• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep Convective Clouds over the Northern Pacific and Their Relationship w ith Oceanic Cyclones

    2015-04-20 05:59:26YIMingjianFUYunfeiLIUPengandZHENGZhixia
    Advances in Atmospheric Sciences 2015年6期

    YIM ingjian,FU Yunfei,LIU Peng,and ZHENG Zhixia

    1University of Science and Technology of China,Hefei230026

    2Anhui Provincial Academy of Environmental Sciences,Hefei230022

    3State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing100081

    Deep Convective Clouds over the Northern Pacific and Their Relationship w ith Oceanic Cyclones

    YIM ingjian1,2,FU Yunfei?1,3,LIU Peng1,2,and ZHENG Zhixia1

    1University of Science and Technology of China,Hefei230026

    2Anhui Provincial Academy of Environmental Sciences,Hefei230022

    3State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing100081

    Based on combined CloudSat/CALIPSO detections,the seasonal occurrence of deep convective clouds(DCCs)over the m idlatitude North Pacific(NP)and cyclonic activity in w inter were compared.In w inter,DCCs are more frequent over the central NP,from approximately 30?N to 45?N,than over other regions.The high frequencies are roughly equal to those occurring in this region in summer.Most of these DCCs have cloud tops above a 12 km altitude,and the highest top is approximately 15 km.These w intertime marine DCCs commonly occur during surface circulation conditions of low pressure,high temperature,strong meridionalw ind,and high relative hum idity.Further,the maximum probability of DCCs, according to the high correlation coefficient,was found in the region 10?–20?east and 5?–10?south of the center of the cyclones.The potential relationship between DCCs and cyclones regarding their relative locations and circulation conditions was also identified by a case study.Deep clouds were generated in the warm conveyor beltby strong updrafts from baroclinic flow s.The updrafts intensified when latentheatwas released during the adjustmentof the cyclone circulation current.This indicates that the dynam ics of cyclones are the primary energy source for DCCs over the NP in w inter.

    CloudSat,deep convective clouds,marine cyclones,northern Pacific

    1.Introduction

    Deep convective clouds(DCCs)are common in low latitudes during summer(Mapes and Houze,1993;Liu et al., 1995;Hall and Vonder Haar,1999;Gettelman etal.,2002). With the developmentof satellite technology,particularly for the remote sensing of clouds and precipitation,greatprogress has been made in the study of DCCs(Alcala and Dessler, 2002;Luo etal.,2008;Luo etal.,2011).DCCs can extend from near the surface to a high level above the tropopause. Because of their large depths and high tops,DCCs play an important role in the Earth’s climate system via their influence on precipitation and radiation(Stephens,2005;Stephens etal.,2008;Feng etal.,2011;Lietal.,2013).

    Approximately 1.3%of tropicalconvective systems reach 14 km,and 0.1%of these systems penetrate the tropical tropopause.Overshooting convection is more frequent over land than over the ocean,especially over Central A frica,Indonesia and South America(Liu and Zipser,2005).Because the activities of deep convection are generally attributed to the large-scale seasonal m igration of the intertropical convergence zone(ITCZ)and the Indian and East Asian, South American and A frican monsoons,the distribution of deep convection is usually consistentw ith these general circulation systems(Liu etal.,2007,2012).Mostextreme deep convection events occur in the western Pacific(December–March)and in the Indian monsoon regions(July–September) (Jiang et al.,2004).The peak depth and strength of deep convection is associated w ith the strong interactionsof tropical clouds,precipitation and radiation in summer(Lin etal., 2006;Liet al.,2013).The characteristic features of tropical deep convection have been studied in recentyears due to the rapid developmentof remote sensing technology(Liu et al.,1995;Dessler,2002;Yuan and Li,2010).These deep convection events and their associated precipitation play an importantrole in regionalweathervariationsand in the crosstropopause transportof chem ical tracer gases(Poulida etal., 1996;Sherwood and Dessler,2000).

