• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening

    2015-04-22 07:24:52LICuichun李崔春MENGXiuyun孟秀云LIUZaozhen劉藻珍

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China)

    ?

    Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,Beijing Institute of Technology, Beijing 100081, China)

    A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system, the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystem modeling framework. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can’t be provided. First, the continuous dynamic models of the flexible beam and the central rigid body are established via structural dynamics and angular momentum theory respectively. Then, based on the conclusions of orthogonalization about the normal constrained modes, the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations show that: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper, which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately, and has a clear modeling mechanism, concise expressions and a good convergence.

    non-inertial coordinate system; large overall motion; rigid flexible coupling; dynamic stiffening; normal constrained mode

    In early times, a rigid model could be fairly accurate to describe the dynamic characteristics of a spacecraft. With the development of aerospace technology, the number of spacecraft with a variety of flexible appendages such as large area solar panel and large scale flexible antenna is increasing rapidly. While the system is undergoing a large overall motion, the coupling effect of the large overall motion and the elastic deformation of flexible appendage appears. Previous studies of the rigid flexible coupling system were based on the traditional zero-order approximate dynamic model[1-2], which ignored the coupling terms of the large overall motion and the elastic deformation. However, when the system is undergoing large overall motions, especially a motion of high velocity, it would provide a result of unlimited increasing of the deformation of flexible appendages, which is in contradiction with the reality. To solve this problem, based on the study of a cantilever beam attached to a moving platform, Kane put forward the concept of dynamic stiffening for the first time in 1987[3], and pointed out that the large rotation motion would increase the stiffness of the beam. From then on, many scholars started to pay a lot of attentions[4-8]. It becomes an engineering significance whether the dynamic stiffening is incorporated into the dynamic behavior of model established[9-14].

    To sum up, there are two key points lying in the dynamic modeling of the rigid flexible coupling system: ① the model established should contain the coupling of the rigid motion and the flexible deformation; ② the dynamic stiffening should be included in the dynamic characteristics of the model. The ideas in most previous papers are to regard the whole system as the research object, and the models are established by employing only one dynamic principle. There are mainly two drawbacks in these papers: ① the coupling degree of the dynamic equations established is too high, and the modeling process is too complex to be conducive for the numerical integration; ② the dynamic stiffening term is captured by truncating the high-order terms of the expansion of the flexible deformation filed, so a really rational explanation for dynamic stiffening is not provided. To solve problems referred, a rigid flexible coupling dynamic model (Hub-Beam) is studied in this paper by adopting the subsystem modeling technique. Firstly, the system is divided into two subsystems: a central rigid body (Hub) and a flexible beam (Beam). The continuous dynamic models are derived via structural dynamics and angular momentum theory respectively. Then, based on the conclusion of orthogonalization about the normal constrained modes of the flexible beam, a space state model is obtained. The numerical simulation shows that, the first-order model in this paper has considered dynamic stiffening, and can indicate the dynamic behavior of the flexible spacecraft with large overall motions accurately. It has a clear modeling mechanism, concise expressions and a good convergence.

    The main contribution of this paper is the introduction of the mechanics theory in the non-inertial coordinate system, which considers the dynamic stiffening as a mechanics phenomenon in a non-inertial system. As a result, a clearly theoretical explanation for dynamic stiffening is provided: it is produced by the coupling effect of the centrifugal inertial load distributed on the flexible beam with large overall motions and the transverse vibration deformation of the beam.

    1 Continuous dynamic modeling based on mechanics problems in non-inertial system

    1.1 Rigid flexible coupling physical model

    The rigid flexible coupling physical model (Hub-Beam) is shown in Fig.1. This model can represent a large class of spacecrafts, such as a satellite with solar panel, etc. The effect of orbit maneuver on attitude motion is ignored here. The system shown in Fig.1 consists of a central rigid body (Hub) and a cantilever flexible beam (Beam) attached to Hub. The flexible beam is assumed to be a uniform Euler-Bernoulli beam with the assumption of small deformation and small strain, and the material is assumed to be homogeneous and isotropic.

