• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-rise building fire pre-warning model based on the support vector regression

    2015-04-22 07:24:52ZHANGLining張立寧ZHANGQi張奇ANJing安晶

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇), AN Jing(安晶)

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    ?

    High-rise building fire pre-warning model based on the support vector regression

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇)1, AN Jing(安晶)2

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network, and then to improve the accuracy of fire pre-warning for high-rise buildings, a composite fire pre-warning controller is designed according to the characteristic (nonlinear, less historical data, many influence factors), also a high-rise building fire pre-warning model is set up based on the support vector regression(SVR).Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.

    high-rise buildings fire; composite fire pre-warning system design; the support vector regression pre-warning model

    High-rise buildings are the inevitable products of the city development, but their fire safety issues are always important in the world. At present, take China as an example, the fire ladders can reach the height of generally not more than 100 m, so in the event of a fire, high-rise building often suffered heavy losses. According to statistics, from 2004 to 2010, the high-rise building fire occurred about 100 thousand cases (daily average about 40 cases) in China, which caused the death of 4 181 people, 4 844 people were injured, the direct economic losses were amounting to 14 billion yuan[1]. In recent years, the casualties and property loss caused by the high-rise building fire is increasing, for example, the “11. 15” fire of Shanghai Jing’an district in 2010 is resulting in 58 deaths, 71 people were injured, 10 million yuan economic losses. And the Ryder commercial fire of Tianjin in 2012, 10 people were killed, 16 injured and so on. At present, the prevention and control of high-rise building fire has become a serious social problem.

    Therefore, if we can develop a new intelligent fire warning model, it will have very important and practical significance to improve the accuracy and reliability of the high-rise building fire warning system, and to minimize the fire accident loss. At present, concurrent studies of the fire pre-warning are mainly focus on the system hardware development both in domestic and foreign research institutions, however, due to the lack of sufficient data and the corresponding analog simulation tools, the pre-warning algorithm (which is the core for fire warning software) research progress is slow, thus causing the warning results inaccurate, and the warning system reliability poor.

    The early study on fire warning algorithm is direct method[2], after 1980s, professor H. Luck put forward the trend algorithm and filtering algorithm, by using the correlation of fire signal, to distinguish the difference between fire and non-fire signals for fire warning. R.Siebel proposed the composite trend algorithm according to the trend correlation of different fire sensor signal. And through the application of statistical characteristics of fire signal, J.Klose proposed the fire detection signal processing algorithm based on the fire signal short-time autocorrelation function or power spectral density[3-4].

    But the threshold algorithm and trend detection algorithm, can only process the single detector signal, if applied to the multi-parameter system, often make false alarms and omissions. With the emergence of intelligent algorithms for information processing, many scholars began to introduce the intelligent algorithm into the fire pre-warning process, to reduce the rate of missing alarm and false alarm. The most representative one is the artificial neural network(ANN), in 1994, Switzerland Cerberus launched the first Algorex fire alarm to market by using neural network prediction algorithm. And Y. Okayama developed ANN pre-warning algorithm for different fire signals, for example, the three layer neural network and back propagation algorithm[5-7].

    The domestic study on the fire pre-warning algorithm began relatively late, and obtained some research results. For example, Wang Shu put forward a specific compound trend algorithm[8], Zhang Jian brought about the fire pre-warning algorithm based on feed-forward neural networks[9]. Tang Qunfang developed the fire warning algorithm based on fuzzy logic and neural networks[10].

    To some extent, the above warning algorithms reduced the shortcomings of traditional warning algorithm, and improved the reliability of pre-warning system. But research shows that, in the case of small samples, the ANN usually can not be fully trained, so the warning effect is not ideal, and the ANN algorithm has the problems such as dimension disaster and over learning et al. In view of this, this study introduced support vector machine (SVM) algorithm into fire pre-warning, SVM is an intelligent non-parametric estimation algorithm for limited samples, and has superior performance in solving small sample, nonlinear and high dimensional pattern recognition problems[11-12]. But study found that the application of SVM in regression prediction and high-rise building fire pre-warning is less.

