion. However, the strong coupling characteristics of both sides cylinder have also brought difficult problems on stable control of combustion. So compression stroke characteristics before the burning is essential for combustion stability.

    2 Analysis of compression stroke

    2.1 Dynamic modeling

    The compression stroke of a free-piston engine generator refers to the free piston moving from one side to the other side of the top dead center of the cylinder. In this process, the free piston is commonly affected by the cylinder gas pressure, the electromagnetic force, the friction force and the gas pressure of the scavenging box, as shown in Fig.2. Assuming that the gas pressures of both sides of the scavenging box are equal, they are offset mutually. Therefore, the movement process of free piston can be expressed as

    (1)

    wheremis the mass of the moving parts, including free piston mass, motor mover mass and connecting rod mass;xis the displacement of the piston assembly;PL,PRare the pressures in the left and right cylinders;Ais the top area of the piston;Ffis the friction force;Feis the electromagnetic force introduced by the linear generator.

    Fig.2 Free body diagram of free-piston engine generator

    2.2 Compression energy modeling

    Compression energy refers to overcoming the cylinder gas pressure and store energy in the startup process of the first stroke, when the exhaust port is closed by the free piston until it moving to the top dead center.

    In the actual working process of free piston engine generator, due to the leak loss, the cylinder thermodynamic process is a mass transfer process.In the compression stroke, applying the law of mass conservation for the cylinder gas

    (2)

    wheremVis the gas mass of combustion chamber;mLis the mass of leak loss. According to the energy conservation equation, the energy changing of cylinder gas can be expressed as

    (3)

    whereECis the total energy of in-cylinder gas;Qis the outflow or inflow energy of in-cylinder gas;Wis the output work;his the enthalpy flow. In addition, due to the gas work dW=PdV, andEC=mLu, after the differential we have

    (4)

    Combinedwiththedifferentialexpressionoftheidealgasstateequation

    (5)

    Accordingtothethermodynamicrelation:R=cP-cV, γ=cP/cVandu=cVT,weyield

    (6)

    whereP,Vare the gas pressure and volume of combustion chamber;cP,cVare the constant pressure specific heat and constant volume specific heat;uis the internal energy;Ris the gas constant;Tis the gas temperature of in-cylinder gas.

    During the time of free piston moving from the upper edge position of the exhaust port to the top dead center, the thermodynamic changing of combustion chamber is expressed as the effective compression process. In this case, the gas energy increment of combustion chamber is

    (7)

    wherexLgis the position of top dead center;xLeis the upper edge position of exhaust port.

    2.3 Friction energy modeling

    The friction force of free piston mainly comes from the piston ring and the piston skirt portion. Also, there is friction force at the piston pin, but the force is small compared to the other parts. According to the simplified empirical formula of the piston ring pack friction force[2], the friction force can be represented by

    (8)

    wherepfmep=AmSn,Am=150 kg·m-2·s-1,Bis the bore of the cylinder,Sis the maximum stroke length,pfmepis the mean effective friction force,nis the frequency of reciprocation of the piston assembly. The friction energy loss of a compression stroke is

    (9)

    2.4Lineargeneratorenergymodeling

    Theelectromagneticforceofalineargeneratorisproportionaltothesimplifiedvelocity[5].Assumingthattheelectromagneticforceconstantisc, we can have

    (10)

    Withoutconsideringtheloadenergylossandotherlosses,thegeneratoroutputpowercanbeconsideredastheoutputenergyofthesystem,whichisequaltotheworkdonebytheelectromagneticforceinonecycle.Thegeneratoroutputenergycanbeexpressedas

    (11)

    2.5Heatlossenergymodeling

    Theenergylosscausedbytheheatexchangeamongtheinternalwallsurfaceofcombustionchamberhasagreatimpactonthermalefficiencyforfree-pistonenginegenerator,whichisanimportantphenomenonoccurredintheenginecombustionsystem.Thoughtheengineheatbalanceexperiment,wecanfindthatabout1/3thereleasedheatfromfuelcombustioniswastedthoughheattransfer[8].However,theemittedheatatdifferenttimesinanengineworkingcycleisnotallaffectingtheheatefficiency.Whenthepistonisnearthetopdeadcenterofcompressionstroke,theworkcapacityofcylindergasisreduceddirectlybytheheatlossthatthegastowardstothewallsurface.Therefore,ithasagreatimpactonthethermalefficiency.In-cylinderheattransferismodeledaccordingtoHohenberg[9]:

