• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers

    2015-04-22 07:48:22LAODazhong老大中ZHAOShanshan趙珊珊LAOTianfu老天夫

    LAO Da-zhong(老大中), ZHAO Shan-shan(趙珊珊), LAO Tian-fu(老天夫)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Dandong Design Institute of Chemical Fibre, Dandong, Liaoning 118002, China;2.China National General Machinery Engineering Corporation,Beijing 100050, China)

    ?

    Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers

    LAO Da-zhong(老大中)1, ZHAO Shan-shan(趙珊珊)2, LAO Tian-fu(老天夫)3

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Dandong Design Institute of Chemical Fibre, Dandong, Liaoning 118002, China;2.China National General Machinery Engineering Corporation,Beijing 100050, China)

    Based on the differential equation of the deflection curve for the beam, the equation of the deflection curve for the simple beam is obtained by integral. The equation of the deflection curve for the simple beam carrying the linear load is generalized, and then it is expanded into the corresponding Fourier series. With the obtained summation results of the infinite series, it is found that they are related to Bernoulli numbers andπ.TherecurrentformulaofBernoullinumbersispresented.Therelationshipsamongthecoefficientsofthebeam,BernoullinumbersandEulernumbersarefound,andtherelativemathematicalformulasarepresented.

    Bernoulli numbers; Euler numbers; coefficients of beam; simple beam; equation of deflection curve; Fourier series

    It is well known that Euler numbers and Bernoulli numbers are the very important because they are used in many mathematical calculations. For example, according to the theory of summation of series[1], there are following formulas

    (1)

    (2)

    (3)

    whereB2kis a Bernoulli number,E2kis an Euler number.

    Through the Fourier series expansion of the equation of the deflection curve for the simple beam carrying the linear load in the present work, the relationships among the coefficients of beam, Bernoulli numbers and Euler numbers are established, therefore the recurrence formula of Bernoulli numbers is derived, and the above-mentioned summation formulas of series are generalized.

    1 Equation of the deflection curve for the simple beam and its generalization

    Let a small deflection beam carry the distributed loadq(x),Lis the length of the beam,EIis the flexural rigidity, it is known from the theory of mechanics of material[2]that the differential equation of the deflection curve of the beam is

    (EIy″)″-q(x)=0

    (4)

    whereyis the deflection of the beam.

    IfEIis a constant, then Eq. (4) can be written as

    EIy(4)=q(x)

    (5)

    The relationship of the deflection and bending momentMof the beam is

    EIy″=-M

    (6)

    (7)

    Theboundaryconditionsare

    y(0)=y(L)=0,y″(0)=y″(L)=0

    (8)

    (9)

    BecausebothEIandq0are constants, the function can also be constructed like this, Eq. (5) is written as

    (10)

    IntegratingEq. (10)fourtimes,andmakinguseoftheboundaryconditions(8),weobtain

    (11)

    (12)

    Theboundaryconditionsare

    y4m+1(0)=y4m+1(L)=0,y4m-1(0)=y4m-1(L)=0

    (13)

    where the two left boundary conditions have been satisfied.

    (14)

    (15)

    It is known from Eq. (14) and Eq. (15) that when the indices ofxare permuted according to descending order of powers, the various coefficients of the beam function appear alternately with the different signs, and the algebraic sum of various coefficients is zero; the times of factorial is just the highest powerful number ofx; the lower order polynomial can be obtained by the derivative of the higher order one.

    2 Fourier sine series expansion of the beam function

    According to the boundary conditions (8), in the interval [0,L], Eq. (11) can be expanded into the Fourier sine series, its form is

    (16)

    wherethecoefficientbncan be written as

    (17)

    SubstitutingEq. (17)intoEq. (16),thensubstitutingEq. (16)intoEq. (11),weobtain

    (0≤x≤L)

    (18)

    (19)

    AccordingtoEq. (19),theFouriersineseriesofEq.(12)canbewrittenas

    (0≤x≤L)

    (20)

    IfL=1 is chosen, then there is

    (0≤x≤1)

    (21)

    Applying odd time derivative to the Fourier sine series, the Fourier cosine series can be obtained. No matter whether Fourier sine series or Fourier cosine series, their sum relates toπ,andthepowerexponentofπequalstothepowerexponentofn.