    However,whether the deep convection events in the extratropics are sim ilar to those that occur in tropical regions has yet to be determined.Generally,the convective activities that occur in the extratropics are weaker than those that occur in the tropics,especially in w inter(Liu et al.,2012). However,there are exceptions in some areas.The most notable exception is in the North Pacific(NP),where stormtrackshaveadistinctpathduringborealwinter(Changand Fu,2002;Changetal.,2002).Everyyear,dozensofstrong cyclonesaregeneratedinthewestportionoftheoceanand migrateeastwardfromNovembertothenextApril(Gulev etal.,2001;Rodionovetal.,2007).Thesecyclonesusually forminlowlatitudesandthendeveloprapidly.Theircentral pressureatsealevelfallsatarateof24hPad-1(Sanders andGyakum,1980).Becauseofthevigorousdevelopment ofthesesynoptic-scalesystems,strongjetstreamsandverticalmotionarealsocommon(Hollandetal.,1987).When thereissufficientaccumulationofmoisturetoachievesaturation,deepcloudsaregeneratedintheupliftedflows(Govekaretal.,2011).Theopticalthicknessoftheseconvective deepcloudsisusuallylarge,whichisexpectedtoaffectthe radiationfluxsignificantly.Moreover,anextendedvertical transferthatissustainedindeepconvectioncanalsoplaya roleinthecross-tropopauseexchangeofatmosphericconstituents(Fischeretal.,2003).Ourunderstandingofdeep convectionandembeddeddeepcloudsoverthewintertime oceanhasremainedincompleteduetothesparsecoverage ofground-basedandship-basedobservations.Thisdilemma hasrecentlybeenaddressedassatelliteremotesensingnow routinelycollectsdataonglobalclouds;thus,DCCsover theoceancanbecharacterized(Luoetal.,2008).Weused CloudSat/CALIPSOdatainthisstudytofocusonDCCsover theNPandtoinvestigatetheirrelationshipwithcyclonicactivity.Thisstudyaimstorevealthecharacteristicsofdeep convectionintheextratropicsduringthecoldseason;thus, itmayadvanceunderstandingoftheeffectsonconvectionof synoptic-scaleoceaniccyclones.

    2.Data

    CloudstructuredatafromCloudSat/CALIPSOwereused inthisstudytoillustratetheverticaldevelopmentofconvectionsystems.TheCloudSatsatelliteorbitstheEarthapproximately14.5timesperdayata750kmorbit.Thecloud profilingradar(CPR)onCloudSatoperatesatafrequency of94GHz,pointsnominallytowardsthenadirandemits apulseof3.3microseconds.Thebackscatteredsignalsare over-sampledandaveragedtoproduceanominalfootprint of1.4kmacross-trackand2.5kmalong-trackandaverticalsamplingof~250m(Maceetal.,2007).TheCloud-Satdatawerealsocombinedwithmeasurementsfromthe CALIPSOCloud-AerosolLidarwithOrthogonalPolarization(CALIOP;hereafterreferredtoastheLidar)toproduceanauthoritativemaskofhydrometeorcoverage.The CPRandtheLidararedesignedtoflyinclosesynchronization.Theobvioussynergyofthesecombinedobservationalcapabilitiesissignificant.Consideringtheabilityof theCPRtoprobeopticallythicklarge-particlelayersand theabilityoftheLidartosenseopticallythinlayersand tenuouscloudtops,thetwoinstrumentshavethepotential toprovideacompletedepictionofcloudgeneration(Mace etal.,2009;NaudandChen,2010).The2B-CLDCLASSLIDARdatausedinthisstudyidentifycloudtypesbyprimarilycombininginformationavailablefromtheCloudSat andCALIPSOsatellites.Itclassifiescloudsbyusingverticalandhorizontalcloudproperties,thepresenceorabsence ofprecipitationfromCloudSatandCALIPSO,cloudtemperaturefromECMWF(EuropeanCentreforMedium-Range WeatherForecasts),andupwardradiancefromMODIS (Moderate-ResolutionImagingSpectroradiometer)measurements(Wangetal.,2013).TheCPR(CloudSat)andLidar (CALIPSO)provideverticalcloudprofilesandhorizontalextentsofclouds,whichprovideimportantinformationondifferentiatecloudtypes.