    Therefore, according to the characteristics of high-rise buildings, such as complex function, large fire load, the fire spread quickly, etc., and the characteristics (nonlinear, less historical data, many influence factors) of the high-rise building fire pre-warning system, to improve the accuracy of the high-rise building fire pre-warning, one key is to establish a reliable and intelligent pre-warning model. So in the study,a high-rise building fire pre-warning model set up based on the support vector regression(SVR), through the Matlab simulation, to provide a reliable decision support system for high-rise building fire pre-warning.

    1 Composite and intelligent fire pre-warning system establishment for high-rise building

    1.1 Composite fire pre-warning system design

    The purpose of fire pre-warning system is to discover the fire as soon as possible, not only just to detect a single smoke or temperature signal. Research shows that, the smoke signal and temperature signal are complementary good, their combination can overcome the shortcomings of smoke detector whose smoking-spectrum range is narrow, and also solves the disadvantages of temperature sensing detector with low sensitivity. Also compared with other fire signals (such as smoke, temperature, flame, gas etc.) in a compound form, the combination is of simple structure, signal intuitive, and low cost etc. So this study designs a composite fire alarm controller composed of the smoke detector and the temperature detector, the pre-warning system diagram is shown in Fig.1.

    Fig.1 Composite fire pre-warning system diagram for high-rise building

    1.2 SVR pre-warning model implementation

    The support vector machine(SVM) proposed by Cortes and Vapnik in 1995, is a new data mining technology, which can overcome the deficiency of traditional algorithms, for example, the dimension disaster, the over learning et al. At present, SVM has been widely used in various fields both abroad and home, the support vector regression(SVR) is an improved SVM[13-14]. The relationship between the fire signal and fire probability is very complex for high-rise building, it is difficult to use a specific model to describe. This paper is using the SVR pre-warning model to build the relationship between the fire signal and the fire / smoldering fire occurrence probability, that is, set the smoke signals, the smoke rising rate signals, the temperature signals and the temperature rising rate signals 4 factors as network inputs, the fire occurrence probability and the smoldering fire occurrence probability respectively as the network output, to establish a SVR pre-warning model with multiple inputs and single output for high-rise building fire pre-warning, as shown in Fig.2.

    Fig.2 SVR model for high-rise building fire pre-warning

    The modeling idea is to make the input signal value (x1,x2,…,xm) mapped to a high dimensional feature space (φ(x1),φ(x2),…,φ(xm)).Thenthenonlinearmodelistransformedintoalinearregressionmodel,whichisgivenbythefollowingequation:

    f(xj)=ωTφ(xj)+b

    (1)

    whereω,bis model parameter to be identified, deal with the parameter in Eq.(1), the result is:

    (2)

    whereRemp(f) is the empirical risk, ‖ω‖2is the trust risk,C(ei) is the loss function.

    According to the SVM principle, solving Eq.(2) is equivalent to solving the optimization problem of the following equatioin

    (3)

    Fortheconvenienceofproblemsolving,transformEq.(3)intothedualproblem,togetthenonlinearfunctionf(x):

    (4)

    (5)

    TakeEq.(5)intoEq.(4),weobtainthroughequivalenttransformation:

    (6)

    2 Example analysis

    InordertoverifythefeasibilityandeffectivenessoftheSVRpre-warningmodel,takethestandardfiredataofwoodburningasanexample[15],tomakeanempiricalanalysis.

    WiththeMatlab8.0,byusingtheSVMcgForRegress.mfunctiontofindtheoptimalparametersofcandg. In Tab.1, take the smoke signals value, the smoke rising rate signals value, the temperature signals value and the temperature rising rate signals value as SVR inputs, the fire occurrence probability value as a SVR output. The first seventeen samples data as the training samples for simulation, the parameter selection results of SVR for fire occurrence probability obtained in Fig.3, bestc=1,g=0.574 35, MSE=0.005 915 2(cis the penalty coefficient,gis the kernel function parameters,MSE is the error).