    3 Relationships among the coefficients of the beam, Bernoulli numbers and Euler numbers

    (22)

    (23)

    InEqs. (22) (23),changing2mintok, then there are

    (24)

    (25)

    (26)

    ThesolutionoftheinitialcoefficientCkfrom Eq.(26) is

    (27)

    Ofcourse,fork=0 Eq.(27) can hold too.

    (28)

    (29)

    Changing2mintok, then Eq.(29) can be written as

    (30)

    Especially, for the first coefficient of the beam, there is

    (31)

    Obviously,forthelastcoefficientofthebeam,thereis

    (32)

    SubstituteingEq.(30)intoEq.(25),andmakeuseofEq.(1),thereis

    (33)

    ItcanbeobtainedfromEq.(33)

    (k=0,1,…,n,…)

    (34)

    Eq.(34) can be rewritten as

    (35)

    B2kissolvedfromEq.(34)orEq.(35)

    (k≥2)

    (36)

    For examples

    (37)

    (38)

    (39)

    (40)

    ItisknownfromEqs.(3) (40)thatEulernumbersandthecoefficientsofthebeamhavethefollowingrelationships

    (41)

    or

    (42)

    SubstitutingEq.(30)intoEq.(42),therelationshipsbetweenEulernumbersandBernoullinumbersare

    (43)

    OfcourseEq.(43)alsoholdsfork=0, in this case,k

    It is necessary to point out that there are many formulas of Euler numbers expressed by Bernoulli numbers. Refs.[5-10] also give the similar formulas, it shows that the formulas of Euler numbers expressed by Bernoulli numbers are not unique.

    According to calculations of Eqs.(27) (36) (43), 11 Bernoulli numbers, corresponding Euler numbers and coefficients of the beam are given in Tab.1. It can be seen from Tab.1 that the numerators and denominators of the initial coefficients are all odd numbers. Euler numbers and the initial coefficients have the same symbols, but they are contrary to the symbols of Bernoulli numbers. The absolute values of Bernoulli numbers, Euler numbers and the initial numbers are all rapid rising series.

    Tab.1 Table of Bernoulli numbers, Euler umbers and initial coefficients

    Making use of date provided by Tab.1, the coefficients of the beam can be conveniently calculated by Eq.(30), such as

    (44)

    (45)

    Itcanbeseenthatthetwocoefficientsarerespectivelythecoefficientsofx3andxin Eq.(9). The other examples are

    (46)

    (47)

    Theabove-mentionedresearchresultsshowthattheFourierseriesexpandedbythereflectionequationofthesimplebeamcarryingthelinearload,nomatterwhethertheFouriersineseries,ortheFouriercosineseriesobtainedthroughderivation,thecoefficientsofthebeam,theinitialcoefficientsandEulernumbers,areallrelatedtoBernoullinumbers,theycanallexpressedwithBernoullinumbers,andallBernoullinumberscanbecalculatedbymeansofrecurrenceformula(36).Therearecertainrelationshipsamongthecoefficientsofthebeam,BernoullinumbersandEulernumbers.

    4 Applies of the coefficients of the beam in the summation of the series

    (48)

    (49)

    (50)

    (51)

    (52)

    (53)

    (54)

    InEq.(20),choosingm=2, then deriving Eq.(20), we obtain

    (55)

    (56)

    (57)

    (58)

    (59)

    (60)

    (61)

    5 Conclusions

    ①Through the equation of the deflection curve for the simple beam carrying the linear load and the expansion of the generalized Fourier series, the recurrence formula Eq.(36) of Bernoulli numbers has been derived, and it can calculate all Bernoulli numbers. The result is that the bigger numbering Bernoulli number can be expressed by the combination of the smaller numbering Bernoulli numbers.

    ② The relationships among the coefficients of the beam, Euler numbers and Bernoulli numbers, or the relationship between the coefficients and Bernoulli numbers are expressed by Eq.(29) or Eq.(30), the relationship between Euler numbers and the coefficients of the beam is Eq.(41) or Eq.(42), The relationship between Euler numbers and Bernoulli numbers is Eq.(43). The relationship between Euler numbers and Bernoulli numbers has many expressions.