    Fig.1 Rigid flexible coupling physical model (Hub-Beam)

    The inertial coordinate systemOIXIYIis built with the center of the central rigid body as the origin. The floating coordinate systemOXYis built on the flexible beam. The deflection curvey=y(x,t) describes the transverse vibration deformation of Beam. The angular rotation of Hub isθ(t). The rigid flexible coupling system shown in Fig.1 is divided into two subsystems. Subsystem 1 is Beam.lis the length,ρbis the mass per unit length,Eis the Young’s modulus of elasticity, andIis the rotary inertia of cross section. Subsystem 2 is Hub.Jstaris the rotary inertia about an axis of rotationOI,bis the radius, andThis the applied torque.

    1.2 Modeling of Beam based on structural dynamics

    The deformation field of Beam with large overall motions is shown in Fig.2. As a result of the motion of Hub,OXYbecomes a non-inertial coordinate system. Therefore, the research purpose on the dynamic characteristics of the transverse vibration of Beam is to solve a typical mechanics problem in a non-inertia coordinate system. According to structural dynamics, the transverse vibration of Beam is determined by the external distributed load which is perpendicular to the Beam. The corresponding equation is in the form of

    (1)

    whereq(x,t) is the external vertical distributed load. Therefore, the key to establish the dynamic equation of the transverse vibration of Beam is to obtain the expression of the external vertical distributed load acting on Beam.

    Fig.2 Deformation field of Beam with large overall motion

    (2)

    BasedonthegeometricrelationsshowninFig.2andtheassumptionaboutalittledisplacementandalittleangle,andmeanwhile,thesecond-orderofseriesoftrigonometricfunctionsareomitted,thesimplifiedformoftheexternalverticaldistributedloadactingonBeamcanbewrittenas

    (3)

    SubstitutingEq. (3)intoEq. (1),thecontinuousdynamicequationofBeamwithlargeoverallmotionsisobtainedintheformof

    (4)

    1.3 Modeling of Hub based on angular momentum theory

    The applied forces related to the attitude motion of Hub are shown in Fig.3.Th(t) is the applied torque.Fs(0,t) andM(0,t) are the force and the torque of Beam acting on Hub at the joint respectively.

    Fig.3 Forces and torques acting on Hub

    (5)

    Thus,thedistributionfunctionsoftheshearforceandthebendingmomentare

    (6)

    (7)

    BasedonEqs. (5)-(7),thecontinuousdynamicequationofHubisintheformof

    (8)

    2 Discrete dynamic modeling based on the conclusions of orthogonalization about normal constrained modes

    The expansion about the firstN-orders of the normal constrained modes is utilized to describe the transverse vibration deformation of Beam approximately as following:

    (9)

    (10)

    (11)

    BasedonEqs. (10) (11),thefinitedimensionaldynamicequationofBeamisobtainedasfollowing

    (12)

    where

    q=[q1(t)q2(t)q3(t) …qN(t)]T

    (13)

    ΛN=diag[ω1ω2ω3…ωN]

    (14)

    (15)

    (16)

    Similarly, the finite dimensional dynamic equation of Hub is

    (17)

    where

    (18)

    Eqs. (12)-(18) constitute theN-dimensional dynamic model of a flexible spacecraft. With the consideration of dynamic stiffening, the first-order dynamic model is not only suitable for the engineering background of a small angular maneuver, but also meets the requirements of a large angular maneuver in the complex aerospace missions nowadays. According to Eqs. (12)-(18), the state space equations of the system are

    (19)

    where

    (20)

    3 Numerical simulation validation

    The validations of the rigid flexible coupling dynamic model of a flexible spacecraft are carried out in 2 aspects: ① the validation of dynamic stiffening when the large overall motion is known; ② the validation of the convergence of the first-order model with dynamic stiffening when the large overall motion is unknown.

