• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow:Results from Sensitivity Experiments

    2015-04-20 05:59:20ZHOUQianDUANWansuoMUMuandFENGRong
    Advances in Atmospheric Sciences 2015年6期

    ZHOU QianDUAN WansuoMU Muand FENG Rong

    1State Key Laboratory of NumericalModeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    3Key Laboratory of Ocean Circulation and Wave,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071

    Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow:Results from Sensitivity Experiments

    ZHOU Qian1,2,DUAN Wansuo?1,MU Mu3,and FENG Rong1

    1State Key Laboratory of NumericalModeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    3Key Laboratory of Ocean Circulation and Wave,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071

    The role of the Indonesian Throughflow(ITF)in the influence of the Indian Ocean Dipole(IOD)on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2)ocean general circulation model.We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations.By shutting down the atmospheric bridge while maintaining the tropical oceanic channel,the IOD forcing is shown to influence the ENSO eventin the follow ing year,and the role of the ITF is emphasized.During positive IOD events, negative sea surface height anomalies(SSHAs)occur in the eastern Indian Ocean,indicating the existence of upwelling. These upwelling anomaliespass through the Indonesian seasand enter the western tropicalPacific,resulting in cold anomalies there.These cold temperature anomalies furtherpropagate to the eastern equatorial Pacific,and ultimately induce a La Ni?nalike mode in the follow ing year.In contrast,during negative IOD events,positive SSHAs are established in the eastern Indian Ocean,leading to downwelling anomalies thatcan also propagate into the subsurface of the western Pacific Ocean and travel further eastward.These downwelling anomalies induce negative ITF transport anomalies,and an El Ni?no-like mode in the tropicaleastern Pacific Ocean thatpersists into the follow ing year.The effects ofnegative and positive IOD events on ENSO via the ITF are symmetric.Finally,we also estimate the contribution of IOD forcing in explaining the Pacific variability associated w ith ENSO via ITF.

    IOD,Pacific Ocean,ENSO,Indonesian Throughflow

    1.Introduction

    The El Ni?no-Southern Oscillation(ENSO)is the most importantair–sea interaction phenomenon in the tropical Pacific.The occurrence of ENSO causes extreme weather and climate events across the globe,leading to severe naturaldisasters(Wang etal.,2000;Diaz etal.,2001;Alexanderetal., 2002).Consequently,it is of great importance to study the dynam ics of ENSO to predict events successfully(Latif et al.,1998;Chen etal.,2004;Jin etal.,2008;Luo etal.,2008; Tippettetal.,2011).

    The Indian Ocean Dipole(IOD)is an air–sea coupled phenomenon.Some studies argue that the IOD is dependenton Pacific Ocean air–sea interactions(Allan etal.,2001; Nicholls et al.,2001;Baquero-Bernal et al.,2002;Lau and Nath,2003),while others claim it is an intrinsic physical entity,independentof ENSO(Sajiand Yamagata,2003;Behera etal.,2006;Luo etal.,2010).Eitherway,the IOD can be influenced by ENSO events(Nagura and Konda,2007;Schott etal.,2009;Luo etal.,2010;Roxy etal.,2011).

    It has been suggested that ENSO prediction by both statistical(Clarke and Van Gorder,2003;Izumo et al.,2010; Izumo etal.,2014)and dynamicalmodels(Luo etal.,2010) is improved by including Indian Ocean information.Forexample,Izumo et al.(2010)predicted the ENSO peak during 1981–2009 w ith a lead time of 14 months by adopting the corresponding borealautumn Dipole Mode Index(DM I) and warm water volume(WWV)as predictors.They also extended this conclusion to ENSO forecasting during 1872–2008(Izumo etal.,2014),and revealed that the DM Iis much more helpful in improving ENSO hindcast skill compared w ith an Indian Ocean basin-w ide mode,the Indian Monsoon,or the ENSO index itself.These results imply that the IOD may significantly influence ENSO predictability.Furthermore,the atmospheric bridge is suggested to be a lead-ing contributor to the influence of IOD on ENSO(Alexander etal.,2002;Annamalaiet al.,2005;Kug and Kang,2006). Gear-like coupling between the Indian and Pacific oceans (GIP)is anothermechanism proposed to interpretthe interactions between the tropical Indian and Pacific Ocean climate systems(Wu and Meng,1998).Sensitivity experiments have shown that,through GIP,the air–sea interaction in one ocean basin forced by zonal w ind stress anomalies can cause air–sea interaction in the otherocean,resulting in anomalous SST (Meng and Wu,2000).

    By calculating observed time series lag correlations,Yuan etal.(2013)recently suggested that the influence of the IOD on ENSO may occur via the Indonesian Throughflow(ITF), the only ocean channel between the tropical Indian and Pacific oceans.Earlier,they had also conducted GCM sensitivity experiments w ith a closed atmospheric bridge which,togetherw ith the observational results,confi rmed theirhypothesis(Yuan etal.,2011).The results suggest that it is the ITF that can convey the IOD event forcing into the tropical Pacific Ocean in the follow ing year.However,itis worth noting that Yuan etal.(2011)only studied the influence of one IOD event(in 1997)on the follow ing year’s Pacific Ocean air–sea coupled system,and did so using the LASG(State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynam ics)IAP(Institute of Atmospheric Physics)Climate Ocean Model(LICOM)and a coupled model.Moreover,the 1997 IOD eventwas an extreme positive event.In thispaper,we ask ifanotherocean model—version 2 of the Parallel Ocean Program(POP2)ocean general circulation model(OGCM)—shows sim ilar connections between positive IOD events and subsequent La Ni?na-like states.Like ENSO events,IOD events also possess significantasymmetry(Hong etal.,2008a;2008b).Therefore,we also question how a negative IOD event influences ENSO in the Pacific Ocean:Is it opposite to that of a positive IOD? A lso,to what extent does the IOD forcing contribute to the Pacific variability associated w ith ENSO?These questions are addressed in the presentstudy.

    The remainderof this paper is organized as follows.Section 2 describes the model and data used in this study.The experimental strategy is introduced in section 3.The role of the ITF in conveying IOD forcing to the Pacific Ocean is investigated in section 4.The contribution of IOD forcing to the Pacific variability associated w ith ENSO via the ITF is estimated in section 5,followed by a summary and discussion in section 6.

    2.M odeland data

    Fig.1.Simulation of ENSO and IOD in the CESM 1.0.3 control run(year0051–0150).Powerspectrum of(a)the Ni?no3 index and(b)Dipole Mode Index(DM I).(c)Fourteen positive/negative IOD events from the coupled model(dashed lines)(mean shown in bold).(d)Monthly mean climatological ITF transportvolume.