    ③ The summation of alternating series composed by the reciprocals of the odd powers of the natural numbers can be obtained by the beam function of the simple beam carrying the linear load being expanded into Fourier sine series. The summation of alternating series composed by the reciprocals of the even powers of the natural numbers can be obtained by the derivatives of the above Fourier sine series.They are all the concrete expressional forms of the beam function (12) being expanded into a Fourier series.

    ④ The Fourier series expanded by the reflection equation of the simple beam carrying the linear load, no matter whether the Fourier sine series, or the Fourier cosine series obtained through derivation, are all related to Bernoulli numbers, they can all expressed with Bernoulli numbers.

    ⑤ The summation results of all the above-mentioned series relate to π, and the power exponent of π equals the power exponent ofn.

    [1]NeitzH.Mathematicalformulas[M].ShiShengwen,transl.Beijing:OceanPress, 1983. (inChinese)

    [2]StephenPTimoshenko,JamesMGere.Mechanicsofmaterials[M].NewYork:VanNostrandReinholdCompany, 1972.

    [3]ZhuWeiyi.TworeausiveformulaofcalculatingBernoulli’snumbers[J].JournalofShangqiuTeachersCollege, 2003, 19(2):43-45.(inChinese)

    [4]GuJiangmin,ZhuWeiyi.TwokindsofnewexpressionsofBernoullinumbers[J].JournalofWeinanTeachersUniversity, 2010, 25(2):6-8. (inChinese)

    [5]ChenZhiming.SomeidentitiesEulernumbersandBernoullinumbers[J].PureandAppliedMathematics, 1994, 10(1): 7-10.(inChinese)

    [6]WangDuanzhong.TherelationbetweenEulernumberandBernoullinumberandtheirapplication[J].JournalofNingxiaInstituteofTechnology, 1997, 9(4): 18-20. (inChinese)

    [7]LuoQiuming,GuoTianfen,QiFeng.RelationsofBernoullinumbersandEulernumbers[J].JournalofHenanNormalUniversity,2003, 31(2): 9-11. (inChinese)

    [8]ZhangSheng.SomeidentitiesrelatedtoEulernumbers[J].JournalofInnerMongoliaNormalUniversity, 2006, 35(1): 44-46. (inChinese)

    [9]LaoDazhong,ZhaoBaoting.Fourierseriesbasedonthedeflectionequationexpansionofthesimplebeam[J].TransactionsofBeijinginstituteoftechnology, 2010, 30(1): 1-4. (inChinese)

    [10] Wang Chenying, Zong Zhaoyu. Some identities involving Bernoulli and Euler numbers[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2012, 4(3): 285-288. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0303

    O 156.4; O 174.21 Document code: A Article ID: 1004- 0579(2015)03- 0298- 07

    Received 2014- 01- 08

    Supported by the National Natural Science Foundation of China (51276017)