    TheERA-Interimarchivefrom2007to2010,whichwas producedbyECMWF,wasalsousedinthisstudy,including variablessuchaspotentialvorticity(PV),pressure,temperature,windspeed,andrelativehumidity.ThePVwasusedto definetropopauseheight,andtheothervariableswereusedto revealtheatmosphericconditionsbothinthestatisticalanalysisandinacasestudy.ERA-Interimisareanalysisofthe globalatmospherethatcoversthedata-richperiodsince1979 (originally,ERA-Interimstartedin1989,buta10-yearextensionto1979–88wasproducedin2011)andcontinuesinreal time(Deeetal.,2011).ThedatasetfromERA-Interimis widelyusedinclimateandweatheranalyses.Itincludesnot onlytheprincipleatmosphericfields,suchassealevelpressure,temperature,windandrelativehumility,butalsoindirectvariables,suchasPVandconvectiveavailablepotential energy(CAPE).Thedatausedherehaveaspatialresolution of1.5?×1.5?and60verticallevels,withatoplevelof0.1 hPa.

    3.Statisticalanalysismethod

    Thedeepconvectioninthetropicalandsubtropicalregionsduringsummerusuallyextendsfromthelowlevelsto abovethetropopause.Ithasbeendeterminedthat~1.3% ofconvectionoccursovera14kmdepth,and~0.1%occurs overa17kmdepth(LiuandZipser,2005).Oneofthehighest cloudtopsobserved,whichoccurredovernorthernAustralia, formedataheightofmorethan19km(AlcalaandDessler, 2002).Tocategorizedeepconvection,AlcalaandDessler (2002)referredtotopsexceeding10kmas“deepconvection”andtopsexceeding14kmas“overshootingconvection”.This indexisnotappropriateforthedeepconvectionthatoccurs overtheNPinwinterbecausethetroposphereisthinnerthan itisinthetropics.IntermsofPV,whichisaquantitythat isconservedunderadiabaticandfrictionlessconditions,the tropopauseisfrequentlydefinedby2PVU(potentialvorticityunites)(Hoskinsetal.,1985;Gougetetal.,2000),where 1PVU=10-6Km2kg-1s-1.This“dynamicaltropopause definition”ideallyrepresentstheconceptofthetropopauseas aquasi-impermeablediscontinuoussurface.Obviously,the tropopauseheightisexactlytheheightofthe2PVUisosurfacewhenthetropopauseisnotfolded.Tropopausefoldscan bedefinedasregionswhereverticalsoundingsrevealmultiplecrossingsofthetropopause.Whenthetropopausefolds, the2PVUisosurfaceisverticallyintersectedatleasttwice, i.e.,multipletropopausesexist(Sprengeretal.,2003).Figures1aandbshowthetropopausefoldfrequencydistribu-tionsovertheNPforwinter(December–January–February; DJF)andsummer(June–July–August;JJA).Thefoldfrequencyatacertainlocationrepresentsthepercentageofinstances(dailyECMWFfieldshavebeenanalyzed)inwhicha foldisidentifiedatthislocationduringtheparticularseason. Duringbothseasons,tropopausefoldsaremostfrequentin thesubtropicsbetween20?Nand40?N,wherethemaximum occurrencesareapproximately0.12duringDJFandapproximately0.04duringJJA.Wedefinedthetropopauseheightof thefoldastheaverageheightofitsupperandlowerboundarytoreducetheinfluenceofthedoubletropopausewhen identifyingDCCs.

    Figures1canddshowtheaveragetropopauseheight anditsstandarddeviationforDJFandJJA.Thehighest tropopauseoccursovertheWestPacificduringDJF.The tropopausedescendssharplywithincreasinglatitude.North of40?N,theheightdropstolessthan10km.Thetropopause ishigherduringJJAthanDJF,exceptovertheWestPacific, andhasasmallerstandarddeviation.Theaveragetropopause heightinthemidlatitudesisapproximately11km.Because ofthelargevariationinthetropopausebetweenwinterand summer,itisnotappropriatetouseaconstantheighttodefineDCCs,suchasthatusedbyAlcalaandDessler(2002) forthetropics.