    The POP2 OGCM(Danabasoglu etal.,2011),originally developed at the Los Alamos National Laboratory,butw ith more recentwork on parameterizations largely added by theNational Center for Atmospheric Research,is used in this study.It is az-level hydrostatic primitive equation model w ith 60 levels.The vertical spacing is 10 m at the surface and varies w ith depth.The nom inal horizontal resolution is 1?×1?in the off-equatorialarea w ith an enhanced resolution of(1/3)?latitude by 1?longitude in the tropics.

    The observationaldata used are from version 2 of the Coordinated Ocean Research Experiments(COREv2),w ith a horizontal resolution of 1.9?(lat)× 1.875?(lon).The relevant variables include:the atmospheric forcing of precipitation;airabsolute humidity;sea levelpressure;air temperature;w ind speed;and longwave downward,shortwave downward,and shortwave upward radiation.All these forcing data are from the Geophysical Fluid Dynam ics Laboratory (GFDL)website(http://data1.gfdl.noaa.gov/nomads/forms/ mom4/COREv2.htm l).Observational sea surface height (SSH)from the TOPEX/Poseidon satellite mission is also used.

    Due to the shorthistory of observational records,we additionally use forcing data extracted from a coupled general circulation model’s long-term run.Since version 1.0.3 of the Community Earth System Model(CESM 1.0.3)(which uses POP2 as its ocean component)simulates both the ENSO (Deser et al.,2012)and IOD well,and provides an acceptable simulation of the ITF(Large and Danabasoglu,2006; Jochum et al.,2009),we adopt the output of this coupled model to validate the results obtained from the observation. CESM 1.0.3 has been integrated for 150 years,and the fi rst fi fty years(0001–0050)of the coupled run are discarded due to the initial adjustment of the model.The simulated ENSO in the coupled modelhasa period of3–6 years(Fig.1a),w ith a reasonable amplitude and latitudinal w idth of the anomalous equatorial zonal w ind stress.El Ni?no events modeled by CESM 1.0.3,like observed ENSO events,also peak at the end of the calendar year.The simulated IOD has a period of 1–2 years(Fig.1b),usually peaking in boreal autumn and decaying in boreal w inter(Fig.1c),and roughly captures the features of observed IOD events.Because the 6?S section goes through three major channels—the Lombok Strait, the Ombai Strait,and the Timor Sea—the ITF in this studyis defined as the flow across the 6?S section from 115?E to 130?E in the upper700 m of the Indonesian seas.The simulated monthly mean climatology of the ITF transportvolume (Fig.1d)also has a signifi cant seasonal signal,which peaks in summerand decays in w inter.This feature is in accordance w ith other OGCM simulation products(Lee etal.,2010)and observations(Wyrtki,1987;Meyers etal.,1995;Shinoda et al.,2012).Based on this analysis,we accept that the simulated ENSO,IOD and ITF are suitable for investigating the role of the ITF in connecting the Indian and Pacific oceans.

    Fig.2.OGCM-simulated SSHAs between sensitivity runs forced by atmospheric forcing from observed positive IOD events and a control run during Jul(0)to Apr(1)over the Indian Ocean(contour interval:2 cm)and Pacific Ocean(contour interval: 0.2 cm).

    3.Design of the sensitivity experiments

    We use the POP2 OGCM to conduct numerical experiments.The model is fi rstintegrated w ith climatological forcing for 60 years,referred to hereafter as the“control run”. Then,sensitivity experiments are conducted at the end of year 57 to replace the Indian Ocean forcing w ith the daily w ind stress and heat flux ofan IOD year.The differences between the sensitivity experiments and the OGCM control run thus represent the interannual variations of the Indian Ocean circulation forced by the IOD w ind and heat flux anomalies in a non-coupled configuration,i.e.the IOD forcing influences on the Pacific Ocean through the Indonesian passages. In this study,we focus on the differences between the sensitivity experiments and the OGCM control run to explore the role played by the ITF during both positive and negative IOD events in influencing Pacific SST associated with ENSO.For simplicity,we use the term“anomalies”to denote these differences.

    For the observational run,the mean atmospheric state(see section 2)during 1970–2000 is used as the climatological forcing.The daily atmospheric forcing associated w ith the positive IOD years of1982,1983,1991,1994 and 2006,and the negative IOD years of 1975,1980,1981,1989 and 1992, are used.For the model data,atmospheric data of 14 positive IOD events and 14 negative IOD events from the coupled long-term run of CESM 1.0.3(shown in Fig.1c)and the mean of 100 years of the control run are used as daily and climatological forcing,respectively.

    4.Role of the ITF in conveying the IOD forcing on the Pacific Ocean

    First,we compare the POP2 simulations to those of Yuan etal.(2011)in describing the role of the ITF during the 1997 positive IOD event.The sensitivity experiments associated w ith the 1997 positive IOD event show that it can induce a La Ni?na-like mode in the follow ing yearvia the ITF,in good agreementw ith the results of Yuan etal.(2011)(for brevity, the details are om itted here).Having established this good agreement,we proceed to simulate the role of the ITF in conveying the positive IOD impact on the Pacific SST by conducting more sensitivity experiments w ith IOD forcing using POP2.In particular,we investigate the role of the ITF in conveying the negative IOD’s forcing on Pacifi c SST.

    4.1.Role of the ITF in conveying the positive IOD forcing on the Pacifi c Ocean

    4.1.1.Sensitivity experiments forced by the observed atmosphere during positive IOD events

    First,we use the observed climatological atmospheric state to force the POP2 model,producing a control run.Second,two-year sensitivity experiments are performed using the observed daily heat flux and w ind observations from positive IOD years(1982,1983,1991,1994 and 2006)and their follow ing years as the external forcing over the Indian Ocean, whilst at the same time retaining the climatological atmospheric forcing over other ocean basins.The differences between the sensitivity experiments and the control run are obtained as the so-called anomalies,including SSH anomalies (SSHAs)and sea surface temperature anomalies(SSTAs),to identify the role of the ITF in the IOD’s influence on the Pacific SST associated w ith ENSO.

    Fig.3.The ITF anomaly for(a)volume transport and(b) heat flux transportdifferences between sensitivity experiments of observed positive IOD events and the OGCM control run (dashed lines).Solid bold lines represent the mean.