    E-mail: laodazhong@tsinghua.org.cn

    一区福利在线观看| 99久国产av精品| 欧美激情久久久久久爽电影| 欧美zozozo另类| 精品乱码久久久久久99久播| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 国产免费av片在线观看野外av| 亚洲一区二区三区不卡视频| 啪啪无遮挡十八禁网站| 日本 av在线| 欧美不卡视频在线免费观看| 免费在线观看成人毛片| 十八禁网站免费在线| 亚洲精品一卡2卡三卡4卡5卡| 成人国产综合亚洲| 日韩亚洲欧美综合| 亚洲国产精品999在线| 波野结衣二区三区在线| 成人亚洲精品av一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久婷婷人人爽人人干人人爱| 精华霜和精华液先用哪个| 欧美不卡视频在线免费观看| 男人和女人高潮做爰伦理| 91久久精品国产一区二区成人| 国产精品精品国产色婷婷| 亚洲,欧美精品.| 在线观看一区二区三区| av国产免费在线观看| 少妇人妻一区二区三区视频| 最好的美女福利视频网| 一级a爱片免费观看的视频| 亚洲精品一区av在线观看| 亚洲 国产 在线| 91久久精品电影网| 色哟哟哟哟哟哟| 精品不卡国产一区二区三区| 九九在线视频观看精品| 欧美区成人在线视频| 欧美日本亚洲视频在线播放| 小说图片视频综合网站| 身体一侧抽搐| 看十八女毛片水多多多| 757午夜福利合集在线观看| 少妇熟女aⅴ在线视频| 黄色配什么色好看| 人妻制服诱惑在线中文字幕| 真人做人爱边吃奶动态| 丁香六月欧美| 99精品在免费线老司机午夜| 精品久久久久久久人妻蜜臀av| 久久人妻av系列| 欧美另类亚洲清纯唯美| 婷婷丁香在线五月| 91麻豆av在线| 一级av片app| 性欧美人与动物交配| 国产成人av教育| 禁无遮挡网站| 俺也久久电影网| 日韩欧美精品免费久久 | 久久久久久久精品吃奶| 51午夜福利影视在线观看| 一夜夜www| 天美传媒精品一区二区| 国产高清有码在线观看视频| 一区二区三区四区激情视频 | 嫩草影院精品99| 亚洲av电影在线进入| or卡值多少钱| 九色成人免费人妻av| 五月玫瑰六月丁香| 五月玫瑰六月丁香| 88av欧美| 十八禁网站免费在线| 天堂√8在线中文| 亚洲av成人av| 精品午夜福利在线看| 色综合站精品国产| 成人特级av手机在线观看| 一二三四社区在线视频社区8| 亚洲激情在线av| 一进一出好大好爽视频| 久久精品国产亚洲av香蕉五月| 国产不卡一卡二| 黄色女人牲交| 国产高清激情床上av| 欧美bdsm另类| www日本黄色视频网| 97人妻精品一区二区三区麻豆| 亚洲国产高清在线一区二区三| 欧美日韩综合久久久久久 | bbb黄色大片| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 欧美国产日韩亚洲一区| 高潮久久久久久久久久久不卡| 成年版毛片免费区| 国产爱豆传媒在线观看| 国产一级毛片七仙女欲春2| 999久久久精品免费观看国产| 亚洲电影在线观看av| 1000部很黄的大片| 一进一出抽搐gif免费好疼| 精品一区二区三区视频在线观看免费| 欧美区成人在线视频| 不卡一级毛片| 大型黄色视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 免费观看的影片在线观看| 99riav亚洲国产免费| 最近中文字幕高清免费大全6 | 嫩草影视91久久| 大型黄色视频在线免费观看| 成人国产一区最新在线观看| 成人毛片a级毛片在线播放| 国产爱豆传媒在线观看| 美女免费视频网站| 久久精品夜夜夜夜夜久久蜜豆| www.色视频.com| 变态另类丝袜制服| 国产精品精品国产色婷婷| 俺也久久电影网| bbb黄色大片| 免费在线观看亚洲国产| 91麻豆av在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产伦在线观看视频一区| 免费无遮挡裸体视频| 人妻夜夜爽99麻豆av| 小蜜桃在线观看免费完整版高清| 99热精品在线国产| 色5月婷婷丁香| 韩国av一区二区三区四区| 欧美潮喷喷水| 真人做人爱边吃奶动态| 精品久久久久久久人妻蜜臀av| 757午夜福利合集在线观看| 动漫黄色视频在线观看| 婷婷精品国产亚洲av在线| 亚洲自拍偷在线| 日韩欧美三级三区| 久久久久久大精品| 免费人成视频x8x8入口观看| 老鸭窝网址在线观看| 一级作爱视频免费观看| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 十八禁国产超污无遮挡网站| 老司机午夜十八禁免费视频| 精品熟女少妇八av免费久了| 欧美黄色淫秽网站| 国产精品亚洲av一区麻豆| 欧美高清性xxxxhd video| 