    (12)

    (13)

    wherehhis the heat transfer coefficient,Acylis the in-cylinder surface area in contact with the gas,Twis the average temperature of the in-cylinder surface face,VAis the mean piston velocity. The heat loss energy of a compression stroke is

    (14)

    2.6Leaklossenergymodeling

    Asthereisagapbetweenthefreepistonandthein-cylinderwallsurfaceinthefree-pistonenginegenerator,thein-cylindermixturewillinevitablyincurleakagephenomenon.Theleakageofenginecanbeconsideredasone-dimensionalsteadyflow,thegapareacanbetreatedasagradualretractablenozzle.Accordingtothecontinuityequation,themassflowthatthegasgoesthougharbitrarycross-sectionissame.Leakmassflowrateiscalculatedas[10]

    (15)

    whereAtis the gap area between the piston and cylinder,Rmis the mixed gas constant,y(Po,Pe,γ)istheflowfunction, Peistheoutsidepressure.Whenthein-cylinderpressureishigher,theflowpresentsasupercriticalstate,thein-cylindergasflowsthoughthegapatthelocalsoundspeed,theleakflowonlydependsonthein-cylindergasstateandthesizeofgaparea,andithasnothingtodowithoutsidegasstate.Theleakflowfunctioncanbeexpressedas

    y(Po,Pe,γ)=

    (16)

    Thus, the leak loss energy of a compression stroke can be described as

    (17)

    3 Simulation and experimental studies

    3.1 Experimental prototype

    The basic structure parameters of a free-piston engine generator are determined by the principle of prototype design and selection, as listed in Tab.1. In the simulation model, the compression polytropic coefficientmcis taken as 1.30[2].

    Tab.1 Specifications of a free-piston engine generator

    Based on the test platform of the free-piston engine generator, a group of motor was added to this system and the controllable motor reciprocation was utilized for the system test. The test prototype was shown in Fig.3. It consisted of the engine subsystem, the linear motor subsystem and the control and test subsystem. The test equipments were as follows: the engine cylinder and cylinder head were selected from a two-stroke model aircraft engine, the cylinder body and connecting rod were designed independently, and the linear motor was selected from a commercial flat motor. The displacement of piston assembly was collected by a grating displacement sensor. The in-cylinder pressure was collected by a Kistler gas pressure sensor, and the measured pressure was relative values. Compared with the collected displacement and pressure, the changes of in-cylinder pressure of compression stroke were obtained.

    Fig.3 Prototype of free-piston engine generator

    According to the fundamental characteristics of compression stroke, the system simulation model was established with Matlab/Simulink, and simulation and experimental research were conducted.

    3.2 Experimental results

    The simulation and experimental results of in-cylinder gas pressure of compression stroke under different compression ratios are shown in Fig.4. It can be found that there is a gap between the simulation and experimental curves. In the first half of the compression stroke, the two curves are very close when the in-cylinder pressure is smaller. With the deepening of compression stroke, the in-cylinder pressure gradually increases, and the simulated pressure increases faster than the experimental measurements. As shown in Fig.5a, the in-cylinder peak pressure of simulation is greater at the same compression ratio. If the compression ratio is bigger, the value error between simulation and experiment becomes bigger. The reason is that due to the smaller cylinder bore of the prototype, one piston ring is used to seal between the piston and the cylinder, so a certain amount of leak area is existed in it. Effective seal measures can’t be done, therefore, it becomes the main source of the leak. The leak is more significant if the pressure of in-cylinder gas is bigger.