    Figure 2 displays the composite SSH anomalies of the observed positive IOD forcing periods over the Indian Ocean and the Indo-Pacific regions from Jul(0)to Apr(1)(“0”and“1”denote the IOD year and the subsequent year,respectively).Positive IODs occurw ith positive SSHAs in the western Indian Ocean,and negative SSHAs in the east;the nega-tive SSHAs in the eastern Indian Ocean indicate a shoaled thermocline and upwelling currents.The upwelling anomalies are amplified and transported into the Pacific Ocean in Aug(0),and persist in the equatorial Pacific Ocean into the follow ing year.The SSHAs indicate that the differences between the sensitivity experiments and the control run arise from the shutting down of the atmospheric bridge while the ITF remains.The resulting propagation of negative SSHAs from the Indian Ocean to the Pacific Ocean demonstrates the role of the ITF in connecting the Indian Ocean and Pacific Ocean interannualanomalies.

    The anomalies of ITF volume and heat transport along 6?S are shown in Fig.3.If the ITF anomalies are positive (negative),it means that the warm pool loses(gains)more heatand WWV to(from)the Indian Ocean,implying a propagation of the cold(warm)temperature anomalies from the Indian Ocean to Pacific Ocean.During positive IOD event years,the ITF anomalies become positive in Aug(0),peak in Dec(0),decay over the w inter and reverse to negative in Mar(1).Positive ITF transport anomalies lead to cold sea temperature anomalies in the eastern Indian Ocean to Pacific Ocean,thus inducing a La Ni?na-like state in the Pacific Ocean.

    Figure 4 plots the subsurface temperature anomalies in the equatorialverticalsection of the Pacific Ocean.Itclearly shows that cold subsurface sea temperature anomalies fi rst appear in the western Pacific in Aug(0),as a result of ITF anomalies.These cold anomalies then propagate into the eastern Pacific,maintaining a La Ni?na-like cooling state until the follow ing year.The propagation of these cold subsurface temperature anomalies also suggests a role of the ITF during positive IOD forcing,leading to an influence on the follow ing year’s La Ni?na events in the Pacific Ocean.

    4.1.2.Sensitivity experiments forced by CESM 1.0.3 atmospheric forcing during positive IOD events

    The observational record associated w ith IOD events has a short history.Therefore,to further validate the results in section 4.1.1,we use the outputs of the coupled model, CESM 1.0.3,to repeat the experiments.A totalof14 positive IOD events(see Fig.1c)are selected,based on the 100-year time series of SSTAs in the coupled modeloutputs,and from which the atmospheric forcing fields are extracted.A ll the sensitivity experiments are completed using the same experimental strategy described in section 4.1.1,except that the climatologicaland positive IOD atmospheric forcing are extracted from the 100-year time series of the long-term run of CESM 1.0.3.

    Sim ilar to the results shown in section 4.1.1,negative SSHAs are established in the eastern Indian Ocean in summer,indicating an anomalous upwelling that induces cold temperature anomalies. These upwelling anomalies and SSHAs propagate through the Indonesian seas,giving rise to cold temperature anomalies in the subsurface layer of the tropicalwestern Pacifi c(Fig.5).These cold anomalies propagate to the tropical eastern Pacific,where they ultimately dom inate and result in a La Ni?na-like mode in the following year.The cold anomalies in the eastern Pacific Ocean are much weaker than those from the sensitivity experiments using the observed positive IOD forcing.These differences may result from the deficiencies of the coupled modelin simulating the IOD strength.

    Fig.4.Composite OGCM-simulated sea temperature anomalies(units:?C)in the equatorial vertical section of the Pacific Ocean between sensitivity experiments forced by observed positive IOD events and the control run during Feb(0)to Jun(1).

    Fig.5.As in Fig.4,but for composite temperature anomalies from sensitivity experiments on the 14 positive IOD events from the CESM 1.0.3 long-term run.

    Fig.6.As in Fig.2,but for composite SSHAs from sensitivity experiments on negative observed IOD events.

    These results demonstrate that,asin the observation,positive IOD events modeled by CESM 1.0.3 can influence thestate of the Pacific Ocean in the follow ing year through the tropicalocean channel.This suggests that the role of the ITF in conveying the positive IOD impacton the follow ing year’s ENSO is robust.

    4.2.Role of the ITF in the infl uence of negative IOD on Pacifi c SST

    As demonstrated in section 4.1,a positive IOD event may induce negative SSHAs in the eastern Indian Ocean. Upwelling anomalies associated w ith these negative SSHAs propagate across the ITF passages and spread eastward,inducing cold anomaliesin the eastern Pacific Ocean and forming La Ni?na-like SST anomalies in the follow ing year.In this section,we investigate the role of the ITF during negative IOD events in influencing the Pacific SST.

    Forobserved negative IOD events,the design of the sensitivity experimentis the same as thatin section 4.1.1,except that the atmospheric forcing in negative IOD years(1975, 1980,1981,1989 and 1992)is used as the forcing factor in the experiments.Figure 6 plots the composite SSHAs corresponding to the observed negative IOD events from Jul(0) to Apr(1)over the Indian Ocean and Pacific region.The negative SSHAs in the western Indian Ocean,and the positive anomalies in the east,indicate the existence of a negative IOD.The positive SSHAs in the eastern Indian Ocean suggestan enhancementof the thermocline depth and downwelling signals.These SSHAs and downwelling anomalies get stronger in the follow ing months,propagating into the western Pacific Ocean.The propagation of the positive SSHAs into the Pacific Ocean must take place through the Indonesian seas because the atmospheric bridge is closed in these sensitivity experiments.

    The ITF volume and heat flux transportanomalies shown in Fig.7 furtherdemonstrate the role of the ITF.The negative ITF anomalies during negative IOD events appear in Aug(0), peak in Dec(0),and reverse sign in Mar(1).The negative ITF transportanomalies prove that the downwelling anomalies in the eastern Indian Ocean propagate from the Indian Ocean to the western Pacific Ocean.These downwelling anomalies further induce an El Ni?no-like state in the Pacific Ocean, which can be traced from the sea temperature anomalies in the vertical section of the equatorial Pacific Ocean(see Fig. 8).This shows that in the tropical Pacific Ocean,warm subsurface sea temperature anomaliesappear in the western part, as a resultof ITF transportanomalies.These warm anomalies then propagate to the eastern Pacific,maintaining an El Ni?no-like warm ing state through to the nextyear.

    Similar to the analysisofpositive IOD events,furthersensitivity experiments are conducted to examine the role of the ITF in the influence of negative IOD on the Pacific Ocean (Fig.9),but w ith the atmospheric forcing provided by 14 negative IOD events from the CESM 1.0.3 coupled long-term run(Fig.1c).The results correlate closely w ith the observed atmospheric forcing.Therefore,we conclude that negative IOD events can influence ENSO via the ITF,leading to an El Ni?no-like state in the tropical Pacific Ocean in the follow ing year.

