• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-rise building fire pre-warning model based on the support vector regression

    2015-04-22 07:24:52ZHANGLining張立寧ZHANGQi張奇ANJing安晶

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇), AN Jing(安晶)

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    ?

    High-rise building fire pre-warning model based on the support vector regression

    ZHANG Li-ning(張立寧), ZHANG Qi(張奇)1, AN Jing(安晶)2

    (1.State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;2.Architecture Engineering College, North China Institute of Science and Technology, Beijing 101601, China)

    Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network, and then to improve the accuracy of fire pre-warning for high-rise buildings, a composite fire pre-warning controller is designed according to the characteristic (nonlinear, less historical data, many influence factors), also a high-rise building fire pre-warning model is set up based on the support vector regression(SVR).Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning.

    high-rise buildings fire; composite fire pre-warning system design; the support vector regression pre-warning model

    High-rise buildings are the inevitable products of the city development, but their fire safety issues are always important in the world. At present, take China as an example, the fire ladders can reach the height of generally not more than 100 m, so in the event of a fire, high-rise building often suffered heavy losses. According to statistics, from 2004 to 2010, the high-rise building fire occurred about 100 thousand cases (daily average about 40 cases) in China, which caused the death of 4 181 people, 4 844 people were injured, the direct economic losses were amounting to 14 billion yuan[1]. In recent years, the casualties and property loss caused by the high-rise building fire is increasing, for example, the “11. 15” fire of Shanghai Jing’an district in 2010 is resulting in 58 deaths, 71 people were injured, 10 million yuan economic losses. And the Ryder commercial fire of Tianjin in 2012, 10 people were killed, 16 injured and so on. At present, the prevention and control of high-rise building fire has become a serious social problem.

    Therefore, if we can develop a new intelligent fire warning model, it will have very important and practical significance to improve the accuracy and reliability of the high-rise building fire warning system, and to minimize the fire accident loss. At present, concurrent studies of the fire pre-warning are mainly focus on the system hardware development both in domestic and foreign research institutions, however, due to the lack of sufficient data and the corresponding analog simulation tools, the pre-warning algorithm (which is the core for fire warning software) research progress is slow, thus causing the warning results inaccurate, and the warning system reliability poor.

    The early study on fire warning algorithm is direct method[2], after 1980s, professor H. Luck put forward the trend algorithm and filtering algorithm, by using the correlation of fire signal, to distinguish the difference between fire and non-fire signals for fire warning. R.Siebel proposed the composite trend algorithm according to the trend correlation of different fire sensor signal. And through the application of statistical characteristics of fire signal, J.Klose proposed the fire detection signal processing algorithm based on the fire signal short-time autocorrelation function or power spectral density[3-4].

    But the threshold algorithm and trend detection algorithm, can only process the single detector signal, if applied to the multi-parameter system, often make false alarms and omissions. With the emergence of intelligent algorithms for information processing, many scholars began to introduce the intelligent algorithm into the fire pre-warning process, to reduce the rate of missing alarm and false alarm. The most representative one is the artificial neural network(ANN), in 1994, Switzerland Cerberus launched the first Algorex fire alarm to market by using neural network prediction algorithm. And Y. Okayama developed ANN pre-warning algorithm for different fire signals, for example, the three layer neural network and back propagation algorithm[5-7].

    The domestic study on the fire pre-warning algorithm began relatively late, and obtained some research results. For example, Wang Shu put forward a specific compound trend algorithm[8], Zhang Jian brought about the fire pre-warning algorithm based on feed-forward neural networks[9]. Tang Qunfang developed the fire warning algorithm based on fuzzy logic and neural networks[10].

    To some extent, the above warning algorithms reduced the shortcomings of traditional warning algorithm, and improved the reliability of pre-warning system. But research shows that, in the case of small samples, the ANN usually can not be fully trained, so the warning effect is not ideal, and the ANN algorithm has the problems such as dimension disaster and over learning et al. In view of this, this study introduced support vector machine (SVM) algorithm into fire pre-warning, SVM is an intelligent non-parametric estimation algorithm for limited samples, and has superior performance in solving small sample, nonlinear and high dimensional pattern recognition problems[11-12]. But study found that the application of SVM in regression prediction and high-rise building fire pre-warning is less.