    Fig.4 Changes of in-cylinder gas pressure of compression stroke in different compression ratios

    Fig.5 Peak pressure and compression energy in different compression ratios

    Fig.6 Compression energy error and error ratio

    The compression energy is obtained by numerical integration of the cylinder pressure.The compression energy under different compression ratios is shown in Fig.5b. With increasing compression ratio, the compression energy gradually increased. The differences between simulation and experiment are that, when the compression ratio is more than 7.5, the increasing rate of compression energy becomes slow with increasing compression ratio, which is similar to the changes in the experimental results of peak pressure. The compression energy from experiments is quite different from the theoretical values. Fig.6 shows the error of experimental and simulation values. It can be seen that the compression energy error gradually decreases as the compression ratio increases, and the energy error ratio also gradually decreased. The main reason is that higher compression ratio results in greater leak energy loss, but the increasing rate is less than the increasing rate of compression energy. Meanwhile, the peak pressure increased as the compression ratio increases, and the friction force between the piston ring and the cylinder also increases, causing a greater friction energy loss. Further, the bigger the compression, the higher the temperature. The heat transfer energy loss will cause a certain amount of energy loss.

    3.3 Energy conversion process

    The energy conversion process of a free-piston engine generator refers to the process of the electrical energy of motor converting to the internal energy of gas at the same with the output of electrical energy. According to the above analysis, considering the leak energy loss, heat energy loss and friction energy loss in the whole compression stroke, the total energy can be calcualted as

    ∑E=Ep+Ef+Ee+EL+Qh

    (18)

    Based on the design parameters of free-piston engine generator,the necessary energy and its distribution relationship can be obtained by using numerical integration methods, as shown in Fig.7. From Fig.7, the compression energy of gas and output energy of generator occupy the main parts in the compression stroke; about 42% energy is as the generator output; the leak loss and heat loss are larger and the friction loss is smaller. More energy should be used to increase the internal energy of gas by appropriately reducing the output of the electrical energy so as to improve the startup performance of the engine.

    Fig.7 Energy conversion distribution of compression stroke

    4 Conclusions

    ① Due to the leakage between the piston ring and the cylinder and the heat of the cylinder wall, there are differences between experiment and simulation of in-cylinder gas pressure in the actual compression stroke. The peak pressure and compression energy of experiment are generally lower than the theoretical.

    ② Compression stroke is the process of the motor electrical energy converting to the gas internal energy. The input energy of compression stroke is mainly from the motor electrical energy, and absorbed by the gas internal energy and output electrical energy of generator. The compression energy gradually increased with increasing compression ratio. The compression energy increasing rate becomes slow when the compression ratio is more than 7.5. The compression energy error gradually decreased and so is the energy error.

    ③ In the energy conversion process of compression stroke,the gas compression energy and output of generator accounts for the main parts, about 42% energy is as the output of electrical energy. Leak loss and heat loss are larger than friction loss. More energy should be used to increase the internal energy of gas by appropriately reducing the output of the electrical energy so as to improve the startup performance of the engine.

    [1] Mikalsen R, Roskilly A P. A review of free-piston engine history and applications [J]. Applied Thermal Engineering, 2007, 27(14-15): 2339-2352.

    [2] Atkinson C M, Petreanu S, Clark N N, et al. Numerical simulation of a two-stroke linear engine-alternator combination, SAE paper, 01-0921 [R]. Warrendale, PA, USA: Society of Automotive Engineers, 1999.

    [3] Mikalsen R, Roskilly A P. Performance simulation of a spark ignited free-piston engine generator [J]. Applied Thermal Engineering, 2008, 28(14-15): 1726-1733.

    [4] Li Qingfeng, Xiao Jin, Huang Zhen. Simulation of a two-stroke free-piston engine for electrical power generation [J]. Energy & Fuels, 2008, 22(5): 3443-3449.

    [5] Xu Zhaoping, Chang Siqin. Prototype testing and analysis of a novel internal combustion linear generator integrated power system [J]. Applied Energy, 2010, 87(4): 1342-1348.

    [6] Mao Jinlong, Zuo Zhengxing, Li Wen, et al. Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation [J]. Applied Energy, 2011, 88(4): 1140-1152.