    Tab.1 The wood burning standardized data[15]

    Take the remaining five samples as the prediction sample, input the sample value into the trained SVR, the pre-warning results are shown in Fig.4.

    Similarly, take the first seventeen samples data as the training samples, after simulation, the parameter selection results of SVR for smoldering fire occurrence probability obtained in Fig.5, bestc=1,g=3.031 4, MSE=0.011 58.

    Input the remaining 5 samples value into the trained SVR, the pre-warning results of smoldering fire occurrence probability are shown in Fig.6.

    Fg.3 Parameter selection results of SVR for fire occurrence probability

    Fig.4 Comparison chart of fire occurrence probability

    Fg.5 Parameter selection results of SVR for smoldering fire

    Fig.6 Comparison chart of smoldering fire occurrence probability

    From the warning results of Fg.4 and Fg.6, it can be observed, for the prediction of fire occurrence probability, the pre-warning value of all the five samples is consistent with the real value. For the prediction of smoldering fire occurrence probability, in addition to that the first sample is slightly biased, the pre-warning values of the remaining four samples are in accordance with the real values, but the pre-warning model established in this study is a probability pre-warning for the actual situation of high-rise building fire, namely it is the interval judgment, so slight deviation does not affect the final decision results. That means for the first samples, the slight error does not affect the final fire decision (the smoldering fire won’t happen). The study results show that, using SVR for the high-rise building fire pre-warning, compared to other intelligent algorithms, can significantly improve the accuracy of pre-warning, ultimately to improve the reliability of the whole warning system.

    3 Conclusion

    This study designs a composite fire pre-warning controller. By applying the support vector regression (SVR), an intelligent fire pre-warning model is established for high-rise buildings, The proposed controller overcomes the shortcomings of the traditional prediction algorithm and the existing intelligent algorithm such as artificial neural network, and improves the pre-warning accuracy. By using the wood fire standard history data as the example an empirical analysis is performed, the feasibility and effectiveness of the proposed pre-warning model are verified. At the same time, the study found, relative to other intelligent optimization algorithms, SVR has an obvious superiority in solving the small sample, nonlinear and high-dimensional pattern recognition problems, so in the future, the research results can also be applied in energy demand, gas prediction, landslide, and other related fields, to provide a reliable decision support system for decision makers.

    [1] Cao Gongli. Assessment for the fire risk of high-rise building based on FAHP-FCE model[D]. Hangzhou: Zhejiang University, 2013:2-3. (in Chinese)

    [2] Li Jian. Study on fire signal processing algorithms and performance evaluation methods of algorithms[D]. Dalian: Dalian University of Technology, 2005. (in Chinese)

    [3] Grosshandler W. Toward the development of a universal fire emulator /detector evaluator[J]. Fire Safety Journal, 2007(29):113-128.

    [4] Klose J. Synthesis and simulation of signals as a tool for the test of automatic fire detection systems[J]. Fire Safety Journal, 1991(17):499-518.

    [5] Cestari L A, Worrell C, Milke J A. Advanced fire detection algorithnm using data from the home smoke detector project[J]. Fire Safety Journal, 2005(40):1-28.

    [6] Okayama Y.A primitive study of a fire detection method controlled by artificial neural net[J]. Applied Science and Technology, 2011(8):40-45.

    [7] Faouzi Derber. Reliable wireless communication for fire detection system in commercial and residential areas[J]. IEEE, 2007(1):654-656.

    [8] Wang Shu, Dou Zheng. Fire detection and signal processing[M]. Wuhan: Huazhong University of Science and Technology Press, 2006. (in Chinese)

    [9] Zhang Jian. Research on the fire detection system based on neural network algorithm[J]. Journal of Technology and Application of Digital, 2013(10):130-132.(in Chinese)

    [10] Tang Qunfang. Study on fire data processing method based on fuzzy neural network[D]. Changsha: Hunan University, 2010. (in Chinese)

    [11] Cristianini Taylor J. An introduction to support vector machine[M]. Li Guozheng, Wang Meng, Zeng Huajun, transl. Beijing: Electronics Industry Press, 2004.