    4.Statisticalanalysisresults

    4.1.DistributionofDCCs

    Inthisstudy,wecollectedthealtitudedataofcloudlayer topsandbasesinsummerandwinterfrom2007to2010.We defined“deepclouds”asthecloudlayersthathaveabase below3kmandatopabovethein-situtropopause(wedefinedthetropopauseheightofthefoldastheaverageheight ofitsupperandlowerboundary).TheDCCdataweregriddedinto1.5?×1.5?forDJFandJJA,asshowninFig.2.Note thattheaveragenumberofobservationsbytheCPR/Lidarin eachgridwasgreaterthan5000,whichislargeenoughto avoidthespuriousbiasintroducedbythisapproach.Figure 2showsamuchgreaterdifferenceintheDCCoccurrences betweenwinterandsummer.DuringJJA,highfrequencies ofDCCsoccuroveralargeregionfromsoutheasternAsia totheEastPacific.Particularly,theDCCsoccurmostfrequentlyineasternAsiaandthewesternPacific,whichare regionsdominatedbyAsiansummermonsoons(Wanget al.,2001).Thesedistributionsaregenerallyconsistentwith previousstudiesbasedontheTRMMPR(TropicalRainfall MeasuringMissionPrecipitationRadar)(AlcalaandDessler, 2002;Liuetal.,2012).Thedefinitionofdeepconvection workswellinthemidlatitudes,whereCloudSat/CALIPSO fillstheTRMMPRdetectiongapnorthof38?N(Kummerow etal.,1998).DuringDJF,theoccurrenceofDCCsoverland greatlydecreases,especiallyinEastAsiaandtheWestPacific.However,theDJFoccurrenceremainsapproximately equaltotheJJAoccurrenceovertheoceannorthof30?N. ThecomparisonbetweenDJFandJJAsuggeststheimportanceofDCCsovertheNPinwinterbecausetheDCCactivitiesdonotweakenfromsummertowinter,asseeninEast AsiaandtheWestPacific.Notethatthehighoccurrenceregionroughlycoincideswithasectionoftheprevailingstorm tracksinborealwinter(Zhangetal.,2004).Ingeneral,most cyclonesarenotstrongintheirearlystageswhentheyareoverthewesternportionoftheNP;theygenerallyexhibita maturestageandpeakdeptharoundthedatelineaftercontinuouslydeepeningduringtheireastwardmigration(Gyakum etal.,1989).Thejetstreamflowaroundcyclonesandtheir associatedupdraftsalsopeakwhenthecyclonesaredeepest (Ding,2005;Yietal.,2012).Thesecirculationconditions provideafavorabledynamicforcefordeepconvection,resultinginlargeroccurrencesofDCCsincentralandeastern portionsoftheNP.BecauseoftheparticularfeaturesofDCCs inDJFandtheirpotentialrelationshiptomarinecyclones,we subsequentlyonlyfocusontheDCCsinDJF.

    Fig.1.(a,b)Seasonaloccurrencesofadoubletropopause,and(c,d)averagetropopauseheightandstandard deviation(units:km):(a,c)winter(December–February);(b,d)summer(June–August).

    4.2.VerticalextensionofDCCs

    ToidentifytheverticalextensionoftheseDCCs,cloud topheight(CTH)informationforDJFwereselectedandaveragedoverthedesignatedarea.Figure3ashowsthevariationofCTHsoverarangeoflongitudes.Mostcloudtops occurataheightof9–14km.Thehighestcloudtops,which occurwestofthedateline,areashighas15km.Figure3b showstheCTHvariationwithlatitude.Fromlowlatitudesto highlatitudes,thehighestcloudtopsdescendgradually,but theoccurrenceshavedifferentvariations.ThetopsofDCCs occurmostfrequentlyataheightofapproximately12km northof30?N.