    Therefore, according to the characteristics of high-rise buildings, such as complex function, large fire load, the fire spread quickly, etc., and the characteristics (nonlinear, less historical data, many influence factors) of the high-rise building fire pre-warning system, to improve the accuracy of the high-rise building fire pre-warning, one key is to establish a reliable and intelligent pre-warning model. So in the study,a high-rise building fire pre-warning model set up based on the support vector regression(SVR), through the Matlab simulation, to provide a reliable decision support system for high-rise building fire pre-warning.

    1 Composite and intelligent fire pre-warning system establishment for high-rise building

    1.1 Composite fire pre-warning system design

    The purpose of fire pre-warning system is to discover the fire as soon as possible, not only just to detect a single smoke or temperature signal. Research shows that, the smoke signal and temperature signal are complementary good, their combination can overcome the shortcomings of smoke detector whose smoking-spectrum range is narrow, and also solves the disadvantages of temperature sensing detector with low sensitivity. Also compared with other fire signals (such as smoke, temperature, flame, gas etc.) in a compound form, the combination is of simple structure, signal intuitive, and low cost etc. So this study designs a composite fire alarm controller composed of the smoke detector and the temperature detector, the pre-warning system diagram is shown in Fig.1.

    Fig.1 Composite fire pre-warning system diagram for high-rise building

    1.2 SVR pre-warning model implementation

    The support vector machine(SVM) proposed by Cortes and Vapnik in 1995, is a new data mining technology, which can overcome the deficiency of traditional algorithms, for example, the dimension disaster, the over learning et al. At present, SVM has been widely used in various fields both abroad and home, the support vector regression(SVR) is an improved SVM[13-14]. The relationship between the fire signal and fire probability is very complex for high-rise building, it is difficult to use a specific model to describe. This paper is using the SVR pre-warning model to build the relationship between the fire signal and the fire / smoldering fire occurrence probability, that is, set the smoke signals, the smoke rising rate signals, the temperature signals and the temperature rising rate signals 4 factors as network inputs, the fire occurrence probability and the smoldering fire occurrence probability respectively as the network output, to establish a SVR pre-warning model with multiple inputs and single output for high-rise building fire pre-warning, as shown in Fig.2.

    Fig.2 SVR model for high-rise building fire pre-warning

    The modeling idea is to make the input signal value (x1,x2,…,xm) mapped to a high dimensional feature space (φ(x1),φ(x2),…,φ(xm)).Thenthenonlinearmodelistransformedintoalinearregressionmodel,whichisgivenbythefollowingequation:

    f(xj)=ωTφ(xj)+b

    (1)

    whereω,bis model parameter to be identified, deal with the parameter in Eq.(1), the result is:

    (2)

    whereRemp(f) is the empirical risk, ‖ω‖2is the trust risk,C(ei) is the loss function.

    According to the SVM principle, solving Eq.(2) is equivalent to solving the optimization problem of the following equatioin

    (3)

    Fortheconvenienceofproblemsolving,transformEq.(3)intothedualproblem,togetthenonlinearfunctionf(x):

    (4)

    (5)

    TakeEq.(5)intoEq.(4),weobtainthroughequivalenttransformation:

    (6)

    2 Example analysis

    InordertoverifythefeasibilityandeffectivenessoftheSVRpre-warningmodel,takethestandardfiredataofwoodburningasanexample[15],tomakeanempiricalanalysis.