    [7] Tian Chunlai, Feng Huihua, Shang Jiao, et al. Energy conversion and transfer process of free-piston engine generator [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 11-14. (in Chinese)

    [8] Yang Jialin. Gasoline engine combustion system development [M]. Beijing: China Machine Press, 2009.(in Chinese)

    [9] Mao Jinlong, Zuo Zhengxing, Liu Dong. Numerical simulation of a spark ignited two-stroke free-piston engine generator [J]. Journal of Beijing Institute of Technology, 2009, 18(3): 283-287.

    [10] Wang Baoguo, Liu Shuyan, Huang Weiguang. Gas dynamics [M]. Beijing: Beijing Institute of Technology Press, 2005. (in Chinese)

    (Edited by Cai Jianying)

    DOI: 10.15918/j.jbit1004-0579.201524.0306

    TK 441 Document code: A Article ID: 1004- 0579(2015)03- 0321- 07

    Received 2013- 12- 27

    Supported by the National Natural Science Foundation of China (51006010); the Program of Introducing Talents of Discipline to Universities (B12022)

    E-mail: xudatao2010@163.com

    18禁观看日本| 国产精品蜜桃在线观看| 午夜日本视频在线| 人妻一区二区av| 99热全是精品| 国产成人免费观看mmmm| 国产亚洲午夜精品一区二区久久| 91精品国产国语对白视频| 亚洲国产色片| 成人二区视频| 妹子高潮喷水视频| 2021少妇久久久久久久久久久| 女人精品久久久久毛片| 日本91视频免费播放| 日日爽夜夜爽网站| 99香蕉大伊视频| 久久久国产精品麻豆| 国产又色又爽无遮挡免| 午夜影院在线不卡| 国产成人精品在线电影| 精品人妻偷拍中文字幕| 精品国产乱码久久久久久男人| 考比视频在线观看| 一二三四中文在线观看免费高清| 如日韩欧美国产精品一区二区三区| 精品人妻熟女毛片av久久网站| 免费看av在线观看网站| 国产精品麻豆人妻色哟哟久久| 人妻 亚洲 视频| 赤兔流量卡办理| 欧美+日韩+精品| 亚洲国产欧美日韩在线播放| 国产男人的电影天堂91| 久久久久久久久久久免费av| 18禁观看日本| 又黄又粗又硬又大视频| 不卡av一区二区三区| 亚洲av综合色区一区| 久久久国产欧美日韩av| 免费高清在线观看日韩| 日韩中字成人| 亚洲激情五月婷婷啪啪| 久久人妻熟女aⅴ| 国产在线视频一区二区| 老司机亚洲免费影院| 亚洲国产日韩一区二区| 国产日韩欧美视频二区| 久久人人爽av亚洲精品天堂| 最近最新中文字幕免费大全7| 最黄视频免费看| av片东京热男人的天堂| 免费观看无遮挡的男女| 97精品久久久久久久久久精品| 曰老女人黄片| 人妻人人澡人人爽人人| 亚洲成色77777| 日本91视频免费播放| 97人妻天天添夜夜摸| 男女边吃奶边做爰视频| 婷婷色综合大香蕉| 国产片内射在线| 国产男人的电影天堂91| 久久精品久久精品一区二区三区| 多毛熟女@视频| 美女大奶头黄色视频| 久久人人爽人人片av| 夫妻午夜视频| 成人手机av| 