级片在线观看| 午夜日韩欧美国产| 99国产精品一区二区三区| 亚洲最大成人中文| 国产一区二区三区视频了| 18+在线观看网站| 黄色配什么色好看| 一个人看的www免费观看视频| 在线播放无遮挡| 久久精品国产亚洲av涩爱 | 中文字幕免费在线视频6| 尤物成人国产欧美一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区不卡视频| 99久久九九国产精品国产免费| 欧美三级亚洲精品| 久久国产乱子免费精品| 免费电影在线观看免费观看| 制服丝袜大香蕉在线| 午夜老司机福利剧场| 午夜精品久久久久久毛片777| 色综合欧美亚洲国产小说| 国产高清三级在线| 丁香六月欧美| 日本成人三级电影网站| 一进一出抽搐gif免费好疼| 久久婷婷人人爽人人干人人爱| 欧美日韩中文字幕国产精品一区二区三区| 制服丝袜大香蕉在线| 久久九九热精品免费| 欧美中文日本在线观看视频| 人妻丰满熟妇av一区二区三区| 欧美日韩瑟瑟在线播放| 久久热精品热| 亚洲激情在线av| 嫩草影院新地址| 日本 欧美在线| 老司机午夜福利在线观看视频| 成人一区二区视频在线观看| 黄色日韩在线| 亚洲成人精品中文字幕电影| 亚洲av成人av| 毛片一级片免费看久久久久 | 国产一区二区激情短视频| 免费观看人在逋| 国产美女午夜福利| 日本在线视频免费播放| 91狼人影院| 在线天堂最新版资源| 久久精品国产自在天天线| 久久精品综合一区二区三区| 一区二区三区免费毛片| 色综合欧美亚洲国产小说| 国产在线男女| 日本黄大片高清| 久久久久久久久大av| 亚洲av一区综合| 国产成人aa在线观看| 色综合欧美亚洲国产小说| 午夜免费男女啪啪视频观看 | bbb黄色大片| 亚洲在线观看片| 婷婷亚洲欧美| 人人妻,人人澡人人爽秒播| 丰满人妻一区二区三区视频av| 精品免费久久久久久久清纯| 可以在线观看的亚洲视频| 乱码一卡2卡4卡精品| 亚洲va日本ⅴa欧美va伊人久久| 此物有八面人人有两片| АⅤ资源中文在线天堂| 国产精品久久视频播放| 好男人在线观看高清免费视频| 亚洲男人的天堂狠狠| 欧美日韩国产亚洲二区| 两个人的视频大全免费| 国产精品久久久久久精品电影| 少妇裸体淫交视频免费看高清| 精品欧美国产一区二区三| 中文在线观看免费www的网站| 日本熟妇午夜| 最好的美女福利视频网| 国产精品女同一区二区软件 | av在线老鸭窝| 在线播放无遮挡| 波多野结衣高清无吗| 亚洲国产精品sss在线观看| 乱人视频在线观看| 久99久视频精品免费| 日本一本二区三区精品| 精品不卡国产一区二区三区| 国产高清激情床上av| 我要搜黄色片| aaaaa片日本免费| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 九色成人免费人妻av| 亚洲成av人片免费观看| 乱码一卡2卡4卡精品| 一级黄色大片毛片| 午夜福利欧美成人| 国产伦人伦偷精品视频| 狂野欧美白嫩少妇大欣赏| 天堂影院成人在线观看| 国产精品一区二区三区四区免费观看 | 亚洲av免费在线观看| 高清毛片免费观看视频网站| 亚洲第一电影网av| 成人高潮视频无遮挡免费网站| 久久国产乱子伦精品免费另类| 久久久久久久午夜电影| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 一进一出好大好爽视频| 亚洲精品影视一区二区三区av| 欧美丝袜亚洲另类 | av黄色大香蕉| 国产毛片a区久久久久| 午夜影院日韩av| 久久久久久久久久黄片| 国产高潮美女av| 久久婷婷人人爽人人干人人爱| 国产精品三级大全| 一区二区三区免费毛片| 少妇被粗大猛烈的视频| 97超视频在线观看视频| 最近最新免费中文字幕在线| 老司机午夜福利在线观看视频| 欧美日韩国产亚洲二区| 此物有八面人人有两片| 国产av不卡久久| 亚洲人成电影免费在线| 欧美最黄视频在线播放免费| 亚洲成人久久性| 我的女老师完整版在线观看| 超碰av人人做人人爽久久| 欧美3d第一页| 国产伦在线观看视频一区| 97碰自拍视频| or卡值多少钱| 在线看三级毛片| 久久久久久久久久成人| 日韩成人在线观看一区二区三区| 淫秽高清视频在线观看| 欧美成狂野欧美在线观看| 免费观看精品视频网站| 午夜福利在线观看免费完整高清在 | 婷婷亚洲欧美| 91av网一区二区| 日韩欧美免费精品| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品av在线| 亚洲美女黄片视频| 在线观看美女被高潮喷水网站 | 国产精品电影一区二区三区| 在线天堂最新版资源| 久久久久久久久久黄片| 久久九九热精品免费| 国产探花在线观看一区二区| 麻豆久久精品国产亚洲av| av欧美777| 亚洲五月天丁香| 日韩欧美国产在线观看| 精品一区二区三区视频在线观看免费| 88av欧美| 