    WiththeMatlab8.0,byusingtheSVMcgForRegress.mfunctiontofindtheoptimalparametersofcandg. In Tab.1, take the smoke signals value, the smoke rising rate signals value, the temperature signals value and the temperature rising rate signals value as SVR inputs, the fire occurrence probability value as a SVR output. The first seventeen samples data as the training samples for simulation, the parameter selection results of SVR for fire occurrence probability obtained in Fig.3, bestc=1,g=0.574 35, MSE=0.005 915 2(cis the penalty coefficient,gis the kernel function parameters,MSE is the error).

    Tab.1 The wood burning standardized data[15]

    Take the remaining five samples as the prediction sample, input the sample value into the trained SVR, the pre-warning results are shown in Fig.4.

    Similarly, take the first seventeen samples data as the training samples, after simulation, the parameter selection results of SVR for smoldering fire occurrence probability obtained in Fig.5, bestc=1,g=3.031 4, MSE=0.011 58.

    Input the remaining 5 samples value into the trained SVR, the pre-warning results of smoldering fire occurrence probability are shown in Fig.6.

    Fg.3 Parameter selection results of SVR for fire occurrence probability

    Fig.4 Comparison chart of fire occurrence probability

    Fg.5 Parameter selection results of SVR for smoldering fire

    Fig.6 Comparison chart of smoldering fire occurrence probability

    From the warning results of Fg.4 and Fg.6, it can be observed, for the prediction of fire occurrence probability, the pre-warning value of all the five samples is consistent with the real value. For the prediction of smoldering fire occurrence probability, in addition to that the first sample is slightly biased, the pre-warning values of the remaining four samples are in accordance with the real values, but the pre-warning model established in this study is a probability pre-warning for the actual situation of high-rise building fire, namely it is the interval judgment, so slight deviation does not affect the final decision results. That means for the first samples, the slight error does not affect the final fire decision (the smoldering fire won’t happen). The study results show that, using SVR for the high-rise building fire pre-warning, compared to other intelligent algorithms, can significantly improve the accuracy of pre-warning, ultimately to improve the reliability of the whole warning system.

    3 Conclusion

    This study designs a composite fire pre-warning controller. By applying the support vector regression (SVR), an intelligent fire pre-warning model is established for high-rise buildings, The proposed controller overcomes the shortcomings of the traditional prediction algorithm and the existing intelligent algorithm such as artificial neural network, and improves the pre-warning accuracy. By using the wood fire standard history data as the example an empirical analysis is performed, the feasibility and effectiveness of the proposed pre-warning model are verified. At the same time, the study found, relative to other intelligent optimization algorithms, SVR has an obvious superiority in solving the small sample, nonlinear and high-dimensional pattern recognition problems, so in the future, the research results can also be applied in energy demand, gas prediction, landslide, and other related fields, to provide a reliable decision support system for decision makers.

    [1] Cao Gongli. Assessment for the fire risk of high-rise building based on FAHP-FCE model[D]. Hangzhou: Zhejiang University, 2013:2-3. (in Chinese)

    [2] Li Jian. Study on fire signal processing algorithms and performance evaluation methods of algorithms[D]. Dalian: Dalian University of Technology, 2005. (in Chinese)

    [3] Grosshandler W. Toward the development of a universal fire emulator /detector evaluator[J]. Fire Safety Journal, 2007(29):113-128.

    [4] Klose J. Synthesis and simulation of signals as a tool for the test of automatic fire detection systems[J]. Fire Safety Journal, 1991(17):499-518.

    [5] Cestari L A, Worrell C, Milke J A. Advanced fire detection algorithnm using data from the home smoke detector project[J]. Fire Safety Journal, 2005(40):1-28.

    [6] Okayama Y.A primitive study of a fire detection method controlled by artificial neural net[J]. Applied Science and Technology, 2011(8):40-45.

    [7] Faouzi Derber. Reliable wireless communication for fire detection system in commercial and residential areas[J]. IEEE, 2007(1):654-656.