    [12] Ding Shifei, Qi Bingjuan, Tan Hongyan.An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology, 2011(40):2-7. (in Chinese)

    [13] Xue Yuan, Wu Jianguo. Prediction of output of hoop standard granulator based on SVR[J]. The Industrial Control Computer Journal, 2013(26):56-58. (in Chinese)

    [14] Zhai Yongjie, Shang Xuelian. Simulation research on SVR in sensor fault diagnosis[J]. Journal of System Simulation, 2004(16):1257-1259. (in Chinese)

    [15] Hu Zhaojie. Fire detection information processing based on BP neural network and data theory fusion[D]. Tianjing:Tianjin University of Technology, 2013. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0301

    TU 12 Document code: A Article ID: 1004- 0579(2015)03- 0285- 06

    Received 2014- 02- 01

    Supported by the National Natural Science Foundation of China (11072035)

    E-mail: zlining666@163.com

    中国美女看黄片| 久久久久九九精品影院| 国产精品,欧美在线| 深夜a级毛片| 国产成人一区二区在线| 极品教师在线视频| 免费人成视频x8x8入口观看| 男女下面进入的视频免费午夜| 国产69精品久久久久777片| 又粗又爽又猛毛片免费看| 成人性生交大片免费视频hd| 全区人妻精品视频| 国产成年人精品一区二区| 啦啦啦啦在线视频资源| 亚洲国产精品合色在线| 深夜a级毛片| 午夜精品国产一区二区电影 | 老司机影院成人| 一进一出抽搐gif免费好疼| 午夜爱爱视频在线播放| 精品人妻偷拍中文字幕| 可以在线观看的亚洲视频| 国内少妇人妻偷人精品xxx网站| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看| 麻豆乱淫一区二区| 人人妻人人澡欧美一区二区| 干丝袜人妻中文字幕| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 国产白丝娇喘喷水9色精品| 欧美激情在线99| 波野结衣二区三区在线| 午夜免费激情av| 两个人的视频大全免费| 亚洲人与动物交配视频| 自拍偷自拍亚洲精品老妇| 成熟少妇高潮喷水视频| 久久精品久久久久久噜噜老黄 | 日韩欧美精品免费久久| 国产精品久久久久久av不卡| 在线免费十八禁| 一卡2卡三卡四卡精品乱码亚洲| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 变态另类丝袜制服| 免费av观看视频| 一个人免费在线观看电影| 亚洲欧美日韩东京热| 亚洲高清免费不卡视频| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 村上凉子中文字幕在线| 欧美另类亚洲清纯唯美| 久久久成人免费电影| 欧美一级a爱片免费观看看| 一级毛片电影观看 | 秋霞在线观看毛片| 国产一区二区三区av在线 | 晚上一个人看的免费电影| 亚洲欧美精品综合久久99| 国内精品久久久久精免费| 日韩,欧美,国产一区二区三区 | 九九久久精品国产亚洲av麻豆| av在线蜜桃| 亚洲欧美精品专区久久| 国产精品一区二区三区四区久久| 99久国产av精品国产电影| 99久国产av精品| 国产在线男女| 亚洲精品久久久久久婷婷小说 | 99九九线精品视频在线观看视频| 久99久视频精品免费| 国产乱人偷精品视频| 国产激情偷乱视频一区二区| 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看| 插阴视频在线观看视频| 国产av一区在线观看免费| 久久鲁丝午夜福利片| 国产精品美女特级片免费视频播放器| 国产av一区在线观看免费| 人人妻人人澡人人爽人人夜夜 | 久久久久国产网址| 免费观看a级毛片全部| 欧美性猛交╳xxx乱大交人| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看 | 99热这里只有是精品50| 亚洲人成网站在线播放欧美日韩| 久久精品国产清高在天天线| 日韩亚洲欧美综合| 国产在线男女| 国产精品无大码| av在线天堂中文字幕| 韩国av在线不卡| 午夜免费男女啪啪视频观看| 中文欧美无线码| 成人漫画全彩无遮挡| 久久人人爽人人片av| 赤兔流量卡办理| 中文字幕av成人在线电影| 精品久久久久久久久av| 欧美色欧美亚洲另类二区| 99久久精品一区二区三区| 中文字幕av成人在线电影| 国产一区二区激情短视频| 亚洲国产精品成人久久小说 | 我要看日韩黄色一级片| 99热6这里只有精品| 99久久精品一区二区三区| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 国产精品美女特级片免费视频播放器| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 国产精品综合久久久久久久免费| 一级二级三级毛片免费看| 国产精品一二三区在线看| av在线亚洲专区| 天天一区二区日本电影三级| 人妻系列 视频| 国产亚洲91精品色在线| 精品一区二区免费观看| 午夜福利在线观看免费完整高清在 | 在线播放国产精品三级| 我要看日韩黄色一级片| www日本黄色视频网| 18禁黄网站禁片免费观看直播| 亚洲真实伦在线观看| 国产精品.久久久| 熟女人妻精品中文字幕| 国产成人a∨麻豆精品| 中文字幕熟女人妻在线| 自拍偷自拍亚洲精品老妇| a级一级毛片免费在线观看| 国产91av在线免费观看| 国产成人aa在线观看| 最近的中文字幕免费完整| 男插女下体视频免费在线播放| 亚洲精品日韩av片在线观看| 久久久a久久爽久久v久久| 久久6这里有精品| 国国产精品蜜臀av免费| 九色成人免费人妻av| 国产国拍精品亚洲av在线观看| 亚洲av男天堂| 男女做爰动态图高潮gif福利片| 男女啪啪激烈高潮av片| 国产精品无大码| eeuss影院久久| 国产一级毛片七仙女欲春2| 两性午夜刺激爽爽歪歪视频在线观看| 国产在视频线在精品| 中文字幕人妻熟人妻熟丝袜美| 成人亚洲精品av一区二区| 欧洲精品卡2卡3卡4卡5卡区| 成人午夜高清在线视频| 成人特级av手机在线观看| 国产亚洲5aaaaa淫片| 边亲边吃奶的免费视频| ponron亚洲| 国产精品不卡视频一区二区| 久久久久久久亚洲中文字幕| 非洲黑人性xxxx精品又粗又长| 一本久久精品| 好男人视频免费观看在线| 国国产精品蜜臀av免费| 亚洲av免费在线观看| 国产三级在线视频| 神马国产精品三级电影在线观看| 黄色配什么色好看| 丝袜喷水一区| 91精品国产九色| 一进一出抽搐gif免费好疼| 赤兔流量卡办理| 老师上课跳d突然被开到最大视频| 亚洲成人久久爱视频| 能在线免费看毛片的网站| 色哟哟·www| 九九久久精品国产亚洲av麻豆| avwww免费| 色综合亚洲欧美另类图片| 国产成人精品婷婷| 中文字幕熟女人妻在线| 能在线免费看毛片的网站| 秋霞在线观看毛片| 欧洲精品卡2卡3卡4卡5卡区| 99久久成人亚洲精品观看| 极品教师在线视频| 男女视频在线观看网站免费| 天美传媒精品一区二区| 综合色丁香网| a级毛色黄片| 99热精品在线国产| 欧美日韩一区二区视频在线观看视频在线 | 日本色播在线视频| 免费av毛片视频| 观看美女的网站| 亚洲国产色片| 亚洲欧美日韩高清在线视频| 在线a可以看的网站| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 青春草国产在线视频 | 午夜福利在线在线| 97在线视频观看| 国产中年淑女户外野战色| 