    Fig.7.As in Fig.3,but for the ITF anomalies from sensitivity experiments on negative observed IOD events.

    5.Estimation of the contribution of IOD forcing to the Pacific variability associated w ith ENSO

    In this study,the role of the ITF in the influence of both positive and negative IOD forcing on ENSO is explored.Specifically,positive IOD forcing in the tropical Indian Ocean can resultin negative SSHAsin the eastern Indian Ocean.These negative SSHAs pass through the Indonesian seas and lead to a La Ni?na-like state in the eastern Pacific Ocean the follow ing year.For negative IOD forcing,positive SSHAs appear in the eastern Indian Ocean and propagate into the western Pacific Ocean through the ITF,and then these positive SSHAs ultimately induce an El Ni?no-like state the follow ing year.We notice thatthe SSHAs excited by the IOD forcing in the Indian Ocean are signifi cantly reduced when entering the Pacific Ocean(see Figs.2 and 6).Consequently, we wonder to whatextent the IOD forcing contributes to the Pacific variability associated w ith ENSO.

    Fig.8.As in Fig.4,but for composite temperature anomalies from sensitivity experiments on negative observed IOD events.

    Fig.9.As in Fig.4,but for composite temperature anomalies from sensitivity experiments on 14 negative IOD events from the CESM 1.0.3 long-term run.

    To address this question,we calculate the SSHAs in the Indian and Pacific oceans under the uncoupled configuration, and compare them w ith the SSH standard deviation under the coupled configuration to estimate the contribution of the IOD forcing to the ENSO-related Pacific variability.We fi rst calculate the SSH standard deviation in the Indian and Pacific oceans in terms of the CESM 1.0.3 output in the model years 0051 to 0150,and the observations(TOPEX/POSEIDON) during the period 1980–2008.Since IOD events often peak in boreal autumn and the SSH variability may have a much larger influence on the tropical Pacific Ocean via the ITF, we plot the SSH standard deviation in this season(exactly in November),derived from both CESM 1.0.3 and observations, in Figs.10a and b.The results indicate that the modelgoes some way toward representing the true situation,such that it can be used to estimate the contribution of the IOD forcing to the ENSO-related Pacific variability through the ITF.Meanwhile,since the SSHAs in the eastern Indian Ocean can indicate the propagation of Indian Ocean anomalies to the Pacific through the ITF(see section 4),and the SSHAs in the eastern Pacific Ocean are closely related to ENSO,we further calculate the SSH standard deviation in the eastern Indian Oceanand eastern Pacific Ocean(represented by regions A and B in Fig.10,where the SSHAsare shown to be largest)in November.Results for regions A and B also indicate that the model closely reproduces the observed situation.It is conceivable that,if only IOD forcing over the Indian Ocean is considered and the atmospheric forcing over the Pacific Ocean is the climatological state,then the change of the Pacific variability associated w ith ENSO may solely depend on the IOD forcing via the ITF.Therefore,SSHAs in region B under the uncoupled configuration and the SSH standard deviation under the coupled configuration can be compared to estimate the contribution of the IOD forcing to the Pacific variability associated w ith ENSO.

    Fig.10.The SSH standard deviation(units:cm)in November from(a1)observations(TOPEX/POSEIDON)and(b1) the coupled model CESM 1.0.3.The ensemble mean of the SSHAs induced by the(c1)observed positive IOD forcing, and(d1)negative IOD forcing in sensitivity experiments.Panels(a2–d2)represent the averaged SSHA values(units: cm)over regions A and B.

    Figures 10c1 and 10d1 plot the ensemble means of the SSHAsduring Nov(0)composited from all the observed positive and negative IOD forcings used in this study.For positive IOD forcing,during Nov(0),when positive IOD events peak,the ensemble mean of the SSHAs in region A is about -5.4 cm,which is roughly equal to the SSH standard deviation there;while in region B,the ensemble mean of the SSHAs is-0.61 cm.Quantitatively,positive IOD forcing in the Indian Ocean may explain about8%(0.61 cm divided by 7.27 cm)of the SSHAs in the eastern Pacific.For negative IOD forcing,itis shown in Figs.10d1 and 10d2 thatnegative IOD forcing can also explain about8%of the ElNi?no-related SSHAs in the eastern Pacific through the ITF.

    We notice that the sensitivity experiments shown in Figs. 10c and 10d tend to underestimate the SSHAs in the eastern Indian Ocean.Correspondingly,the SSHAs in the eastern Pacific m ightalso be underestimated.Despite this,the small SSHAs in the eastern Pacific induced by the IOD forcing in the Indian Ocean could also exhibit significant grow th due to the air–sea interaction in the tropical Pacific Ocean,and thereby greatly influence ENSO.

    6.Summary and discussion

    We use the oceanic model POP2,w ith observed and coupled-model-simulated external forcing from positive and negative IOD atmospheric data,to conductsensitivity experiments to exam ine the role of the ITF in the influence of the IOD on ENSO.

    The results demonstrate that positive IOD events,both observed and modeled,can influence(via the ITF)the SSTAs associated w ith ENSO in the tropical eastern Pacific,inducing a La Ni?na-like state in the Pacific Ocean the next year. Upwelling anomalies in the eastern Indian Ocean,indicated by negative SSHAs,can penetrate into the western Pacific Ocean through Indonesian sea passages.These SSHAs propagate furthereastward,inducing cooling in the eastern Pacific Ocean the follow ing year.These results are in accordance w ith those of the 1997 positive IOD eventobtained by Yuan etal.(2011).

    We further investigate the role of the ITF in the influence ofnegative IOD on ENSO.We demonstrate thatnegative IOD events can also influence the Pacific Ocean in the follow ing year through the ITF.Physically,downwelling anomalies in the eastern Indian Ocean,reflected by positive SSHAsduring negative IOD events,propagate via the ITF into the western Pacific Ocean.These anomalies can further induce warm anomalies in the subsurface of the western Pacific and propagate eastward to the surface of the eastern Pacific.Ultimately, they result in an El Ni?no-like SSTA state.Therefore,it is clear that the mechanism of the influence ofnegative IOD on the Pacific Ocean in the follow ing year is symmetrical to that of positive IOD.

    We also estimate the contribution of IOD forcing to the ENSO-related Pacific variability.About8%of the eastern Pacific SSH variability associated w ith ENSO can be attributed to the IOD forcing in the tropical Indian Ocean through the ITF.However,this resultmay be dependenton the modelwe used.More sensitivity experiments carried outusing different models is recommended.