    3.1 Validation of dynamic stiffening

    Refer to the system parameters in Ref. [16]: Beam of lengthl=8 m, Young’s modulus of elasticityE=6.895 2×1010N/m2, sectional areaA=7.296 8×10-5m2, bulk densityρ=2.766 7×103kg/m3, rotary inertia of cross sectionI=8.218 9×10-9m4; Hub of radiusb=0.5 m, rotary inertiaJstar=300 kg·m2. The regular pattern of the known large overall motion is

    (21)

    whereωmis the final angular velocity of Hub. The value ofωmequals to 0.5 rad/s, 2 rad/s and 4 rad/s respectively in the simulation. Fig.4 is the response of the tip transverse vibration displacement of Beam with large overall motions defined in Eq. (21). Hereinto, the dotted lines correspond to the responses of ZDM, and the solid lines correspond to the responses of FDM. By analyzing the natural frequencies of Beam, the first-order and the second-order natural frequencies are respectively 2.91 rad/s and 18.24 rad/s.

    Fig.4 Responses of tip displacement of Beam with known large overall motions

    To sum up, with the increasing of the final velocity (ωm), the simulation results of ZDM start to become invalid, until divergent. According to analyses about the dynamic terms in Eq. (12), the dynamic softening effect plays a great role in the dynamic behaviors of system at this moment, so the larger the value ofωmis, the more obvious the softening effect is. It should be noticed that, even though the angular velocity of the motion of Hub is quite large, FDM can still predict the dynamic behaviors of the system with a convergent simulation result. It just corresponds to the analysis conclusion about the positive definitiveness of the stiffness matrix of FDM. Thus, FDM has successfully incorporated dynamic stiffening into the dynamic behavior of the system, and could meet the requirements of practical engineering.

    3.2 Validation of the convergence of first-order model

    Set the parameters of Beam: lengthl=5 m, sectional areaA=4×10-4m2, rotary inertia of cross sectionI=1.333×10-8m4, bulk densityρ=2.766 7×103kg/m3, Young’s modulus of elasticityE=6.895 2×1010N/m2. Ignore the central rigid body (Hub), that is to sayJstar=0 andb=0. The external torque is

    Fig.5 Responses of the first-order model when Thm=50 N·m

    (22)

    whereTm=2 s, andThmis the maximum of torque, which equals 50 N·m.

    Fig.5 corresponds to the simulation results whenThm=50 N·m. The tip maximum response amplitude is 0.42 m, and when the system reaches the steady state, the amplitude of the micro continuous oscillation of Beam is about 0.07 m. It can be seen from Fig.5 that, although the torque is very large, the simulation results are still convergent. It should be pointed out that, in the same simulation condition, the simulation results of the first-order approximate coupling dynamic model presented in general papers are rapidly divergent[19]. Thus, the model established in this paper (FDM) not only has a clear modeling mechanism and concise expressions, but also has a good convergence. Even if the simulation conditions are very harsh, FDM can still indicate the dynamic responses of the system accurately.

    4 Conclusions

    A rigid flexible coupling physical model is investigated in this paper.To simplify complex modeling process, this paper applys the mechanics theory in a non-inertial coordinate system, then the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystem modeling technique. According to the modeling process, theoretical analyses and numerical simulation validations, the following conclusions are obtained:

    ① By applying the subsystem modeling technique, the models are established via structural dynamics and angular momentum theory. The modeling approach in this paper successfully solves problems caused by other popular modeling methods, and the modeling process is simplified here. Meanwhile, it meets the requirement about the coupling of the rigid motion and the flexible deformation in the dynamic behavior of the flexible spacecraft.

    ② Dynamic stiffening is considered as a typical mechanics phenomenon in a non-inertial system. By introducing the mechanics theory in a non-inertial coordinate system, dynamic stiffening is successfully incorporated into the dynamic behavior of the system. The numerical simulations show that: the established FDM is not only with the consideration of dynamic stiffening under the background of a large angular maneuver of the flexible spacecraft, but also has a good convergence in the simulation under extreme conditions. FDM can indicate the dynamic responses of the system accurately.

    ③ A clearly theoretical mechanism of dynamic stiffening is provided in this paper: it is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. It gives a way out of the dilemma about dealing with dynamic stiffening in previous papers.