亚洲av中文字字幕乱码综合| 我的老师免费观看完整版| 亚洲国产欧洲综合997久久,| 能在线免费观看的黄片| 精品久久久久久久人妻蜜臀av| 国产亚洲5aaaaa淫片| 18禁在线播放成人免费| 热99re8久久精品国产| 精品99又大又爽又粗少妇毛片| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 成人漫画全彩无遮挡| 97热精品久久久久久| 又爽又黄a免费视频| 全区人妻精品视频| 99久久中文字幕三级久久日本| 日韩欧美精品免费久久| 尤物成人国产欧美一区二区三区| 在线观看66精品国产| 国产精品久久久久久精品电影| 高清毛片免费观看视频网站| 一本精品99久久精品77| 波野结衣二区三区在线| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 又黄又爽又刺激的免费视频.| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| av在线老鸭窝| 久久亚洲精品不卡| 蜜桃亚洲精品一区二区三区| 免费看a级黄色片| 国产精品嫩草影院av在线观看| 九草在线视频观看| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 亚洲欧洲国产日韩| 女人被狂操c到高潮| 12—13女人毛片做爰片一| av在线播放精品| 日韩一区二区视频免费看| 久久久成人免费电影| 亚洲一区高清亚洲精品| 边亲边吃奶的免费视频| 久久国内精品自在自线图片| 国产精品一区二区在线观看99 | 欧美一区二区精品小视频在线| 一级毛片久久久久久久久女| 少妇人妻精品综合一区二区 | 黄色日韩在线| 91av网一区二区| 国产成人影院久久av| 老女人水多毛片| 在线国产一区二区在线| 午夜福利在线在线| 成年女人永久免费观看视频| 免费观看的影片在线观看| 国产91av在线免费观看| 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| 亚洲精品久久久久久婷婷小说 | 成人一区二区视频在线观看| 三级经典国产精品| 久久精品国产自在天天线| 好男人视频免费观看在线| 国产大屁股一区二区在线视频| 国产午夜福利久久久久久| 九九热线精品视视频播放| 久久精品久久久久久久性| 大香蕉久久网| av免费在线看不卡| 一本一本综合久久| 国产精品人妻久久久久久| 亚洲精品成人久久久久久| 在线观看午夜福利视频| 国产高清三级在线| 亚洲成人久久性| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| av福利片在线观看| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添av毛片| 亚洲无线在线观看| 精品国内亚洲2022精品成人| 深夜精品福利| av黄色大香蕉| 婷婷六月久久综合丁香| 成熟少妇高潮喷水视频| 久久国产乱子免费精品| 成人欧美大片| 国产精品一区二区三区四区久久| 中文字幕人妻熟人妻熟丝袜美| 国产不卡一卡二| 久久精品久久久久久久性| 日本免费一区二区三区高清不卡| 国产淫片久久久久久久久| 国产精品一区二区在线观看99 | 亚洲人成网站在线播| 中文亚洲av片在线观看爽| 又粗又硬又长又爽又黄的视频 | 亚洲久久久久久中文字幕| 高清午夜精品一区二区三区 | 午夜精品一区二区三区免费看| 又粗又爽又猛毛片免费看| 99国产精品一区二区蜜桃av| 久久久a久久爽久久v久久| 国产av在哪里看| 国产成人影院久久av| 国产精品乱码一区二三区的特点| 一区福利在线观看| 成人av在线播放网站| 国内精品一区二区在线观看| 九色成人免费人妻av| 99热这里只有精品一区| 国产熟女欧美一区二区| 国产一区二区激情短视频| 久久久国产成人免费| 国产色爽女视频免费观看| 边亲边吃奶的免费视频| 我要看日韩黄色一级片| 国产精品永久免费网站| 亚洲精品亚洲一区二区| 亚洲七黄色美女视频| 日韩视频在线欧美| 自拍偷自拍亚洲精品老妇| 日韩高清综合在线| 亚洲成av人片在线播放无| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说 | 亚洲av第一区精品v没综合| 观看免费一级毛片| 