    [8] Wang Shu, Dou Zheng. Fire detection and signal processing[M]. Wuhan: Huazhong University of Science and Technology Press, 2006. (in Chinese)

    [9] Zhang Jian. Research on the fire detection system based on neural network algorithm[J]. Journal of Technology and Application of Digital, 2013(10):130-132.(in Chinese)

    [10] Tang Qunfang. Study on fire data processing method based on fuzzy neural network[D]. Changsha: Hunan University, 2010. (in Chinese)

    [11] Cristianini Taylor J. An introduction to support vector machine[M]. Li Guozheng, Wang Meng, Zeng Huajun, transl. Beijing: Electronics Industry Press, 2004.

    [12] Ding Shifei, Qi Bingjuan, Tan Hongyan.An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology, 2011(40):2-7. (in Chinese)

    [13] Xue Yuan, Wu Jianguo. Prediction of output of hoop standard granulator based on SVR[J]. The Industrial Control Computer Journal, 2013(26):56-58. (in Chinese)

    [14] Zhai Yongjie, Shang Xuelian. Simulation research on SVR in sensor fault diagnosis[J]. Journal of System Simulation, 2004(16):1257-1259. (in Chinese)

    [15] Hu Zhaojie. Fire detection information processing based on BP neural network and data theory fusion[D]. Tianjing:Tianjin University of Technology, 2013. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0301

    TU 12 Document code: A Article ID: 1004- 0579(2015)03- 0285- 06

    Received 2014- 02- 01

    Supported by the National Natural Science Foundation of China (11072035)