    [1] Hu Qinglei, Shi Peng, Gao Huijun. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 804-815.

    [2] Shan Jinjun, Liu Hongtao, Sun Dong. Modified input shaping for a rotating single-link flexible manipulator[J]. Journal of Sound and Vibration, 2005, 285(1-2): 187-207.

    [3] Kane T R, Ryant R R. Dynamics of a cantilever beam attached t o a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151.

    [4] Banerjee A K, Dickens J M. Dynamics of an arbitrary flexible body in large rotation and translation[J]. Journal of Guidance, Control and Dynamics, 1990, 13(2): 221-227.

    [5] Zhang D J, Liu C Q, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion: an integrated approach[J]. Mechanics of Structures and Machines, 1995, 23(3): 419-438.

    [6] Jiang Lizhong, Hong Jiazhen, Zhao Yueyu. Coupling dynamical modeling theory of elastic beam-in large overall motions[J]. Chinese Journal of Computational Mechanics, 2002, 19(1): 12-15. (in Chinese)

    [7] Yang Hui, Hong Jiazhen, Yu Zhengyue. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody system[J]. Chinese Journal of Computational Mechanics, 2003, 20(4): 402-408. (in Chinese)

    [8] Jiang Jianping, Li Dongxu. Research on rigid-flexible coupling dynamics of spacecraft with solar panel[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 418-422. (in Chinese)

    [9] Yang Zhengxian, Kong Xianren, Liao Jun, et al. Dynamic modeling and simulation for the rigid-flexible coupling system with large overall motion[J]. Spacecraft Environment Engineering, 2011, 28(2): 141-146. (in Chinese)

    [10] Liang Lifu, Wang Peng, Song Haiyan. The study of the dynamic stiffening problem in a non-inertial coordinate system[J]. Journal of Harbin Engineering University, 2012, 33(8): 1052-1056.

    [11] Bai Shengjian, Huang Xinshen. Building control-oriented simulation environment for flexible spacecraft[J]. Journal of System Simulation, 2010, 22(2): 302-305. (in Chinese)

    [12] García-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation[J]. Journal of Multi-body Dynamics, 2005, 219(2): 187-202.

    [13] Huang Yong’an, Deng Zichen, Yao Linxiao. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration, 2007, 299(1-2): 229-246.

    [14] Chen Sijia. Researches on the rigid-flexible coupling problem and the dynamic modeling theory of multi-link spatial flexible manipulator arms[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0304