26uuu在线亚洲综合色| 国产亚洲欧美98| 日韩一本色道免费dvd| 老司机影院成人| 国产成人精品久久久久久| 99久久精品国产国产毛片| 一级黄色大片毛片| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 亚洲av免费在线观看| 国产老妇伦熟女老妇高清| 3wmmmm亚洲av在线观看| 99久国产av精品国产电影| 搞女人的毛片| 99热只有精品国产| 一本一本综合久久| av天堂中文字幕网| 久久久久久大精品| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 有码 亚洲区| 中文字幕免费在线视频6| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 午夜久久久久精精品| 一进一出抽搐gif免费好疼| 麻豆国产97在线/欧美| 麻豆av噜噜一区二区三区| 国产伦在线观看视频一区| 成人三级黄色视频| 在现免费观看毛片| 尾随美女入室| 亚洲一级一片aⅴ在线观看| 午夜激情欧美在线| 女同久久另类99精品国产91| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩高清在线视频| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 国语自产精品视频在线第100页| 综合色av麻豆| 丝袜喷水一区| av国产免费在线观看| 可以在线观看的亚洲视频| 在线观看66精品国产| 国产精品女同一区二区软件| 级片在线观看| 免费电影在线观看免费观看| 亚洲欧美日韩高清在线视频| 床上黄色一级片| 国产欧美日韩精品一区二区| 淫秽高清视频在线观看| 欧美激情国产日韩精品一区| 免费搜索国产男女视频| 女同久久另类99精品国产91| 99在线视频只有这里精品首页| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 国产高清激情床上av| 高清在线视频一区二区三区 | 丰满的人妻完整版| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av| 十八禁国产超污无遮挡网站| 国产一区二区激情短视频| 国产成人午夜福利电影在线观看| 一夜夜www| 伦理电影大哥的女人| 国产精品久久久久久av不卡| 永久网站在线| 亚洲人与动物交配视频| 精品人妻视频免费看| 晚上一个人看的免费电影| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 亚洲精品色激情综合| 黄色欧美视频在线观看| 久久久精品欧美日韩精品| 两性午夜刺激爽爽歪歪视频在线观看| 六月丁香七月| 中文亚洲av片在线观看爽| 99在线视频只有这里精品首页| 亚洲av不卡在线观看| 精品人妻视频免费看| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| 成人美女网站在线观看视频| 九九久久精品国产亚洲av麻豆| 国产又黄又爽又无遮挡在线| 国国产精品蜜臀av免费| 国产成人freesex在线| 亚洲av熟女| 婷婷精品国产亚洲av| 99久久精品国产国产毛片| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| 亚洲精品成人久久久久久| 国产乱人偷精品视频| 亚洲国产欧洲综合997久久,| 欧美日本视频| 69av精品久久久久久| 熟女电影av网| 三级毛片av免费| 亚洲乱码一区二区免费版| 如何舔出高潮| 日韩欧美三级三区| 久久久久久久久中文| 亚洲最大成人av| 看黄色毛片网站| 在线观看美女被高潮喷水网站| 国产毛片a区久久久久| 亚洲精品国产av成人精品| 精品一区二区三区人妻视频| 国产69精品久久久久777片| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 综合色av麻豆| 国产白丝娇喘喷水9色精品| 午夜免费激情av| 亚洲成人久久性| 欧美丝袜亚洲另类| av天堂在线播放| 校园春色视频在线观看| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 日本av手机在线免费观看| 