国产淫片久久久久久久久 | 欧美不卡视频在线免费观看| 国产不卡一卡二| 嫩草影院入口| 淫妇啪啪啪对白视频| 中文亚洲av片在线观看爽| 午夜a级毛片| 亚洲精品影视一区二区三区av| 亚洲美女搞黄在线观看 | 乱人视频在线观看| 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 色噜噜av男人的天堂激情| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 免费电影在线观看免费观看| 久久久色成人| 国产在线男女| 深夜a级毛片| 国产黄色小视频在线观看| 中文字幕免费在线视频6| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av美国av| 亚洲欧美日韩高清专用| 天堂av国产一区二区熟女人妻| 久久欧美精品欧美久久欧美| 一个人免费在线观看电影| 91久久精品电影网| 国产私拍福利视频在线观看| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 在线免费观看不下载黄p国产 | av黄色大香蕉| 看免费av毛片| 悠悠久久av| 偷拍熟女少妇极品色| xxxwww97欧美| 人妻制服诱惑在线中文字幕| 亚洲av.av天堂| 毛片女人毛片| 国产免费男女视频| 草草在线视频免费看| 午夜老司机福利剧场| 久久久精品大字幕| 亚洲成人精品中文字幕电影| 国产精品久久视频播放| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 成人无遮挡网站| 国产aⅴ精品一区二区三区波| 一个人看的www免费观看视频| 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 九九热线精品视视频播放| 蜜桃久久精品国产亚洲av| 动漫黄色视频在线观看| 最近视频中文字幕2019在线8| 久久精品国产亚洲av天美| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 亚洲精品乱码久久久v下载方式| 精品国产亚洲在线| a级毛片a级免费在线| 国产成人欧美在线观看| 久久精品91蜜桃| 国产精品三级大全| 精品午夜福利视频在线观看一区| 国产一区二区三区视频了| 露出奶头的视频| 精品人妻熟女av久视频| 精品久久久久久久人妻蜜臀av| 久久精品久久久久久噜噜老黄 | 波多野结衣高清无吗| 亚洲欧美日韩卡通动漫| 国产在线精品亚洲第一网站| 精品久久久久久,| 成年人黄色毛片网站| 脱女人内裤的视频| 亚洲精品一区av在线观看| 在线观看午夜福利视频| 国产熟女xx| 亚洲av免费在线观看| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 久久国产乱子免费精品| 久久久国产成人免费| 成人国产综合亚洲| 黄片小视频在线播放| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 美女xxoo啪啪120秒动态图 | 久久婷婷人人爽人人干人人爱| 给我免费播放毛片高清在线观看| 伊人久久精品亚洲午夜| 亚洲av美国av| 亚洲一区高清亚洲精品| 成人国产综合亚洲| 国产精品日韩av在线免费观看| 国产v大片淫在线免费观看| 国产一区二区三区视频了| 男女之事视频高清在线观看| 午夜精品一区二区三区免费看| www日本黄色视频网| 久99久视频精品免费| 三级男女做爰猛烈吃奶摸视频| 琪琪午夜伦伦电影理论片6080| 亚洲第一电影网av| 亚洲真实伦在线观看| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 精品99又大又爽又粗少妇毛片 | 久久精品人妻少妇| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 好男人电影高清在线观看| 嫩草影院新地址| 国产在线精品亚洲第一网站| 欧美在线黄色| 在线免费观看不下载黄p国产 | 精品国产亚洲在线| 制服丝袜大香蕉在线| 中文字幕久久专区| 国产不卡一卡二| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 亚洲精华国产精华精| 国产伦一二天堂av在线观看| 美女高潮喷水抽搐中文字幕| 成人亚洲精品av一区二区| 91久久精品电影网| 夜夜爽天天搞| 91九色精品人成在线观看| 九色成人免费人妻av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 嫩草影视91久久| 一区二区三区高清视频在线| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 嫩草影视91久久| 成年人黄色毛片网站| 