    Finally,we note that the ITF is a complex passage involving three major channels:the Lombok Strait,the Ombai Strait,and the Timor Sea.The current level of know ledge aboutthese channels lim its ourunderstanding of the ITF transportation mechanism.In this study,we simply treat the ITF as a“black box”and do not consider how the upwelling and downwelling anomalies propagate from the Indian to the Pacific Ocean.

    Acknow ledgements.The authors appreciate the anonymous reviewers very much for their valuable comments and suggestions.This work was sponsored by the National Public Benefi t (Meteorology)Research Foundation of China(Grant No.GYHY 201306018).

    REFERENCES

    A lexander,M.A.,I.Blade,M.Newman,J.R.Lanzante,N.C. Lau,and J.D.Scott,2002:The atmospheric bridge:The influence of ENSO teleconnections on air–sea interaction over the globaloceans.J.Climate,15,2205–2231.

    Allan,R.J.,and Coauthors,2001:Is there an Indian Ocean dipole and is itindependentof the ElNi?no-Southern Oscillation?InternationalCLIVAR Project Office,18–22.

    Annamalai,H.,S.P.Xie,J.P.McCreary,and R.Murtugudde, 2005:Impactof Indian Ocean sea surface temperature on developing ElNi?no.J.Climate,18,302–319.

    Baquero-Bernal,A.,M.Latif,and S.Legutke,2002:On Dipolelike variability of sea surface temperature in the tropical Indian Ocean.J.Climate,15,1358–1368.

    Behera,S.K.,J.J.Luo,S.Masson,S.A.Rao,H.Sakuma,and T. Yamagata,2006:A CGCM study on the interaction between IOD and ENSO.J.Climate,19,1688–1705.

    Chen,D.,M.A.Cane,A.Kaplan,S.E.Zebiak,and D.Huang, 2004:Predictability of El Ni?no over the past 148 years.Nature,428,733–736.

    Clarke,A.J.,and S.Van Gorder,2003:Improving ElNi?no prediction using a space-time integration of Indo-Pacific w inds and equatorial Pacific upper ocean heat content.Geophys.Res. Lett.,30,1399,doi:10.1029/2002GL016673.

    Danabasoglu,G.,and Coauthors,2011:The CCSM 4 ocean component.J.Climate,25,1361–1389.

    Deser,C.,and Coauthors,2012:ENSO and Pacific decadal variability in the community climate system model version 4.J. Climate,25,2622–2651.

    Diaz,H.F.,M.P.Hoerling,and J.K.Eischeid,2001:ENSO variability,teleconnections and climate change.International Journal ofClimatology,21,1845–1862.

    Hong,C.-C.,T.Li,and J.-J.Luo,2008a:Asymmetry of the Indian Ocean dipole.Part II:Model diagnosis.J.Climate,21, 4849–4858.

    Hong,C.-C.,T.Li,L.Ho,and J.-S.Kug,2008b:Asymmetry of the Indian Ocean dipole.Part I:Observationalanalysis.J.Climate,21,4834–4848.

    Izumo,T.,M.Lengaigne,J.Vialard,J.J.Luo,T.Yamagata,and G. Madec,2014:Influence of Indian Ocean Dipole and Pacific recharge on follow ing year’s El Ni?no:Interdecadal robustness.Climate Dyn.,42,291–310.

    Izumo,T.,and Coauthors,2010:Influence of the state of the Indian Ocean Dipole on the follow ing year’s El Ni?no.Nature Geoscience,3,168–172.

    Jin,E.,and Coauthors,2008:Current status of ENSO prediction skill in coupled ocean–atmosphere models.Climate Dyn.,31, 647–664.

    Jochum,M.,B.Fox-Kemper,P.H.Molnar,and C.Shields, 2009:Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Ni?no.Paleoceanography,24,PA1212,doi:10.1029/2008PA 001678.

    Kug,J.S.,and I.S.Kang,2006:Interactive feedback between ENSO and the Indian Ocean.J.Climate,19,1784–1801.

    Large,W.G.,and G.Danabasoglu,2006:Attribution and impacts ofupper-ocean biases in CCSM 3.J.Climate,19,2325–2346.

    Latif,M.,and Coauthors,1998:A review of the predictability and prediction of ENSO.J.Geophys.Res.:-Oceans,103,14375–14393.

    Lau,N.-C.,and M.J.Nath,2003:Atmosphere–Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.J.Climate, 16,3–20.

    Lee,T.,and Coauthors,2010: Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products.Dyn.Atmos.Oceans,50, 201–223.

    Luo,J.-J.,S.Masson,S.K.Behera,and T.Yamagata,2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model.J.Climate,21,84–93.

    Luo,J.-J.,R.Zhang,S.K.Behera,Y.Masumoto,F.-F.Jin,R. Lukas,and T.Yamagata,2010:Interaction between El Ni?no and Extreme Indian Ocean Dipole.J.Climate,23,726–742.

    Meng,W.,and G.X.Wu,2000:Gearing between the Indian and Pacific Ocean(GIP)and the ENSO,Part2.modelsimulation. Chinese JournalofAtmospheric Sciences,24,15–25.(in Chinese)

    Meyers,G.,R.J.Bailey,and A.P.Worby,1995:Geostrophic transport of Indonesian Throughflow.Deep-Sea Research Part IOceanographic Research Papers,42,1163–1174.

    Nagura,M.,and M.Konda,2007:The seasonal developmentof an SST anomaly in the Indian Ocean and its relationship to ENSO.J.Climate,20,38–52.

    Nicholls,N.,W.Drosdowsky,and A.M.S.Ams,2001:Is there an equatorial Indian Ocean SST dipole,independentof the El Ni?no-Southern Oscillation?Climate Variability,the Oceans, and Societal Impacts,The The 81stAMS AnnualMeeting,Albuquerque,NM,U.S.,January 2001,17–18.

    Roxy,M.,S.Gualdi,H.K.L.Drbohlav,and A.Navarra,2011: Seasonality in the relationship between El Ni?no and Indian Ocean dipole.Climate Dyn.,37,221–236.

    Saji,N.H.,and T.Yamagata,2003:Structure of SST and surface w ind variability during Indian Ocean dipole mode events: COADS observations.J.Climate,16,2735–2751.

    Schott,F.A.,S.P.Xie,and J.P.M cCreary Jr.,2009:Indian ocean circulation and climate variability.Rev.Geophys.,47,doi: 10.1029/2007RG000245.