    TheoccurrencesofDCCsfromCloudSat/CALIPSOappeartobehighestintheITCZ;thisfindingvalidatesthemajor hypothesisofpreviousstudies,whichemphasizesthatintense convectiveactivitiesoccurinthisarea(notshown).However,itisimportanttonotethatDCCsdistinctlydecreasebetween15?NandtheTropicofCancer,wherethelarge-scale descentoftheHadleycirculationdominates.Inthemidlatitudes,from30?Nto45?N,thecloudtopsareslightlylower thanthoseinlowlatitudes,buttheoccurrenceismuchhigher andnearlyequaltothatinsummer.TheDCCsinwinteroccurmuchmorefrequentlyovertheoceanandoverthebelt wheretheconcentratedDCCsinwinterareveryclosetothe agglomerationofcyclones(Changetal.,2002;Wangetal., 2007;Zhangetal.,2012).Ingeneral,theDCCsinthewintertimemidlatitudeoceanappeardifferentfromthosethatoccur inthesummerITCZ.Ithasbeenestablishedthatthethermodynamicforceisveryweakduringwinter,butitisverystrong inthesummerconvectiveregionswheredeepconvectiveactivitiesoccur.Thus,wehypothesizethatthisdeep,marine convectioninwinterisassociatedwithanessentialmechanismthatdiffersfromconvectionthatisthermallydriven.

    4.3.Relationshipwithcyclones

    Fig.2.Occurrenceofdeepconvectivecloudsin(a)winter(December–February)and(b)summer(June–August).

    Fig.3.Occurrenceofcloudtopheightsinwinter(December–February):(a)latitudinaloccurrenceaveraged from30?Nto60?N;(b)longitudinaloccurrenceaveragedfrom120?Eto120?W.

    Fig.4.Probability density of the anomalies during DCCs for(a)surface pressure(units:hPa),(b)2-m temperature(units:K),(c)10-m velocity of zonal w ind(units:m s-1),(d)10-m velocity of meridional w ind(units: m s-1),(e)2-m relative hum idity(units:%),and(f)convective available potential energy(CAPE)(units: J kg-1).

    ToclarifythepotentialrelationshipofDCCswithatmosphericcirculationconditionsandcyclonesthatfrequently occurovertheNPinwinter,wecalculatedtheprobabilitydistributionoftheanomaliesforseveralfundamentalquantities oftheatmosphericcirculationandtheoriginalCAPEwhen DCCsoccur.Thesurfacepressure,temperatureandrelative humidityat2m,thezonalandmeridionalwindvelocityat 10m,andtheCAPEdatawereobtainedfromtheECMWF 6-hourlydataset.AsshowninFig.4,thereisobviouslylower surfacepressure,higher2mtemperatures,stronger10m meridionalwinds,andahigher2mrelativehumiditywhen DCCs occur.At times,the zonal w ind greatly decelerates, but thissituation is notdominant;the w ind speed deviation is ambiguous.Approximately 45%of the sampleshave a CAPE value near 0,and the probability density decreases sharply w ith the increase in CAPE.These features indicate the circulation conditions near DCCs.The surface below DCCs is characterized by warm and moistair,low pressure and meridionalacceleration.CAPE is often used as an indicative index for estimating the potential convection development(Ye et al.,2006),buta large CAPE value does notnecessarily mean deep convection w ill occur.A large number of DCCs occur w ith small CAPE values in the NP in w inter.Although partially contributed by the coarse resolution of the ERA-interim,the small value posed problems for an explanation in terms of pure thermal initiation,which plays an important role in tropicalconvection;however,the large numberof DCCs appears to have a close connection to the atmospheric circulation.This finding motivated us to determine the relationship between DCCs and cyclones,which represent the mostprom inenttype ofweathersystem over the NP in w inter.