    V 414.33 Document code: A Article ID: 1004- 0579(2015)03- 0305- 08

    Received 2013- 11- 26

    E-mail: mengxy@bit.edu.cn

    久久亚洲真实| 99国产精品一区二区蜜桃av| 禁无遮挡网站| 人人澡人人妻人| 两性午夜刺激爽爽歪歪视频在线观看 | 巨乳人妻的诱惑在线观看| 国产成年人精品一区二区| 成在线人永久免费视频| 国产97色在线日韩免费| 天天一区二区日本电影三级| 日韩 欧美 亚洲 中文字幕| 美女高潮到喷水免费观看| 欧美乱妇无乱码| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 亚洲国产毛片av蜜桃av| 久久中文字幕一级| 中出人妻视频一区二区| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 嫁个100分男人电影在线观看| 国产成人啪精品午夜网站| 不卡av一区二区三区| 国产av在哪里看| 一二三四社区在线视频社区8| 18禁裸乳无遮挡免费网站照片 | 亚洲 国产 在线| 亚洲久久久国产精品| 在线观看午夜福利视频| 亚洲人成网站高清观看| 成人av一区二区三区在线看| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器 | 亚洲国产精品成人综合色| 久久久国产成人精品二区| 精品国产国语对白av| 成人国产一区最新在线观看| 黑丝袜美女国产一区| 国产麻豆成人av免费视频| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 一本综合久久免费| 在线视频色国产色| 满18在线观看网站| 午夜久久久久精精品| 国产精品1区2区在线观看.| 美女午夜性视频免费| 免费女性裸体啪啪无遮挡网站| 最新在线观看一区二区三区| 又黄又爽又免费观看的视频| 国产一卡二卡三卡精品| 午夜福利视频1000在线观看| 国产激情欧美一区二区| 韩国精品一区二区三区| 香蕉丝袜av| 日韩一卡2卡3卡4卡2021年| 精品高清国产在线一区| 午夜免费成人在线视频| 国产成人精品无人区| 色综合欧美亚洲国产小说| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 成人三级做爰电影| 黑人巨大精品欧美一区二区mp4| 黄色女人牲交| 最近最新免费中文字幕在线| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 久久精品影院6| 中文字幕人妻熟女乱码| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线在线| 性色av乱码一区二区三区2| 欧美一级毛片孕妇| 欧美成人午夜精品| av有码第一页| 最新在线观看一区二区三区| 一级黄色大片毛片| 长腿黑丝高跟| 免费在线观看成人毛片| 香蕉久久夜色| 欧美黑人精品巨大| 亚洲成av人片免费观看| 久久国产亚洲av麻豆专区| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 亚洲国产精品合色在线| 午夜福利一区二区在线看| 午夜福利在线观看吧| 美女扒开内裤让男人捅视频| 亚洲电影在线观看av| 免费高清视频大片| x7x7x7水蜜桃| 超碰成人久久| 国产精品久久久人人做人人爽| 国产成人影院久久av| 国产精品一区二区免费欧美| 亚洲av成人不卡在线观看播放网| 大型av网站在线播放| 国产成人啪精品午夜网站| 亚洲人成网站在线播放欧美日韩| 女生性感内裤真人,穿戴方法视频| 18禁黄网站禁片午夜丰满| 国产熟女xx| 亚洲国产精品sss在线观看| 免费人成视频x8x8入口观看| 精品久久久久久久久久免费视频| 午夜免费成人在线视频| 亚洲av熟女| 亚洲国产精品久久男人天堂| 久久久久久人人人人人| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 亚洲av日韩精品久久久久久密| 99久久精品国产亚洲精品| 中文字幕精品免费在线观看视频| 久久99热这里只有精品18| 黄片大片在线免费观看| 成人欧美大片| 久久久久亚洲av毛片大全| 香蕉丝袜av| 欧洲精品卡2卡3卡4卡5卡区| ponron亚洲| 免费高清在线观看日韩| 亚洲男人的天堂狠狠| 变态另类成人亚洲欧美熟女| 琪琪午夜伦伦电影理论片6080| 99久久精品国产亚洲精品| 色婷婷久久久亚洲欧美| 波多野结衣高清作品| 制服诱惑二区| 9191精品国产免费久久| 91麻豆精品激情在线观看国产| 1024手机看黄色片| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 9191精品国产免费久久| 香蕉av资源在线| 国产熟女午夜一区二区三区| 天天一区二区日本电影三级| 久久精品影院6| 夜夜夜夜夜久久久久| 曰老女人黄片| 