    E-mail: zlining666@163.com

    看非洲黑人一级黄片| 国产亚洲精品第一综合不卡| 日韩大码丰满熟妇| 亚洲人成电影观看| 交换朋友夫妻互换小说| 亚洲色图 男人天堂 中文字幕| 国产国语露脸激情在线看| 亚洲国产av影院在线观看| 一级片'在线观看视频| 天堂8中文在线网| 毛片一级片免费看久久久久| 一本久久精品| 国语对白做爰xxxⅹ性视频网站| 午夜免费鲁丝| 电影成人av| 男女边摸边吃奶| 亚洲欧美一区二区三区黑人| 欧美日韩一区二区视频在线观看视频在线| 欧美激情高清一区二区三区 | 免费在线观看黄色视频的| av片东京热男人的天堂| 日本wwww免费看| 中文字幕色久视频| 久久久久视频综合| √禁漫天堂资源中文www| 搡老乐熟女国产| 少妇猛男粗大的猛烈进出视频| 91老司机精品| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 一区二区av电影网| videos熟女内射| 久久久久人妻精品一区果冻| 交换朋友夫妻互换小说| 亚洲av中文av极速乱| 亚洲视频免费观看视频| 久久久久久人人人人人| 色视频在线一区二区三区| 在线观看免费高清a一片| 国产一区二区激情短视频 | 精品一区二区免费观看| 亚洲av中文av极速乱| 午夜福利免费观看在线| 99精国产麻豆久久婷婷| 性高湖久久久久久久久免费观看| 国产日韩欧美亚洲二区| 国产在线视频一区二区| 国产精品 国内视频| 日本91视频免费播放| 美女视频免费永久观看网站| 18禁动态无遮挡网站| 亚洲情色 制服丝袜| av国产精品久久久久影院| 永久免费av网站大全| 亚洲av国产av综合av卡| 伊人亚洲综合成人网| 哪个播放器可以免费观看大片| 少妇的丰满在线观看| 国产精品欧美亚洲77777| av网站在线播放免费| 欧美中文综合在线视频| 国产人伦9x9x在线观看| 人人澡人人妻人| 国产成人a∨麻豆精品| 丝袜美足系列| 国产成人免费无遮挡视频| 日韩精品有码人妻一区| 亚洲精品乱久久久久久| av在线观看视频网站免费| 99精品久久久久人妻精品| 日本av免费视频播放| 99热国产这里只有精品6| 免费久久久久久久精品成人欧美视频| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区av网在线观看 | 国产精品无大码| 99精品久久久久人妻精品| 桃花免费在线播放| 日日撸夜夜添| 丰满乱子伦码专区| 毛片一级片免费看久久久久| 精品少妇内射三级| 性色av一级| 国产亚洲一区二区精品| 亚洲精品一区蜜桃| 欧美激情极品国产一区二区三区| 日韩一本色道免费dvd| 久久久久视频综合| 国产男女内射视频| 成人国产麻豆网| 成人国产麻豆网| 观看美女的网站| 亚洲欧美清纯卡通| 精品卡一卡二卡四卡免费| 超碰成人久久| 韩国av在线不卡| 亚洲精品国产av成人精品| 亚洲精品久久午夜乱码| 国产精品秋霞免费鲁丝片| 欧美日韩一区二区视频在线观看视频在线| 在线精品无人区一区二区三| 亚洲欧美色中文字幕在线| 亚洲国产欧美日韩在线播放| 另类精品久久| 国产欧美日韩一区二区三区在线| 91成人精品电影| 免费看不卡的av| 国产av码专区亚洲av| 美女大奶头黄色视频| 精品一区二区免费观看| 丰满迷人的少妇在线观看| 91精品国产国语对白视频| av女优亚洲男人天堂| 国产在线一区二区三区精| 宅男免费午夜| 美女脱内裤让男人舔精品视频| 男女免费视频国产| 69精品国产乱码久久久| 美女扒开内裤让男人捅视频| 99久久综合免费| 国产免费一区二区三区四区乱码| 久久99一区二区三区| 深夜精品福利| 久久av网站| 人人妻人人澡人人爽人人夜夜| 欧美日韩综合久久久久久| 男女边摸边吃奶| 欧美日韩福利视频一区二区| 亚洲国产欧美在线一区| 天美传媒精品一区二区| 亚洲国产欧美网| 国产 精品1| 九九爱精品视频在线观看| 国产免费又黄又爽又色| 美女高潮到喷水免费观看| 母亲3免费完整高清在线观看| 精品久久久久久电影网| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区| 国产毛片在线视频| 少妇被粗大猛烈的视频| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 久久久久视频综合| 如何舔出高潮| 国产熟女欧美一区二区| 精品一区在线观看国产| 国产精品蜜桃在线观看| 欧美在线一区亚洲| 91精品伊人久久大香线蕉| 国产精品久久久av美女十八| 国产精品成人在线| 欧美乱码精品一区二区三区| 一个人免费看片子| 波野结衣二区三区在线| av在线app专区| 啦啦啦在线观看免费高清www| 人人妻人人澡人人看| av网站在线播放免费| av国产久精品久网站免费入址| 免费黄色在线免费观看| 久久国产精品男人的天堂亚洲| 