    To clarify the potential linkage between DCCs and cyclones,we identified and traced all cyclones thatoccurred in the NP from 2007 to 2010.All of these cyclones exhibited centralpressures less than 975 hPa for at least24 hours.Figure 5 shows the statistical results of these cyclones.Mostof them originated in the western partof the NP at low latitudes, then m igrated toward the northeast and dissipated near the high latitudes or the western coastof the American continent (Fig.6a).The highest occurrence was around the dateline, near 45?N(Fig.6b),and appeared close to the region w ith intense DCCs.To quantify the linkage in the relative locationsbetween cyclonesand DCCs,we calculated the correlation coefficients between the frequenciesof the cyclones and the DCCs.The coefficients were based on the frequency of the central low pressure in a fixed region and the frequency of the DCCs w ithin a moving w indow using the same region size(Fig.6a).The offset longitude and offset latitude between the designated fixed and moving regionswere called?LON and?LAT,respectively,and were assigned as the coordinate indices of the calculated correlation index.The calcu-lation was performed for a?LON range from-10 to 30 and a?LAT range from-5 to 15 to produce a correlation index distribution(Fig.6b).The regions w ith larger correlation index values have a higher probability of DCC formation.As shown in Fig.6b,the maximum index occurs 10?–20?east of the cyclone centerand 5?–10?south of the cyclone center. Figure 6b depicts the pattern in the geographic relationship between the cyclones and DCCs;the southeastern portion of a cyclone is the mostconvective and tends to have higheroccurrences of deep clouds.Thus,the strongest convection is not located near the center of the cyclone system but is most likely to occur in the warm conveyorbeltalong the outeredge ofa cold front,which is in agreementw ith the classic cyclone model.

    Fig.5.(a)Tracks and(b)occurrences of cyclones in w inter.

    Fig.6.Schematic diagram of the(a)calculation methods and(b)distribution of the correlation coefficients.

    5.Case study

    The analysisof the DCCsand the circulation environment indicates the typical characteristic features and inherentprocesses of their relationship.However,a typical case study is necessary to obtain more detailed cyclone characteristics. Among the thousands of cloud profi les in the study area,we chose the strong cyclonesw ith deep cloudsthatwere detected in the Northwest Pacific on 8 February 2009.On that day, CloudSat passed over the Northwest Pacific tw ice at 0058 UTC and 0237 UTC,as shown in Fig.7.The fi rst satellite track passed over the eastern partof the cyclone.The radar reflectivity of the CPR along this track clearly indicated a deep cloud located between 40?N and 45?N.The cloud extended from a low level to above 10 km in the verticaldirection,and most of its top was above the tropopause.The region w ith the DCCs had cold cloud top temperatures(based on MODIS),and was located in a largercold beltin the spiral arm of the cyclone.Approximately 2 hours later,CloudSat passed over the western part of the cyclone again,when it was at the tail of the cold belt of the spiral arm.A long the second track,there were no deep clouds as detected in the fi rst track,except for a mid-level cloud in the northwestern partof the cyclone.This case study offered a directunderstanding of the deep clouds in the NP in w inter.The location of DCCs along the southeastern leading edge of the cyclone provides convincing evidence for the conclusions of the statistical results in the previous section.

    This typical case provides detailed characteristics of the DCCs and the associated cyclone.Therefore,our study focused on the analysis of the surrounding atmospheric circulation environment.As shown in Fig.8,the low-level(850 hPa)converging flow and the high-level(200 hPa)diverging flow in the southeastern part of the cyclone migrated from west to east.At 0000 UTC,the high-level diverging flow lagged behind the low-levelconverging flow.Then,itmoved northeastand strengthened.At0600 UTC,the diverging flow region extended from 30?N to north of50?N,almostcovering the entire low-level converging flow region.It is reasonable to deduce that the lower convergence and the upper divergence were concurrentduring the m igration process,and the time and location of the concurrence was consistentw ith the DCCs.The strong verticalmotion generated during the con-currence reveals that the large-scale baroclinicity played an important role in the developmentof the convection.