琪琪午夜伦伦电影理论片6080| 性欧美人与动物交配| 免费无遮挡裸体视频| 岛国视频午夜一区免费看| 美女 人体艺术 gogo| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av香蕉五月| 大香蕉久久成人网| 国产成+人综合+亚洲专区| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 亚洲午夜精品一区,二区,三区| 亚洲男人天堂网一区| 久久久精品国产亚洲av高清涩受| 亚洲欧美精品综合一区二区三区| 国产精品爽爽va在线观看网站 | 国产精品久久久久久亚洲av鲁大| cao死你这个sao货| 男男h啪啪无遮挡| 美女大奶头视频| 欧美成人一区二区免费高清观看 | 最新美女视频免费是黄的| 日本免费一区二区三区高清不卡| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 久久亚洲精品不卡| 三级毛片av免费| 亚洲av五月六月丁香网| 免费高清在线观看日韩| 观看免费一级毛片| 亚洲国产精品sss在线观看| 俺也久久电影网| 国产成人精品久久二区二区免费| 精品国产美女av久久久久小说| 日韩有码中文字幕| 欧美精品亚洲一区二区| videosex国产| 亚洲国产精品久久男人天堂| 91字幕亚洲| av视频在线观看入口| 亚洲欧美日韩高清在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 日韩av在线大香蕉| 久久久久久久久中文| av在线播放免费不卡| 麻豆成人午夜福利视频| 麻豆成人av在线观看| 国产精品日韩av在线免费观看| 精品日产1卡2卡| 日韩中文字幕欧美一区二区| 日日干狠狠操夜夜爽| 人人澡人人妻人| 国产在线观看jvid| 欧美色视频一区免费| 欧美乱色亚洲激情| 久久中文看片网| 在线看三级毛片| 黄色成人免费大全| 国产亚洲精品久久久久5区| 最近最新中文字幕大全电影3 | 国产熟女午夜一区二区三区| 久久久久国产精品人妻aⅴ院| 国产精品二区激情视频| 老司机午夜福利在线观看视频| 久久精品91蜜桃| 欧美激情高清一区二区三区| 亚洲精品av麻豆狂野| 亚洲国产看品久久| 别揉我奶头~嗯~啊~动态视频| 少妇熟女aⅴ在线视频| 男女床上黄色一级片免费看| 午夜久久久在线观看| 午夜福利高清视频| 在线观看午夜福利视频| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 成年免费大片在线观看| 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 一进一出好大好爽视频| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 久久久国产成人免费| 成人国产综合亚洲| 叶爱在线成人免费视频播放| 波多野结衣巨乳人妻| 日韩欧美一区二区三区在线观看| 少妇的丰满在线观看| 免费在线观看影片大全网站| 亚洲精品久久国产高清桃花| 亚洲一区中文字幕在线| 亚洲av日韩精品久久久久久密| 伦理电影免费视频| 亚洲国产精品sss在线观看| 久9热在线精品视频| 欧美不卡视频在线免费观看 | 久9热在线精品视频| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 高清在线国产一区| 波多野结衣av一区二区av| 精品欧美国产一区二区三| 精品福利观看| av视频在线观看入口| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 久久久久国产一级毛片高清牌| 精品电影一区二区在线| 亚洲色图 男人天堂 中文字幕| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 最新美女视频免费是黄的| 亚洲第一av免费看| 女人被狂操c到高潮| 悠悠久久av| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 丝袜美腿诱惑在线| 国产成人精品久久二区二区免费| 国产精品九九99| 一本精品99久久精品77| 在线永久观看黄色视频| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 精品一区二区三区四区五区乱码| 一区二区三区高清视频在线| 精品欧美国产一区二区三| 一二三四在线观看免费中文在| 亚洲性夜色夜夜综合| 黄色a级毛片大全视频| 日本 av在线| 国产视频内射| 女人高潮潮喷娇喘18禁视频| 国产成人av教育| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 看片在线看免费视频| 国产91精品成人一区二区三区| 99久久综合精品五月天人人| 午夜福利18| 精品熟女少妇八av免费久了| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 