亚洲专区国产一区二区| 免费大片18禁| 免费一级毛片在线播放高清视频| 色噜噜av男人的天堂激情| xxxwww97欧美| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区免费观看 | 俺也久久电影网| 欧美日韩瑟瑟在线播放| 天堂动漫精品| 乱码一卡2卡4卡精品| 国产高清激情床上av| 国产单亲对白刺激| 波多野结衣高清无吗| 久9热在线精品视频| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 欧美高清性xxxxhd video| 一区二区三区高清视频在线| 99riav亚洲国产免费| 欧美最新免费一区二区三区 | 女人被狂操c到高潮| 好男人电影高清在线观看| 麻豆国产av国片精品| 国产黄片美女视频| 亚洲av熟女| 欧美日韩国产亚洲二区| 午夜福利免费观看在线| 真实男女啪啪啪动态图| 久久久成人免费电影| 精品99又大又爽又粗少妇毛片 | 亚洲精品成人久久久久久| 国产日本99.免费观看| 久久久久久九九精品二区国产| 久久九九热精品免费| 女同久久另类99精品国产91| 69人妻影院| 欧美绝顶高潮抽搐喷水| 国产一区二区激情短视频| 成人一区二区视频在线观看| 97超视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品999在线| 亚洲精品456在线播放app | 精品人妻视频免费看| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 久久久久国内视频| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 国产精品乱码一区二三区的特点| 欧美性感艳星| 国产精品人妻久久久久久| 国产一区二区激情短视频| 免费人成在线观看视频色| 久久人人爽人人爽人人片va | 亚洲精品在线美女| 午夜免费激情av| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 亚洲国产精品合色在线| 亚洲av一区综合| 赤兔流量卡办理| 九九热线精品视视频播放| 看黄色毛片网站| 淫秽高清视频在线观看| 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 亚洲三级黄色毛片| 九色成人免费人妻av| 免费观看精品视频网站| 国产国拍精品亚洲av在线观看| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 露出奶头的视频| 天天一区二区日本电影三级| 色精品久久人妻99蜜桃| 麻豆成人av在线观看| 男女视频在线观看网站免费| 三级男女做爰猛烈吃奶摸视频| www.www免费av| 九九在线视频观看精品| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 真人一进一出gif抽搐免费| 一区二区三区激情视频| 毛片女人毛片| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 97碰自拍视频| 首页视频小说图片口味搜索| 婷婷色综合大香蕉| 亚洲国产精品久久男人天堂| 亚洲激情在线av| 又黄又爽又刺激的免费视频.| 亚洲av成人av| 中文字幕久久专区| 精品久久久久久久久av| 丁香六月欧美| 国产一区二区激情短视频| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 亚洲欧美日韩东京热| 免费搜索国产男女视频| 麻豆成人av在线观看| 午夜精品在线福利| 亚洲 国产 在线| 麻豆av噜噜一区二区三区| 久久国产乱子伦精品免费另类| 成熟少妇高潮喷水视频| 99久久精品热视频| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久| 欧美潮喷喷水| 欧美一区二区国产精品久久精品| 欧美日本视频| 乱人视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品成人综合色| 亚洲 欧美 日韩 在线 免费| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| 久久久久性生活片| 精品久久久久久久久亚洲 | 国产在视频线在精品| 亚洲,欧美精品.| 天堂av国产一区二区熟女人妻| 综合色av麻豆| 亚洲最大成人中文| 久久久久国内视频| 免费在线观看影片大全网站| aaaaa片日本免费| 国内揄拍国产精品人妻在线| www.熟女人妻精品国产| 亚洲18禁久久av| 可以在线观看毛片的网站| 深爱激情五月婷婷| 黄色一级大片看看| 给我免费播放毛片高清在线观看| 又粗又爽又猛毛片免费看| 国产精品久久久久久久久免 | 十八禁人妻一区二区|