    Shinoda,T.,W.Han,E.J.Metzger,and H.E.Hurlburt,2012:Seasonal Variation of the Indonesian Throughflow in Makassar Strait.J.Phys.Oceanogr.,42,1099–1123.

    Tippett,M.K.,A.G.Barnston,and S.Li,2011:Performance of recent multimodel ENSO forecasts.J.Appl.Meteor.Climatol.,51,637–654.

    Wang,B.,R.G.Wu,and X.H.Fu,2000:Pacific–East Asian teleconnection:How does ENSO affect East Asian climate?J. Climate,13,1517–1536.

    Wu,G.,and W.Meng,1998:Gearing between the Indian and Pacific Ocean(GIP)and the ENSO,Part1.Data analyses.Chinese Journal of Atmospheric Sciences,22,470–480.(in Chinese)

    Wyrtki,K.,1987:Indonesian through flow and the associated pressure gradient.J.Geophys.Res.:Oceans,92,12941–12946.

    Yuan,D.L.,and Coauthors,2011:Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean:Roles of the Indonesian Throughflow.J.Climate,24, 3593–3608.

    Yuan,D.L.,H.Zhou,and X.Zhao,2013:Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow.J. Climate,26,2845–2861.

    :Zhou,Q.,W.S.Duan,M.Mu,and R.Feng,2015:Influence of positive and negative Indian Ocean dipoles on ENSO via the Indonesian Throughflow:Results from sensitivity experiments.Adv.Atmos.Sci.,32(6),783–793,

    10.1007/s00376-014-4141-0.

    (Received 1 July 2014;revised 10 October 2014;accepted 15 November 2014)