婷婷精品国产亚洲av| 麻豆国产av国片精品| 欧美又色又爽又黄视频| 亚洲美女搞黄在线观看| av又黄又爽大尺度在线免费看 | 色综合色国产| 老司机影院成人| 2021天堂中文幕一二区在线观| 亚洲不卡免费看| 99在线人妻在线中文字幕| 91精品一卡2卡3卡4卡| а√天堂www在线а√下载| 全区人妻精品视频| 日本撒尿小便嘘嘘汇集6| 精品国产三级普通话版| 亚洲丝袜综合中文字幕| 成人午夜高清在线视频| 国产精品一区二区性色av| 人妻系列 视频| 亚洲美女视频黄频| av专区在线播放| 免费看美女性在线毛片视频| 国产亚洲精品久久久久久毛片| 少妇人妻精品综合一区二区 | 国产亚洲欧美98| www.色视频.com| 中文字幕久久专区| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 国产美女午夜福利| 精品国产三级普通话版| 国产激情偷乱视频一区二区| 最近中文字幕高清免费大全6| av.在线天堂| 久久99热6这里只有精品| 国产蜜桃级精品一区二区三区| 免费观看精品视频网站| 91在线精品国自产拍蜜月| 天堂中文最新版在线下载 | 国产爱豆传媒在线观看| 人妻久久中文字幕网| 国产精品一区二区三区四区久久| 久久精品国产亚洲av涩爱 | 国产精品久久久久久亚洲av鲁大| 国产91av在线免费观看| 亚洲国产欧美人成| 久久久久国产网址| 国产真实乱freesex| 精品久久久久久久久亚洲| 国产高清三级在线| 一个人免费在线观看电影| 精品熟女少妇av免费看| 久久精品国产99精品国产亚洲性色| 97超视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 久久久久九九精品影院| 亚洲欧美精品专区久久| 国产成人精品一,二区 | 国产熟女欧美一区二区| 久久精品久久久久久久性| 久久中文看片网| 欧美高清成人免费视频www| 一个人观看的视频www高清免费观看| 成人毛片60女人毛片免费| 成人二区视频| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 国产美女午夜福利| 日韩欧美一区二区三区在线观看| 国产精品不卡视频一区二区| 最近手机中文字幕大全| 国产精品福利在线免费观看| 99热这里只有是精品50| 岛国在线免费视频观看| 国产女主播在线喷水免费视频网站 | 青青草视频在线视频观看| 美女脱内裤让男人舔精品视频 | 午夜福利高清视频| 日本在线视频免费播放| 欧美性猛交╳xxx乱大交人| 你懂的网址亚洲精品在线观看 | 特级一级黄色大片| 麻豆国产av国片精品| 在线观看一区二区三区| 亚洲人成网站在线观看播放| 日韩高清综合在线| 亚洲欧美日韩无卡精品| 欧美最黄视频在线播放免费| 欧美成人a在线观看| 2022亚洲国产成人精品| 精品久久久久久久久久久久久| 国产精品精品国产色婷婷| 精品熟女少妇av免费看| 女的被弄到高潮叫床怎么办| 欧美一区二区国产精品久久精品| 日本成人三级电影网站| 日本撒尿小便嘘嘘汇集6| 深夜精品福利| 国产精品一区二区三区四区免费观看| 国产麻豆成人av免费视频| 久久这里只有精品中国| 国产成人午夜福利电影在线观看| 男插女下体视频免费在线播放| 91av网一区二区| 啦啦啦观看免费观看视频高清| 99久久无色码亚洲精品果冻| av天堂在线播放| 国产成人a区在线观看| 国产黄色小视频在线观看| 男的添女的下面高潮视频| 在线播放国产精品三级| 中国国产av一级| 国内精品美女久久久久久| 内地一区二区视频在线| av在线天堂中文字幕| 色哟哟哟哟哟哟| 国产久久久一区二区三区| 嫩草影院精品99| 身体一侧抽搐| 欧美成人精品欧美一级黄| 久久久精品94久久精品| 在线观看免费视频日本深夜| 中出人妻视频一区二区| 精品久久国产蜜桃| 国产熟女欧美一区二区| 女的被弄到高潮叫床怎么办| a级毛片a级免费在线| 九九在线视频观看精品| 男人狂女人下面高潮的视频| 亚洲欧洲日产国产| 高清午夜精品一区二区三区 | 欧美精品国产亚洲| 亚洲经典国产精华液单| 成人鲁丝片一二三区免费| 色哟哟·www| 全区人妻精品视频| 中文字幕免费在线视频6| 成人漫画全彩无遮挡| 国产高潮美女av| 色尼玛亚洲综合影院| 日韩成人av中文字幕在线观看| 日韩av不卡免费在线播放|