    Fig.7.Two satellite passes of the cyclone:(a,b)surface pressure(contours,units:gpm)and cloud top temperature(shading,units:K);(c,d)vertical cross sections of radar reflectivity factors along the tracks(units: dB Z).The solid gray line in(a,b)represents the orbitof CloudSat;the gray dashed line in(c)represents the tropopause.

    Fig.8.Divergence(units:10-5s-1)on the isobaric surface(shading,850 hPa;contours,200 hPa:(a)0000 UTC 8 February 2009;(b)0600 UTC 8 February 2009.The solid gray line in(a,b)represents the orbit of CloudSataccording to Figs.7a and b.

    Some studies have emphasized the importance of the moisture content of the low-level troposphere in the development of deep convection(Derbyshire et al.,2004;Kuang and Bretherton,2006).Derbyshire etal.(2004),for instance, documented the sensitivity of convective development in a w ide range of environmental relative humidity levels.Their results showed that a wet environment is favorable for deep convection because the entrainmentof wetterenvironmental air leads to weaker evaporative cooling and positive buoyancy.As shown in Fig.9,the distributionsof relative humidity,temperature and w ind vectors were consistent w ith the divergence in Fig.8.The leading edge of the cyclone,especially the southwestern part,most notably had the strongest poleward flow,w ith a maximum velocity exceeding 50 m s-1.This warm air advection transported abundantmoisture into the cyclonic system.At the same time,the negative temperature gradientduring the conveyance caused the relative hum idity to approach saturation rapidly.Note that the wettest air was found in the warm and moist transfer belt,where updraftsprevail.Abundantwatervapor,warm airadvection and updrafts create the most favorable environmental conditions forenhancing the depth of convection.

    Fig.9.Relative hum idity(shading,units:%),temperature(contours,units:K)and stream vectors(arrows, units:m s-1)on the isobaric surface of 850 hPa:(a)0000 UTC 8 February 2009;(b)0600 UTC 8 February 2009.

    Fig.10.(a)Regionalaveraged(40?–45?N,180?–175?W)relative hum idity(shading,units:%),temperature(contours, units:K)and verticalvelocity vectors(units:Pa s-1)in the time–pressure cross section.(b)The contours of the vertical velocity(units:Pa s-1)in the same cross section.

    The temperature,velocity and hum idity were averaged over the most convective region(40?–45?N,180?–175?W) to revealprecisely how the characteristic featuresvaried w ith time(Fig.10).Initially,a temperature anomaly occurred. Because the air temperature above 300 hPa dropped sharply to less than 220 K on 7 February,weak sinking motion began in the high-levelair.However,the air temperature below 300 hPa was warming at this time.This temperature structure increased the atmospheric instability.Aftera slow and gradual increase over dozens of hours,the warming of the low-level airbecame significantin the daytime hoursof7 February,and the lifting started at the m id-level.As the lifting strengthened,an updraftdeveloped from the sea surface to above 200 hPa.This indicates that there was an explosive development of deep convection.The updraft in this convection system peaked at1 Pa s-1at nightfall on 7 February.The relative humidity increased prior to the strongest lift;however,this increase was not very significant and appeared only in the m id-level for a brief time.When the strongest vertical motion was triggered,the hum idity peaked and moistened the air over a w ide vertical range.The time series of the basic meteorological variables describes the regional variation of the convection.The deep convection strengthened follow ing enhanced instability and increased moisture.The time–pressure cross section shows that the strong updraftmotion started at 0000 UTC 7 February and peaked 24 hours later(Fig.10b). The updraftextended from the surface to above 200 hPa.The geographicaland temporal correlations between the updraftandDCCsalsoindicatethecloserelationshipofthesefactors.

    6.Conclusion

    Characteristicfeaturesofdeepcloudsthatextendfrom theatmosphericboundarylayertothetropopauseweredescribedusingaclimatologicalanalysisandatypicalcase studybasedoncloudinformationfromthecombinedobservationsoftheCloudSatCPRandtheCALIPSOLidar.The resultsdemonstratedthatparticularDCCfeaturesoccurover theNPinwinter.UnliketheoccurrenceofsummerDCCs, whicharemorefrequentinEastAsiaandtheWestPacific, winterDCCsoccurmainlyovertheNP.From30?Nto45?N, winterDCCsaremostfrequent,approximatelyequaltothe numberinsummer.Mostofthecloudshaveatopabove12 kminaltitude.Thehighestcloudtops,whichoccurtothe westofthedateline,areashighas15km.