    ?Corresponding author:DUAN Wansuo Email:duanws@lasg.iap.ac.cn

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    av在线观看视频网站免费| 伦理电影大哥的女人| 亚洲人与动物交配视频| 亚洲av.av天堂| 中文字幕久久专区| 最近中文字幕高清免费大全6| 黄片wwwwww| 国产熟女欧美一区二区| 人妻丰满熟妇av一区二区三区| 91精品国产九色| 亚洲va在线va天堂va国产| 亚洲18禁久久av| 午夜福利18| 亚洲色图av天堂| 午夜精品一区二区三区免费看| 精品久久久久久久末码| 日韩制服骚丝袜av| 夜夜看夜夜爽夜夜摸| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合久久99| 69av精品久久久久久| 一区福利在线观看| 国产熟女欧美一区二区| 免费人成在线观看视频色| 中文字幕免费在线视频6| av女优亚洲男人天堂| 免费观看人在逋| 久久中文看片网| 欧美一区二区精品小视频在线| 免费看光身美女| 久久人妻av系列| 国产精品一二三区在线看| 亚洲婷婷狠狠爱综合网| 国产一区二区在线观看日韩| 亚洲中文字幕日韩| 特级一级黄色大片| 成人综合一区亚洲| 午夜精品国产一区二区电影 | 午夜激情欧美在线| 春色校园在线视频观看| 九色成人免费人妻av| www日本黄色视频网| h日本视频在线播放| 国产久久久一区二区三区| 国内精品宾馆在线| 亚洲18禁久久av| 久久中文看片网| 久久精品国产自在天天线| 永久网站在线| 欧美不卡视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 性欧美人与动物交配| 最近在线观看免费完整版| 18禁在线无遮挡免费观看视频 | 91精品国产九色| 又爽又黄无遮挡网站| 一本久久中文字幕| 国产一区二区亚洲精品在线观看| 亚洲精品成人久久久久久| 日本黄色视频三级网站网址| 黄色一级大片看看| 97超碰精品成人国产| 国产精品永久免费网站| 一进一出抽搐动态| 精品欧美国产一区二区三| 欧美zozozo另类| 一区福利在线观看| 日本成人三级电影网站| 中文字幕av在线有码专区| 日韩大尺度精品在线看网址| 欧洲精品卡2卡3卡4卡5卡区| 免费看av在线观看网站| aaaaa片日本免费| 国产人妻一区二区三区在| 一边摸一边抽搐一进一小说| 嫩草影院新地址| 狂野欧美激情性xxxx在线观看| 波多野结衣高清作品| 国产精品av视频在线免费观看| 日本色播在线视频| 国产精品久久久久久亚洲av鲁大| 悠悠久久av| 日本成人三级电影网站| 少妇熟女aⅴ在线视频| 国产精品亚洲美女久久久| 大又大粗又爽又黄少妇毛片口| 国产精品永久免费网站| 精品午夜福利视频在线观看一区| 国产中年淑女户外野战色| 少妇人妻精品综合一区二区 | 亚洲精品亚洲一区二区| 一区二区三区高清视频在线| 国产精品亚洲一级av第二区| 精品少妇黑人巨大在线播放 | 国产国拍精品亚洲av在线观看| 黄片wwwwww| 精华霜和精华液先用哪个| 日本与韩国留学比较| 波多野结衣高清无吗| 大型黄色视频在线免费观看| 少妇熟女aⅴ在线视频| 尾随美女入室| 国产欧美日韩精品一区二区| av在线老鸭窝| 国产在视频线在精品| 欧美成人精品欧美一级黄| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线| 男插女下体视频免费在线播放| 精品免费久久久久久久清纯| 超碰av人人做人人爽久久| 听说在线观看完整版免费高清| 少妇的逼好多水| АⅤ资源中文在线天堂| 久久久久久久久久黄片| 草草在线视频免费看| 九九久久精品国产亚洲av麻豆| 国产高清激情床上av| 黄片wwwwww| av中文乱码字幕在线| av在线观看视频网站免费| 又粗又爽又猛毛片免费看| 日韩av不卡免费在线播放| 男人舔奶头视频| 神马国产精品三级电影在线观看| 欧美+亚洲+日韩+国产| 神马国产精品三级电影在线观看| 日韩精品青青久久久久久| 免费在线观看影片大全网站| 女同久久另类99精品国产91| 女同久久另类99精品国产91| 婷婷精品国产亚洲av| 亚洲成人av在线免费| 九九在线视频观看精品| 在线观看免费视频日本深夜| av福利片在线观看| 小说图片视频综合网站| 亚洲欧美精品自产自拍| 身体一侧抽搐| 色综合亚洲欧美另类图片| 国产精品久久久久久精品电影| 91麻豆精品激情在线观看国产| 免费电影在线观看免费观看| 免费电影在线观看免费观看| 亚洲熟妇中文字幕五十中出| 亚洲自偷自拍三级| 亚洲国产欧美人成| 日本精品一区二区三区蜜桃| 免费观看人在逋| 国产精品久久视频播放| 毛片一级片免费看久久久久| 亚洲高清免费不卡视频| 高清毛片免费观看视频网站| 国产亚洲av嫩草精品影院| 99在线视频只有这里精品首页| 精品人妻熟女av久视频| 国产精品一二三区在线看| 如何舔出高潮| 特大巨黑吊av在线直播| 成人鲁丝片一二三区免费| 日本撒尿小便嘘嘘汇集6| 久久久久性生活片| 蜜桃亚洲精品一区二区三区| 直男gayav资源| 亚洲在线观看片| 成人精品一区二区免费| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩东京热| 精品不卡国产一区二区三区| 精品一区二区三区人妻视频| 12—13女人毛片做爰片一| 国产免费一级a男人的天堂| 免费看a级黄色片| 国产不卡一卡二| 日韩欧美一区二区三区在线观看| 国产精品,欧美在线| 国产高清视频在线观看网站| 91久久精品国产一区二区三区| 成人漫画全彩无遮挡| av在线播放精品| 亚洲五月天丁香| 97热精品久久久久久| 亚洲欧美日韩高清专用| 国产中年淑女户外野战色| 午夜精品国产一区二区电影 | 国产精品乱码一区二三区的特点| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av五月六月丁香网| 国产一级毛片七仙女欲春2| 22中文网久久字幕| 亚洲精品一区av在线观看| 亚洲成人中文字幕在线播放| 亚洲欧美成人综合另类久久久 | 性欧美人与动物交配| 国产乱人偷精品视频| 大又大粗又爽又黄少妇毛片口| 欧美日韩国产亚洲二区| 看免费成人av毛片| 精品熟女少妇av免费看| 亚洲精品日韩在线中文字幕 | av中文乱码字幕在线| 婷婷色综合大香蕉| 一级毛片电影观看 | 少妇熟女欧美另类| 色av中文字幕| 久久人妻av系列| 搞女人的毛片| 悠悠久久av| 一级a爱片免费观看的视频| 丰满人妻一区二区三区视频av| 国产成人a∨麻豆精品| 91精品国产九色| 真人做人爱边吃奶动态| 日本成人三级电影网站| 日本色播在线视频| 麻豆国产97在线/欧美| 六月丁香七月| 免费看日本二区| 午夜视频国产福利| 91午夜精品亚洲一区二区三区| 精品一区二区免费观看| 91在线精品国自产拍蜜月| 嫩草影院入口| 成人av在线播放网站| 午夜久久久久精精品| 亚洲最大成人中文| 婷婷精品国产亚洲av在线| 一进一出好大好爽视频| 91久久精品国产一区二区成人| 日本欧美国产在线视频| 国产精品一二三区在线看| 99热这里只有是精品50| 色综合色国产| 日韩欧美精品v在线| 国产精品一区二区三区四区久久| 午夜亚洲福利在线播放| 亚洲四区av| 直男gayav资源| 欧美日韩国产亚洲二区| 日韩一本色道免费dvd| 在线免费观看的www视频| 最近中文字幕高清免费大全6| 中国美女看黄片| 欧美3d第一页| av专区在线播放| 全区人妻精品视频| 搡老岳熟女国产| 亚洲内射少妇av| 午夜免费激情av| 直男gayav资源| 免费一级毛片在线播放高清视频| av福利片在线观看| 亚洲精品亚洲一区二区| 亚洲精品一区av在线观看| 欧美日韩在线观看h| 精品一区二区免费观看| 两个人视频免费观看高清| 一级av片app| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱| 国产高清视频在线观看网站| videossex国产| 精品99又大又爽又粗少妇毛片| 一个人看的www免费观看视频| 人妻夜夜爽99麻豆av| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看| 最新在线观看一区二区三区| 久久久欧美国产精品| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 久久6这里有精品| 欧美色欧美亚洲另类二区| 小蜜桃在线观看免费完整版高清| 人妻夜夜爽99麻豆av| 国产成人福利小说| 欧美色视频一区免费| 一本精品99久久精品77| 日日摸夜夜添夜夜添av毛片| 人人妻,人人澡人人爽秒播| 国产成人福利小说| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 九九在线视频观看精品| www.