国产男女超爽视频在线观看| 只有这里有精品99| 午夜激情久久久久久久| 久久久久精品国产欧美久久久 | 久久国产精品男人的天堂亚洲| 美女高潮到喷水免费观看| 一区二区三区精品91| 美女扒开内裤让男人捅视频| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 亚洲国产av影院在线观看| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| 亚洲综合色网址| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 亚洲欧洲日产国产| 韩国精品一区二区三区| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 亚洲成人免费av在线播放| 电影成人av| 高清不卡的av网站| 国产日韩欧美在线精品| 亚洲视频免费观看视频| 老司机影院毛片| 美女主播在线视频| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 三上悠亚av全集在线观看| 欧美黑人精品巨大| 亚洲一区二区三区欧美精品| av在线观看视频网站免费| 人人澡人人妻人| 婷婷成人精品国产| 看免费成人av毛片| 国产国语露脸激情在线看| 欧美日韩亚洲国产一区二区在线观看 | 九九爱精品视频在线观看| 精品酒店卫生间| 精品一区二区免费观看| 色播在线永久视频| 国产野战对白在线观看| 亚洲人成77777在线视频| 日韩不卡一区二区三区视频在线| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 成人亚洲欧美一区二区av| 国产麻豆69| 丝袜美足系列| 精品亚洲成国产av| 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 国产日韩一区二区三区精品不卡| 亚洲av综合色区一区| 看免费成人av毛片| 少妇人妻 视频| 精品第一国产精品| 国产亚洲av高清不卡| 丝袜喷水一区| 久久久久精品人妻al黑| 亚洲免费av在线视频| av在线播放精品| 老汉色∧v一级毛片| 美女午夜性视频免费| 日韩大码丰满熟妇| 国产精品一区二区在线不卡| 国产亚洲av高清不卡| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| av天堂久久9| 久久久久久免费高清国产稀缺| 亚洲国产看品久久| 丝袜人妻中文字幕| 国产极品粉嫩免费观看在线| 久久精品久久精品一区二区三区| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| 成年女人毛片免费观看观看9 | 亚洲久久久国产精品| 哪个播放器可以免费观看大片| 久久97久久精品| 国产精品一二三区在线看| 精品一品国产午夜福利视频| 国产成人精品久久二区二区91 | 毛片一级片免费看久久久久| 男人爽女人下面视频在线观看| 亚洲图色成人| 九草在线视频观看| 男女免费视频国产| 色视频在线一区二区三区| 悠悠久久av| 国产av一区二区精品久久| 成人影院久久| 熟妇人妻不卡中文字幕| 老汉色av国产亚洲站长工具| 日本色播在线视频| 观看美女的网站| 青春草国产在线视频| 亚洲视频免费观看视频| 香蕉国产在线看| 各种免费的搞黄视频| 热re99久久国产66热| 国产深夜福利视频在线观看| 日本午夜av视频| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 欧美成人精品欧美一级黄| 久久人人爽av亚洲精品天堂| 男女边吃奶边做爰视频| 久久久久视频综合| 一区二区三区精品91| 欧美最新免费一区二区三区| 在线天堂中文资源库| 亚洲情色 制服丝袜| 亚洲欧洲精品一区二区精品久久久 | 成人手机av| 在线天堂最新版资源| 一本一本久久a久久精品综合妖精| 精品视频人人做人人爽| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美精品免费久久| 亚洲免费av在线视频| 精品一区二区免费观看| 精品福利永久在线观看| 秋霞伦理黄片| 亚洲欧美精品综合一区二区三区| 色视频在线一区二区三区| 一边亲一边摸免费视频| 精品午夜福利在线看| 国产欧美日韩综合在线一区二区| 亚洲天堂av无毛| 国产欧美日韩综合在线一区二区| av免费观看日本| 国产精品无大码| 欧美亚洲 丝袜 人妻 在线| 亚洲av中文av极速乱| 91aial.com中文字幕在线观看| 观看av在线不卡| 一本—道久久a久久精品蜜桃钙片| 免费av中文字幕在线| 夜夜骑夜夜射夜夜干| 男人舔女人的私密视频| 久久天堂一区二区三区四区| 肉色欧美久久久久久久蜜桃| 日韩伦理黄色片| 青青草视频在线视频观看| 