免费大片黄手机在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久av不卡| 高清欧美精品videossex| 黄色视频在线播放观看不卡| 中文乱码字字幕精品一区二区三区| 观看美女的网站| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久视频综合| 菩萨蛮人人尽说江南好唐韦庄| 26uuu在线亚洲综合色| 欧美中文综合在线视频| 嫩草影院入口| 久久 成人 亚洲| 在线观看www视频免费| 男女国产视频网站| 国产一区二区三区综合在线观看| 国产亚洲一区二区精品| 国产亚洲欧美精品永久| 欧美bdsm另类| 伦理电影免费视频| 久久青草综合色| 在线观看国产h片| 成人国产麻豆网| 99国产综合亚洲精品| 日日啪夜夜爽| 国产成人aa在线观看| 午夜福利影视在线免费观看| 高清在线视频一区二区三区| 国产日韩欧美亚洲二区| 国产精品蜜桃在线观看| 国产在视频线精品| 又粗又硬又长又爽又黄的视频| 亚洲精品视频女| 国产欧美亚洲国产| 国产xxxxx性猛交| 熟女av电影| 久久免费观看电影| 97在线视频观看| 人人妻人人添人人爽欧美一区卜| 国产一区二区 视频在线| 亚洲综合色惰| 日本黄色日本黄色录像| 亚洲av在线观看美女高潮| www日本在线高清视频| 久久午夜综合久久蜜桃| 王馨瑶露胸无遮挡在线观看| 亚洲av综合色区一区| 国产又色又爽无遮挡免| 黄片无遮挡物在线观看| 两个人看的免费小视频| 热re99久久精品国产66热6| 精品亚洲成国产av| 日本91视频免费播放| 精品少妇一区二区三区视频日本电影 | 久久青草综合色| 久久久久人妻精品一区果冻| 久久精品久久久久久久性| 一区二区日韩欧美中文字幕| freevideosex欧美| 丰满迷人的少妇在线观看| 水蜜桃什么品种好| 热99久久久久精品小说推荐| 超色免费av| 国产精品一国产av| 国产欧美日韩综合在线一区二区| 国产黄频视频在线观看| 日韩一卡2卡3卡4卡2021年| 日韩成人av中文字幕在线观看| 99久国产av精品国产电影| 国产乱人偷精品视频| 不卡视频在线观看欧美| 只有这里有精品99| 男女国产视频网站| 99九九在线精品视频| 午夜福利视频精品| 成人18禁高潮啪啪吃奶动态图| 最黄视频免费看| 亚洲人成电影观看| 久久精品国产亚洲av高清一级| 久久久久久久久久人人人人人人| 国产亚洲精品第一综合不卡| 久久久久国产网址| 大香蕉久久成人网| 看免费av毛片| 久久久精品区二区三区| 欧美+日韩+精品| 国产精品偷伦视频观看了| 亚洲国产av影院在线观看| 国产一区二区在线观看av| 中文天堂在线官网| 尾随美女入室| 女人被躁到高潮嗷嗷叫费观| 少妇熟女欧美另类| 青春草国产在线视频| 日韩电影二区| 麻豆av在线久日| 色哟哟·www| 下体分泌物呈黄色| 人妻 亚洲 视频| 成人毛片a级毛片在线播放| 亚洲国产欧美在线一区| 99久国产av精品国产电影| 久久久国产欧美日韩av| 男女下面插进去视频免费观看| 精品午夜福利在线看| 热re99久久国产66热| 丝袜脚勾引网站| 一区二区三区四区激情视频| 日本vs欧美在线观看视频| 久久99蜜桃精品久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品aⅴ在线观看| 久久久久久久久久久久大奶| 日韩三级伦理在线观看| 999精品在线视频| 亚洲,一卡二卡三卡| 亚洲国产欧美日韩在线播放| 91精品三级在线观看| 亚洲人成电影观看| 国产一区二区 视频在线| 又黄又粗又硬又大视频| 欧美成人午夜精品| 国产乱人偷精品视频| 国产精品不卡视频一区二区| 中文字幕另类日韩欧美亚洲嫩草| 日韩av不卡免费在线播放| 最新中文字幕久久久久| √禁漫天堂资源中文www| 久久韩国三级中文字幕| 久久人人爽人人片av| 韩国精品一区二区三区| 在线观看人妻少妇| 老熟女久久久| 国产精品久久久久成人av| 日韩成人av中文字幕在线观看| 欧美另类一区| 青青草视频在线视频观看| 久久97久久精品| 久久97久久精品| 春色校园在线视频观看| 人妻系列 视频| 伦精品一区二区三区| 