色视频.com| 久久久久国内视频| 99久久成人亚洲精品观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品日韩在线中文字幕 | 日本五十路高清| 色哟哟·www| 国产人妻一区二区三区在| 日本在线视频免费播放| 久久久久国产精品人妻aⅴ院| 日本五十路高清| 综合色av麻豆| 少妇熟女欧美另类| 看片在线看免费视频| 1000部很黄的大片| 国产精品一区二区三区四区久久| 男插女下体视频免费在线播放| 国产综合懂色| 99视频精品全部免费 在线| avwww免费| 91久久精品国产一区二区成人| 一卡2卡三卡四卡精品乱码亚洲| 免费无遮挡裸体视频| 一区福利在线观看| 99riav亚洲国产免费| 成年av动漫网址| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 色视频www国产| 成人永久免费在线观看视频| 精品熟女少妇av免费看| 午夜福利18| 国产精品爽爽va在线观看网站| 免费观看人在逋| 99热全是精品| 美女被艹到高潮喷水动态| 色哟哟哟哟哟哟| 日本精品一区二区三区蜜桃| 国产精华一区二区三区| 一级黄片播放器| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 免费大片18禁| 久久草成人影院| 精品少妇黑人巨大在线播放 | 精品欧美国产一区二区三| 日本一本二区三区精品| 12—13女人毛片做爰片一| 国产成年人精品一区二区| 国产欧美日韩一区二区精品| 精品久久久噜噜| 天天躁夜夜躁狠狠久久av| 国产精品三级大全| av女优亚洲男人天堂| 国产 一区 欧美 日韩| 三级国产精品欧美在线观看| 亚洲国产欧洲综合997久久,| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放 | 欧美成人精品欧美一级黄| 黄色配什么色好看| 国产不卡一卡二| 性色avwww在线观看| 观看免费一级毛片| 三级国产精品欧美在线观看| 国产国拍精品亚洲av在线观看| 成人性生交大片免费视频hd| 91在线观看av| 亚洲成人中文字幕在线播放| 美女内射精品一级片tv| 国产大屁股一区二区在线视频| 日本黄大片高清| 综合色av麻豆| 亚洲久久久久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 亚洲av免费高清在线观看| 在线播放无遮挡| 村上凉子中文字幕在线| 日本免费a在线| 免费黄网站久久成人精品| 变态另类成人亚洲欧美熟女| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清三级在线| 国产免费一级a男人的天堂| 久久精品综合一区二区三区| 男人狂女人下面高潮的视频| 九九在线视频观看精品| 久久久精品94久久精品| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 一区福利在线观看| 麻豆国产av国片精品| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 搡老妇女老女人老熟妇| 级片在线观看| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 91在线观看av| 国产黄a三级三级三级人| 校园春色视频在线观看| 免费看光身美女| 搡女人真爽免费视频火全软件 | 无遮挡黄片免费观看| 欧美一区二区亚洲| 亚洲美女搞黄在线观看 | 精品久久久久久久末码| 观看免费一级毛片| 老熟妇仑乱视频hdxx| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 亚洲成a人片在线一区二区| 亚洲成人av在线免费| 成年女人永久免费观看视频| 人妻久久中文字幕网| 成人特级黄色片久久久久久久| 国产一区二区激情短视频| 人妻久久中文字幕网| 亚洲成人av在线免费| АⅤ资源中文在线天堂| 狂野欧美白嫩少妇大欣赏| 日韩精品中文字幕看吧| 亚洲国产欧洲综合997久久,| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av| 国产精品一区二区三区四区久久| a级毛色黄片| 变态另类成人亚洲欧美熟女| 久久精品影院6| 麻豆乱淫一区二区| 国产伦一二天堂av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产色婷婷99| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 男女那种视频在线观看| 嫩草影视91久久| 国产精品久久久久久av不卡| 国产av麻豆久久久久久久| 搡老岳熟女国产| 免费观看的影片在线观看| 日韩大尺度精品在线看网址| 天天躁夜夜躁狠狠久久av| 嫩草影院新地址| 国产色婷婷99| 五月伊人婷婷丁香| 99久国产av精品国产电影| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 国产人妻一区二区三区在| 久久精品国产亚洲av涩爱 | 波多野结衣高清作品| 男人狂女人下面高潮的视频| 身体一侧抽搐| 亚洲av熟女| 少妇的逼水好多| www.色视频.com| 三级毛片av免费| 看十八女毛片水多多多| 国产成人福利小说| 日本在线视频免费播放| 中文字幕av成人在线电影| 天天躁日日操中文字幕| 直男gayav资源| 亚洲电影在线观看av| 久久综合国产亚洲精品| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 能在线免费观看的黄片| 欧美激情久久久久久爽电影| 亚洲无线在线观看| 国产在视频线在精品| 亚洲真实伦在线观看| 亚洲va在线va天堂va国产| 中国美白少妇内射xxxbb| 黑人高潮一二区| 校园春色视频在线观看| 大型黄色视频在线免费观看| 成人无遮挡网站| 久久久欧美国产精品| 免费电影在线观看免费观看| 干丝袜人妻中文字幕| av.在线天堂| 少妇裸体淫交视频免费看高清| 天堂av国产一区二区熟女人妻| 久久久久久伊人网av| 国产69精品久久久久777片| 亚洲成人久久性| 天天躁日日操中文字幕| 欧美日本视频| 国产男人的电影天堂91| 欧美另类亚洲清纯唯美| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩高清专用| 国产黄片美女视频| 听说在线观看完整版免费高清| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频 | 美女xxoo啪啪120秒动态图| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| 97热精品久久久久久| 一个人看视频在线观看www免费| 亚洲内射少妇av| 尤物成人国产欧美一区二区三区| 91av网一区二区| 国产中年淑女户外野战色| 精品熟女少妇av免费看| 天天躁日日操中文字幕| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看| 日本黄色片子视频| 麻豆久久精品国产亚洲av| 成人无遮挡网站| 白带黄色成豆腐渣| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 亚洲第一电影网av| 亚洲成人中文字幕在线播放| 久久精品国产亚洲网站| 久久精品人妻少妇| 乱系列少妇在线播放| 你懂的网址亚洲精品在线观看 | 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 国产伦精品一区二区三区四那| 亚洲av美国av| 乱码一卡2卡4卡精品| av国产免费在线观看| a级毛色黄片| 欧美一区二区精品小视频在线| 欧美成人a在线观看| 伊人久久精品亚洲午夜| 我要看日韩黄色一级片| 人人妻人人看人人澡| 国产精品三级大全| 亚洲丝袜综合中文字幕| АⅤ资源中文在线天堂| 精品国内亚洲2022精品成人| 国产精品,欧美在线| 国产av一区在线观看免费| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片| 欧美日韩精品成人综合77777| 又爽又黄无遮挡网站| 欧美日韩在线观看h| 国产69精品久久久久777片| 亚洲精品一区av在线观看| 在线看三级毛片| 午夜福利在线在线| 少妇人妻精品综合一区二区 | 成人精品一区二区免费| 国产精品三级大全| 成人美女网站在线观看视频| 亚洲av美国av| 真实男女啪啪啪动态图| 国产精品免费一区二区三区在线| av黄色大香蕉| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 亚洲综合色惰| 久久精品国产鲁丝片午夜精品| 久久99热这里只有精品18| 久久久久久久久久久丰满| 男女做爰动态图高潮gif福利片| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 亚洲精品乱码久久久v下载方式| 看非洲黑人一级黄片| 精品久久久久久成人av| 一区福利在线观看| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 亚洲av不卡在线观看| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 日韩制服骚丝袜av| 国产综合懂色| 天堂动漫精品| 国产精品电影一区二区三区| 久久久久久国产a免费观看| 赤兔流量卡办理| 最近视频中文字幕2019在线8| 国产精品不卡视频一区二区| 欧美一区二区亚洲| 日韩国内少妇激情av| 欧美在线一区亚洲| 变态另类成人亚洲欧美熟女| 美女cb高潮喷水在线观看| 午夜福利在线观看免费完整高清在 | 天堂av国产一区二区熟女人妻| 亚洲精品粉嫩美女一区| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 色综合色国产| 国产亚洲av嫩草精品影院| 日韩欧美 国产精品| 美女 人体艺术 gogo| 无遮挡黄片免费观看| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| 99精品在免费线老司机午夜| 我要搜黄色片| 婷婷精品国产亚洲av| 久久久久九九精品影院| 嫩草影视91久久| 亚洲精品456在线播放app| 精品久久久久久久久亚洲| 久久精品国产鲁丝片午夜精品| 高清日韩中文字幕在线| 国内精品久久久久精免费| 黄色视频,在线免费观看| 一个人看视频在线观看www免费| 69av精品久久久久久| 国产老妇女一区| 久久午夜亚洲精品久久| 嫩草影视91久久| 中文字幕免费在线视频6|