久久人人爽人人片av| 亚洲av在线观看美女高潮| 亚洲男人天堂网一区| 国产福利在线免费观看视频| 成年女人毛片免费观看观看9 | 国产一区二区三区av在线| 少妇被粗大猛烈的视频| 伦理电影免费视频| 国产片特级美女逼逼视频| 国产野战对白在线观看| 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 亚洲精品久久久久久婷婷小说| 十分钟在线观看高清视频www| 成人影院久久| 国产老妇伦熟女老妇高清| 欧美在线黄色| 天天添夜夜摸| 亚洲综合色网址| 久久97久久精品| 国产欧美日韩一区二区三区在线| 国产av一区二区精品久久| av网站免费在线观看视频| 丰满乱子伦码专区| 亚洲国产欧美日韩在线播放| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 婷婷成人精品国产| 国产有黄有色有爽视频| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说| 亚洲av综合色区一区| 欧美av亚洲av综合av国产av | 爱豆传媒免费全集在线观看| 青青草视频在线视频观看| 少妇 在线观看| avwww免费| 中文字幕另类日韩欧美亚洲嫩草| 久久久久视频综合| 老司机深夜福利视频在线观看 | 精品福利永久在线观看| av网站在线播放免费| 免费黄色在线免费观看| 80岁老熟妇乱子伦牲交| 1024视频免费在线观看| 亚洲伊人久久精品综合| 校园人妻丝袜中文字幕| 在线亚洲精品国产二区图片欧美| www.av在线官网国产| 午夜av观看不卡| 人人妻人人添人人爽欧美一区卜| 少妇 在线观看| 一区二区日韩欧美中文字幕| 一本一本久久a久久精品综合妖精| 69精品国产乱码久久久| 日日摸夜夜添夜夜爱| 国产精品免费视频内射| 18禁国产床啪视频网站| 国产精品国产三级专区第一集| av网站在线播放免费| 老司机深夜福利视频在线观看 | 亚洲一码二码三码区别大吗| 国产成人欧美在线观看 | 亚洲,欧美,日韩| 成人黄色视频免费在线看| 欧美久久黑人一区二区| 在线 av 中文字幕| 一个人免费看片子| 久久人妻熟女aⅴ| 欧美另类一区| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 伊人亚洲综合成人网| 国产一区二区激情短视频 | 纵有疾风起免费观看全集完整版| 日本vs欧美在线观看视频| 国产一区二区 视频在线| 亚洲精品日本国产第一区| 精品一品国产午夜福利视频| 哪个播放器可以免费观看大片| 嫩草影院入口| 午夜福利视频在线观看免费| 一级片免费观看大全| 在线观看免费高清a一片| 成年动漫av网址| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 男人舔女人的私密视频| 人成视频在线观看免费观看| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 欧美日韩一区二区视频在线观看视频在线| 成人国产麻豆网| 九色亚洲精品在线播放| 黄片小视频在线播放| 69精品国产乱码久久久| 高清欧美精品videossex| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 成人漫画全彩无遮挡| 亚洲精品国产区一区二| 日韩熟女老妇一区二区性免费视频| 国产精品秋霞免费鲁丝片| 欧美日韩av久久| 国产成人精品福利久久| 国产精品人妻久久久影院| 老汉色∧v一级毛片| 色94色欧美一区二区| av又黄又爽大尺度在线免费看| av女优亚洲男人天堂| 亚洲国产精品999| 亚洲欧美成人综合另类久久久| av电影中文网址| 男人添女人高潮全过程视频| 大香蕉久久成人网| 日韩免费高清中文字幕av| 熟女av电影| 只有这里有精品99| 国产1区2区3区精品| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 丰满迷人的少妇在线观看| 久久久久久人妻| 精品免费久久久久久久清纯 | 人人妻人人澡人人爽人人夜夜| 国产男人的电影天堂91| 国产成人欧美| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 久久精品国产a三级三级三级| 肉色欧美久久久久久久蜜桃| 一二三四在线观看免费中文在| 桃花免费在线播放| 97人妻天天添夜夜摸| 国产在线视频一区二区| 国产一区亚洲一区在线观看| 国产精品久久久久久精品古装| 久久人妻熟女aⅴ| 中文字幕高清在线视频| 黄片小视频在线播放| 亚洲av福利一区| 999久久久国产精品视频| 国产精品偷伦视频观看了| 五月天丁香电影| 色94色欧美一区二区| 亚洲av电影在线观看一区二区三区| 国产野战对白在线观看| 日本色播在线视频| 超碰成人久久| videosex国产| av天堂久久9| 