91国产中文字幕| 观看美女的网站| 女人被躁到高潮嗷嗷叫费观| 看免费成人av毛片| 丝袜人妻中文字幕| 久久午夜综合久久蜜桃| 另类精品久久| www.av在线官网国产| 狠狠婷婷综合久久久久久88av| 亚洲一级一片aⅴ在线观看| 又黄又粗又硬又大视频| 久久婷婷青草| 91国产中文字幕| 免费不卡的大黄色大毛片视频在线观看| av电影中文网址| 国产又爽黄色视频| 久久久久国产网址| 人人妻人人澡人人爽人人夜夜| 肉色欧美久久久久久久蜜桃| 国产精品偷伦视频观看了| 久久久久久久久久人人人人人人| 美女脱内裤让男人舔精品视频| av网站免费在线观看视频| 丰满乱子伦码专区| 久久久精品区二区三区| 成年女人在线观看亚洲视频| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 中文字幕人妻熟女乱码| 亚洲av欧美aⅴ国产| 亚洲一码二码三码区别大吗| 一级,二级,三级黄色视频| 久久久亚洲精品成人影院| 男女午夜视频在线观看| 性色avwww在线观看| 中文字幕最新亚洲高清| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久人妻精品一区果冻| 亚洲婷婷狠狠爱综合网| 卡戴珊不雅视频在线播放| 色播在线永久视频| 成年人午夜在线观看视频| 亚洲欧美精品综合一区二区三区 | 色94色欧美一区二区| 视频区图区小说| 亚洲欧洲日产国产| 国产精品久久久久久av不卡| 久久韩国三级中文字幕| 国产精品人妻久久久影院| www.精华液| 高清av免费在线| 亚洲色图综合在线观看| 久久影院123| 亚洲欧美一区二区三区久久| 久久狼人影院| 视频在线观看一区二区三区| 久久 成人 亚洲| 午夜福利视频在线观看免费| 国产女主播在线喷水免费视频网站| 国产一区二区 视频在线| 三上悠亚av全集在线观看| 国产有黄有色有爽视频| 免费av中文字幕在线| 免费观看无遮挡的男女| 国产一级毛片在线| 99国产综合亚洲精品| www.精华液| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 97在线人人人人妻| 久久精品aⅴ一区二区三区四区 | a级片在线免费高清观看视频| 国产在线免费精品| 最新的欧美精品一区二区| 大片电影免费在线观看免费| 美女福利国产在线| tube8黄色片| 最新中文字幕久久久久| 欧美日韩亚洲高清精品| 美女主播在线视频| 女人被躁到高潮嗷嗷叫费观| 哪个播放器可以免费观看大片| 欧美日韩av久久| 不卡视频在线观看欧美| 国产一区二区在线观看av| 色视频在线一区二区三区| 国产 精品1| 男女免费视频国产| 日本vs欧美在线观看视频| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 亚洲精品中文字幕在线视频| 亚洲精品一二三| 国产精品成人在线| 免费观看无遮挡的男女| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| 综合色丁香网| 亚洲一区中文字幕在线| 国产亚洲av片在线观看秒播厂| 另类亚洲欧美激情| 久久精品人人爽人人爽视色| 男人操女人黄网站| 有码 亚洲区| 夜夜骑夜夜射夜夜干| 热99久久久久精品小说推荐| av一本久久久久| 亚洲三级黄色毛片| 在线观看三级黄色| 丝袜喷水一区| 大码成人一级视频| 精品国产一区二区三区四区第35| 中国三级夫妇交换| 丁香六月天网| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 国产麻豆69| 久久人人97超碰香蕉20202| 一区在线观看完整版| 久久久精品区二区三区| 香蕉国产在线看| 亚洲精品第二区| 伊人亚洲综合成人网| 国产精品久久久久成人av| 国产av码专区亚洲av| 美女福利国产在线| 久久久久久久久久人人人人人人| 性色avwww在线观看| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 久久女婷五月综合色啪小说| 一级毛片我不卡| 亚洲成人av在线免费| 亚洲成人手机| 丝袜美腿诱惑在线| 