中国美女看黄片| 女性被躁到高潮视频| 日韩视频一区二区在线观看| 中文字幕av电影在线播放| 亚洲成人国产一区在线观看| 亚洲欧洲精品一区二区精品久久久| 无遮挡黄片免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线美女| 青草久久国产| 欧美成人午夜精品| 嫁个100分男人电影在线观看| 美女国产高潮福利片在线看| 国产成人精品久久二区二区91| 91在线观看av| 99国产综合亚洲精品| 日日爽夜夜爽网站| 在线天堂中文资源库| 黄色丝袜av网址大全| 日韩精品免费视频一区二区三区| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 国产在线观看jvid| 亚洲av电影不卡..在线观看| 巨乳人妻的诱惑在线观看| 十分钟在线观看高清视频www| 欧美+亚洲+日韩+国产| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 精品欧美国产一区二区三| 黄网站色视频无遮挡免费观看| 精品久久久久久久末码| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 一本综合久久免费| 精品免费久久久久久久清纯| 又黄又爽又免费观看的视频| 99久久无色码亚洲精品果冻| 黄色成人免费大全| a在线观看视频网站| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 日本成人三级电影网站| 在线观看免费日韩欧美大片| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 欧美三级亚洲精品| 国产欧美日韩一区二区精品| 日本免费一区二区三区高清不卡| 99久久国产精品久久久| 亚洲精品一区av在线观看| 三级毛片av免费| 大型黄色视频在线免费观看| 热99re8久久精品国产| 国产高清视频在线播放一区| 三级毛片av免费| 男人舔女人的私密视频| 午夜激情福利司机影院| 亚洲精品在线观看二区| 免费在线观看成人毛片| 久久国产乱子伦精品免费另类| aaaaa片日本免费| 精品人妻1区二区| 国产日本99.免费观看| 自线自在国产av| 日本一区二区免费在线视频| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 久久久久亚洲av毛片大全| 很黄的视频免费| 一进一出抽搐gif免费好疼| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 免费高清视频大片| 热re99久久国产66热| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添小说| 色综合站精品国产| 91在线观看av| 狠狠狠狠99中文字幕| 成人国产综合亚洲| 这个男人来自地球电影免费观看| 在线观看www视频免费| 成年人黄色毛片网站| 国产成人欧美| x7x7x7水蜜桃| 美女免费视频网站| 国产精品永久免费网站| 亚洲成人国产一区在线观看| 国产99久久九九免费精品| 国产一区二区激情短视频| 麻豆一二三区av精品| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 久久中文字幕一级| 白带黄色成豆腐渣| 久久久久九九精品影院| 99久久久亚洲精品蜜臀av| 国产精品美女特级片免费视频播放器 | 黄色a级毛片大全视频| 天堂√8在线中文| 欧美最黄视频在线播放免费| 黑丝袜美女国产一区| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 国产精品免费视频内射| 91国产中文字幕| 国产高清视频在线播放一区| av片东京热男人的天堂| av在线播放免费不卡| www.熟女人妻精品国产| 美女高潮喷水抽搐中文字幕| 亚洲av中文字字幕乱码综合 | 日本成人三级电影网站| 日本 欧美在线| 国产成+人综合+亚洲专区| 午夜免费观看网址| 久久久久久久久久黄片| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2 | 欧美大码av| av天堂在线播放| 男人操女人黄网站| 美女国产高潮福利片在线看| 90打野战视频偷拍视频| xxx96com| 国产真人三级小视频在线观看| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 久久久久国产精品人妻aⅴ院| 别揉我奶头~嗯~啊~动态视频| av免费在线观看网站| 久久久久九九精品影院| 国产精品综合久久久久久久免费| 国产成人av教育| 亚洲美女黄片视频| 在线播放国产精品三级| 国产午夜精品久久久久久| 亚洲午夜理论影院| cao死你这个sao货| 国产一区二区三区视频了| 日本一区二区免费在线视频| 丁香欧美五月| 中文字幕最新亚洲高清| 黄色视频不卡| 又黄又粗又硬又大视频| 丝袜人妻中文字幕| 久久精品人妻少妇| 