成人午夜精彩视频在线观看| 七月丁香在线播放| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 99九九在线精品视频| 91精品三级在线观看| 夫妻午夜视频| 波多野结衣av一区二区av| av福利片在线| 免费黄色在线免费观看| 成人毛片60女人毛片免费| 国产成人a∨麻豆精品| 男女床上黄色一级片免费看| 激情五月婷婷亚洲| tube8黄色片| 欧美日韩福利视频一区二区| 国产精品国产三级国产专区5o| 国产福利在线免费观看视频| 嫩草影院入口| 女人久久www免费人成看片| 制服人妻中文乱码| 成人午夜精彩视频在线观看| 少妇的丰满在线观看| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 人妻人人澡人人爽人人| 久久女婷五月综合色啪小说| 制服人妻中文乱码| 国产av一区二区精品久久| 国产精品免费大片| 涩涩av久久男人的天堂| 哪个播放器可以免费观看大片| 日韩中文字幕欧美一区二区 | 永久免费av网站大全| 亚洲精品国产av成人精品| 女性生殖器流出的白浆| 人人妻人人添人人爽欧美一区卜| bbb黄色大片| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 王馨瑶露胸无遮挡在线观看| 在线精品无人区一区二区三| av一本久久久久| 久热这里只有精品99| 一边亲一边摸免费视频| 少妇精品久久久久久久| 99热网站在线观看| 狠狠精品人妻久久久久久综合| 99精品久久久久人妻精品| 999精品在线视频| 十八禁人妻一区二区| 欧美日韩精品网址| 中文天堂在线官网| 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频 | 无限看片的www在线观看| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 久久影院123| 秋霞伦理黄片| 少妇的丰满在线观看| av在线老鸭窝| 一本色道久久久久久精品综合| 国产精品麻豆人妻色哟哟久久| 性少妇av在线| 婷婷色av中文字幕| 国产 一区精品| 秋霞在线观看毛片| 国产女主播在线喷水免费视频网站| www日本在线高清视频| 精品免费久久久久久久清纯 | 久久久久视频综合| 无遮挡黄片免费观看| 成人国语在线视频| 悠悠久久av| 日本一区二区免费在线视频| 亚洲国产欧美日韩在线播放| 看非洲黑人一级黄片| 伊人久久大香线蕉亚洲五| 亚洲美女视频黄频| 女人高潮潮喷娇喘18禁视频| 女人精品久久久久毛片| videos熟女内射| 777米奇影视久久| h视频一区二区三区| 国产视频首页在线观看| 考比视频在线观看| 欧美少妇被猛烈插入视频| 一区二区日韩欧美中文字幕| 国产亚洲最大av| 国产又色又爽无遮挡免| 精品第一国产精品| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| 岛国毛片在线播放| 男男h啪啪无遮挡| videosex国产| 中文字幕高清在线视频| 最近中文字幕2019免费版| 亚洲自偷自拍图片 自拍| 国产福利在线免费观看视频| 久久久久精品性色| 大话2 男鬼变身卡| av不卡在线播放| 国产福利在线免费观看视频| 在线 av 中文字幕| 美女大奶头黄色视频| 少妇 在线观看| 久久精品亚洲av国产电影网| 如何舔出高潮| 少妇人妻 视频| 99久久人妻综合| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| 日本猛色少妇xxxxx猛交久久| 国产午夜精品一二区理论片| 精品一区二区三区av网在线观看 | 久久av网站| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密 | 各种免费的搞黄视频| 一区福利在线观看| 中文字幕最新亚洲高清| 91精品三级在线观看| 精品国产国语对白av| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 黑丝袜美女国产一区| 精品国产国语对白av| 51午夜福利影视在线观看| 黄色视频在线播放观看不卡| 一区二区三区精品91| 久久久精品区二区三区| 欧美日韩福利视频一区二区| 亚洲av成人不卡在线观看播放网 | av在线老鸭窝| 又粗又硬又长又爽又黄的视频| 一区二区日韩欧美中文字幕| 青青草视频在线视频观看| 大香蕉久久网| 搡老乐熟女国产| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美日韩在线播放| 一区二区av电影网| 国产免费又黄又爽又色| 国产亚洲午夜精品一区二区久久| 国产毛片在线视频| 嫩草影院入口| 国产成人精品久久二区二区91 | 国产一卡二卡三卡精品 |