亚洲欧美清纯卡通| 满18在线观看网站| 国产精品99久久99久久久不卡 | 国产麻豆69| 丝瓜视频免费看黄片| 精品国产乱码久久久久久小说| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| av女优亚洲男人天堂| 亚洲中文av在线| 欧美av亚洲av综合av国产av | 一级黄片播放器| 在线观看一区二区三区激情| 国产女主播在线喷水免费视频网站| 日本猛色少妇xxxxx猛交久久| 黄色 视频免费看| 香蕉国产在线看| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 人妻系列 视频| av在线观看视频网站免费| 免费黄色在线免费观看| 黄片无遮挡物在线观看| 中文字幕制服av| 国产欧美日韩综合在线一区二区| 老熟女久久久| 各种免费的搞黄视频| 在线观看人妻少妇| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 日韩av免费高清视频| 久久这里有精品视频免费| √禁漫天堂资源中文www| 久久久精品免费免费高清| 各种免费的搞黄视频| 巨乳人妻的诱惑在线观看| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 国产综合精华液| 亚洲精品久久成人aⅴ小说| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| 高清av免费在线| 精品人妻在线不人妻| 夫妻午夜视频| 高清视频免费观看一区二区| 亚洲 欧美一区二区三区| 女人久久www免费人成看片| 黄色毛片三级朝国网站| 国产有黄有色有爽视频| a级毛片黄视频| 天天操日日干夜夜撸| 亚洲欧美精品综合一区二区三区 | 午夜福利视频精品| 黑丝袜美女国产一区| 一本大道久久a久久精品| 大话2 男鬼变身卡| 一级黄片播放器| 91aial.com中文字幕在线观看| 婷婷色av中文字幕| 婷婷色综合大香蕉| av线在线观看网站| 大码成人一级视频| 亚洲视频免费观看视频| 观看美女的网站| 亚洲久久久国产精品| 人人澡人人妻人| 午夜免费男女啪啪视频观看| 久久久久久久久免费视频了| 岛国毛片在线播放| 一本大道久久a久久精品| 国产女主播在线喷水免费视频网站| 狂野欧美激情性bbbbbb| 波多野结衣一区麻豆| 在线亚洲精品国产二区图片欧美| 国产麻豆69| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区三区| 亚洲男人天堂网一区| 国精品久久久久久国模美| 国产男女超爽视频在线观看| a级毛片黄视频| 最新的欧美精品一区二区| 蜜桃国产av成人99| 亚洲综合色惰| 久久这里有精品视频免费| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 亚洲婷婷狠狠爱综合网| 国产成人精品久久二区二区91 | 精品99又大又爽又粗少妇毛片| 美女国产视频在线观看| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 波野结衣二区三区在线| av女优亚洲男人天堂| 免费高清在线观看视频在线观看| 成年av动漫网址| 成人国语在线视频| 一区二区日韩欧美中文字幕| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区| av国产久精品久网站免费入址| 寂寞人妻少妇视频99o| 久久久久国产精品人妻一区二区| 婷婷色综合大香蕉| 少妇精品久久久久久久| 国产高清国产精品国产三级| 在线天堂中文资源库| 美国免费a级毛片| 欧美精品人与动牲交sv欧美| 美女视频免费永久观看网站| 久久久精品国产亚洲av高清涩受| 美女中出高潮动态图| 国产日韩一区二区三区精品不卡| 久久久久久久久久久免费av| 美女国产高潮福利片在线看| 午夜av观看不卡| 日韩制服丝袜自拍偷拍| 亚洲av福利一区| 久久久欧美国产精品| 国产av国产精品国产| 肉色欧美久久久久久久蜜桃| 麻豆乱淫一区二区| 国产一区二区在线观看av| 青春草视频在线免费观看| 