精品午夜福利视频在线观看一区| 波多野结衣av一区二区av| 女人被狂操c到高潮| 最好的美女福利视频网| 无人区码免费观看不卡| 丁香欧美五月| 中文在线观看免费www的网站 | 在线观看日韩欧美| 精品久久久久久,| svipshipincom国产片| 十八禁网站免费在线| 看黄色毛片网站| 午夜亚洲福利在线播放| 久久香蕉精品热| 女警被强在线播放| 国产真人三级小视频在线观看| 天堂影院成人在线观看| 国产三级黄色录像| 色婷婷久久久亚洲欧美| tocl精华| 村上凉子中文字幕在线| 级片在线观看| videosex国产| 老熟妇乱子伦视频在线观看| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 午夜久久久在线观看| 十八禁网站免费在线| 91九色精品人成在线观看| 日日干狠狠操夜夜爽| 亚洲电影在线观看av| 久久久久国产精品人妻aⅴ院| 99久久无色码亚洲精品果冻| 久久久久久人人人人人| 老司机福利观看| 欧美黑人欧美精品刺激| 成人永久免费在线观看视频| 99国产精品一区二区蜜桃av| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 两个人免费观看高清视频| 啦啦啦韩国在线观看视频| 免费女性裸体啪啪无遮挡网站| 亚洲人成网站在线播放欧美日韩| 女警被强在线播放| 中文字幕人成人乱码亚洲影| 黄色a级毛片大全视频| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| 一进一出抽搐动态| 精品久久久久久,| 制服人妻中文乱码| 国产一区二区三区在线臀色熟女| 国产精品99久久99久久久不卡| 99精品久久久久人妻精品| 无遮挡黄片免费观看| 伦理电影免费视频| 午夜福利免费观看在线| 少妇 在线观看| 免费在线观看黄色视频的| 精品久久久久久,| 精品第一国产精品| 中文字幕另类日韩欧美亚洲嫩草| 欧美三级亚洲精品| 欧美中文日本在线观看视频| 国产精品,欧美在线| 99久久99久久久精品蜜桃| 免费看十八禁软件| 嫩草影视91久久| 国产亚洲欧美98| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色片欧美黄色片| x7x7x7水蜜桃| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 国产三级在线视频| 观看免费一级毛片| 日韩欧美免费精品| 国产99白浆流出| 亚洲免费av在线视频| 1024香蕉在线观看| 波多野结衣巨乳人妻| 99国产精品一区二区蜜桃av| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| 欧美日韩中文字幕国产精品一区二区三区| 免费无遮挡裸体视频| 一进一出抽搐动态| 草草在线视频免费看| 欧美久久黑人一区二区| 免费看美女性在线毛片视频| 国产一区二区三区视频了| 国产v大片淫在线免费观看| 男女床上黄色一级片免费看| www日本在线高清视频| 1024手机看黄色片| 一区福利在线观看| 精品卡一卡二卡四卡免费| 亚洲精华国产精华精| 人人妻,人人澡人人爽秒播| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 精品福利观看| 在线看三级毛片| 日韩欧美三级三区| 色婷婷久久久亚洲欧美| 亚洲成人久久爱视频| 久久99热这里只有精品18| 国产亚洲精品综合一区在线观看 | 精品欧美国产一区二区三| 美女免费视频网站| 久久 成人 亚洲| 老鸭窝网址在线观看| 嫩草影视91久久| 91大片在线观看| 精品免费久久久久久久清纯| 老熟妇仑乱视频hdxx| 午夜久久久在线观看| 亚洲av电影在线进入| 亚洲国产高清在线一区二区三 | 亚洲av成人不卡在线观看播放网| 一本精品99久久精品77| 男女之事视频高清在线观看| 国内少妇人妻偷人精品xxx网站 | 国产v大片淫在线免费观看| 黄色视频不卡| 亚洲五月色婷婷综合| 少妇的丰满在线观看| 19禁男女啪啪无遮挡网站| 国产黄片美女视频| 两人在一起打扑克的视频| 亚洲成av片中文字幕在线观看| 亚洲午夜精品一区,二区,三区| 99热6这里只有精品| 亚洲激情在线av| 亚洲va日本ⅴa欧美va伊人久久| 久99久视频精品免费| 黄色女人牲交| 熟妇人妻久久中文字幕3abv| 久99久视频精品免费| 久久精品国产清高在天天线| 亚洲va日本ⅴa欧美va伊人久久| bbb黄色大片| 亚洲,欧美精品.| 欧美性长视频在线观看| 热99re8久久精品国产| 99精品欧美一区二区三区四区| 欧美不卡视频在线免费观看 | 日韩国内少妇激情av| av福利片在线| 国产精品,欧美在线| 岛国在线观看网站| 老司机午夜十八禁免费视频| www.999成人在线观看| 老司机在亚洲福利影院| 国产97色在线日韩免费| 国产精品九九99| 日本黄色视频三级网站网址| 亚洲av电影不卡..在线观看| 国产私拍福利视频在线观看| 国产1区2区3区精品|