亚洲情色 制服丝袜| 大话2 男鬼变身卡| 好男人视频免费观看在线| 午夜福利在线观看免费完整高清在| 免费黄色在线免费观看| 欧美人与性动交α欧美精品济南到 | 80岁老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 国产免费现黄频在线看| 亚洲国产最新在线播放| 男女边摸边吃奶| 黄色 视频免费看| 成人国产av品久久久| 国产成人精品福利久久| 免费在线观看视频国产中文字幕亚洲 | 最近手机中文字幕大全| 亚洲av中文av极速乱| 999久久久国产精品视频| 成人国语在线视频| 宅男免费午夜| 精品国产国语对白av| 精品人妻偷拍中文字幕| 晚上一个人看的免费电影| 亚洲av男天堂| 热99久久久久精品小说推荐| 男男h啪啪无遮挡| 寂寞人妻少妇视频99o| 建设人人有责人人尽责人人享有的| 搡女人真爽免费视频火全软件| 精品国产一区二区三区四区第35| 我的亚洲天堂| 国产精品av久久久久免费| 人妻少妇偷人精品九色| 日韩中字成人| 久久久久久久亚洲中文字幕| 久久久久久久久免费视频了| 欧美激情高清一区二区三区 | 熟女av电影| 久久精品国产综合久久久| 一级,二级,三级黄色视频| 国产爽快片一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 少妇猛男粗大的猛烈进出视频| 亚洲av日韩在线播放| 亚洲av综合色区一区| 18禁裸乳无遮挡动漫免费视频| 少妇的逼水好多| 中文字幕av电影在线播放| 天堂中文最新版在线下载| 人妻系列 视频| 色婷婷av一区二区三区视频| 蜜桃在线观看..| av卡一久久| 国产精品 国内视频| 国产爽快片一区二区三区| 国产男女内射视频| 五月开心婷婷网| 国产 精品1| 久久99蜜桃精品久久| 婷婷成人精品国产| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 中文欧美无线码| 超碰97精品在线观看| av福利片在线| 亚洲美女搞黄在线观看| 99热网站在线观看| 亚洲欧美色中文字幕在线| 中文字幕色久视频| 精品一品国产午夜福利视频| 国产片内射在线| 五月开心婷婷网| 亚洲欧美一区二区三区国产| 日韩精品有码人妻一区| 亚洲精品久久成人aⅴ小说| 91精品伊人久久大香线蕉| 亚洲精品自拍成人| 亚洲精品一区蜜桃| 久久热在线av| 中文字幕人妻丝袜制服| 久热久热在线精品观看| 啦啦啦在线观看免费高清www| 免费大片黄手机在线观看| 成年人午夜在线观看视频| 免费在线观看黄色视频的| 成人午夜精彩视频在线观看| 国产免费一区二区三区四区乱码| 只有这里有精品99| 在线观看一区二区三区激情| 久久97久久精品| a级毛片在线看网站| 十八禁高潮呻吟视频| 亚洲情色 制服丝袜| 亚洲国产精品一区二区三区在线| 纯流量卡能插随身wifi吗| 97在线视频观看| 99国产综合亚洲精品| 婷婷色av中文字幕| 免费久久久久久久精品成人欧美视频| 欧美激情极品国产一区二区三区| 一级a爱视频在线免费观看| 久久这里只有精品19| 亚洲国产精品999| 欧美人与性动交α欧美软件| 欧美日韩一级在线毛片| 少妇的逼水好多| 最近手机中文字幕大全| 婷婷色综合大香蕉| 国产精品香港三级国产av潘金莲 | 久久久久久久久免费视频了| 国产成人精品久久二区二区91 | 人妻 亚洲 视频| 一级毛片我不卡| 欧美日韩视频精品一区| 日韩欧美一区视频在线观看| 日韩欧美精品免费久久| 国产精品成人在线| 成年动漫av网址| 久久精品国产综合久久久| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久成人aⅴ小说| 咕卡用的链子| 国产熟女午夜一区二区三区| 欧美变态另类bdsm刘玥| 春色校园在线视频观看| 99热国产这里只有精品6| 宅男免费午夜| 国产片特级美女逼逼视频| 人人妻人人澡人人看| 精品国产一区二区三区四区第35| 嫩草影院入口| 制服诱惑二区| 精品视频人人做人人爽| 咕卡用的链子| 日韩中字成人| 熟女av电影| 9热在线视频观看99| 一级毛片 在线播放| 免费大片黄手机在线观看| 日韩一区二区三区影片|