    Thestatisticsofthecirculationconditionsshowedthat thereisobviouslylowsurfacepressure,high2-mtemperatures,strong10-mmeridionalwinds,andhigh2-mrelative humiditywhenDCCsoccur;however,thezonalwindand CAPEdeviationsareambiguous.Further,thecorrelationbetweenthelocationsoftheDCCsandthecyclonecenteris strongbetween10?and20?east,and5?and10?south,ofthe centerofthecyclone.Thus,theoutersoutheasternareaofthe cycloneismostbeneficialfortheoccurrenceofDCCs.

    ThecasestudyrevealeddetailedcharacteristicsofacycloneinwhichDCCswereembedded.Inthespiralarmof thecyclone,abeltwithverycoldcloudtopsexisted.Adeep convectivecloudwasdetectedbytheCPRwhenitcrossed thisbelt.Thedeepconvectivecloudlocated17?eastand 6?southofthecenterofthecyclone,wherethewarmconveyorbeltwaslocated.Warmandmoistlow-levelairwas liftedwhenthehigh-leveldivergingflowmigratedalongwith thelow-levelconvergingflow.Latentheatreleasedfrom thecondensationofcloudparticlesstrengthenedtheupdraft. Thisrapidstrengtheningofthecycloneresultedindeepconvectivemotionthatstretchedfromthelowlevelstoabove thetropopause.Asindicatedbysatelliteobservations,thick cloudsweregenerated.

    ThisstudycharacterizesDCCsthatoccuroutsideofthe tropicsinwinter.Fromabasicdynamicperspective,boththe climatologicalstatisticsandthecasestudyconfirmthatthe developmentofDCCsoverthemidlatitudeoceaninwinteris closelyrelatedtosynoptic-scalecyclones.Thedeepconvectionalongtheprevailingwinterstormtracksisimportantdue toitspotentialeffectsintheatmosphere.

    Acknowledgements. Theauthorsthankthereviewersfortheir commentsandrecommendations,theNASACloudSatprojectfor providingtheCloudSat/CALIPSOdataset,andtheECMWFInterim Reanalysisprojectforprovidingtheglobalatmosphericdata.This workwasfundedbytheNationalNaturalScienceFoundationof China(GrantNos.41105031,41230419,91337213and41205126), theChinaSpecialFundforMeteorologicalResearchinthePublic Interest(GrantNos.GYHY201306017andGYHY201306077),the StrategicPriorityResearchProgram(GrantNo.XDA05100303), theMajorStateBasicResearchDevelopmentProgram(GrantNo. 2010CB428601),andEnvironmentalPublicWelfareScientificResearch(GrantNo.201209006).

    REFERENCES

    Alcala,C.M.,andA.E.Dessler,2002:Observationsofdeep convectioninthetropicsusingtheTropicalRainfallMeasuringMission(TRMM)precipitationradar.J.Geophys. Res.,107(D24),AAC17-1–AAC17-7,doi:10.1029/2002JD 002457.

    Chang,E.K.M.,andY.F.Fu,2002:Interdecadalvariationsin NorthernHemispherewinterstormtrackintensity.J.Climate, 15,642–658.

    Chang,E.K.M.,S.Y.Lee,andK.L.Swanson,2002:Stormtrack dynamics.J.Climate,15,2163–2183.

    Dee,D.P.,andCoauthors,2011:TheERA-Interimreanalysis: Configurationandperformanceofthedataassimilationsystem.Quart.J.Roy.Meteor.Soc.,137,553–597.

    Derbyshire,S.H.,I.Beau,P.Bechtold,J.Y.Grandpeix,J.M. Piriou,J.L.Redelsperger,andP.M.M.Soares,2004:Sensitivityofmoistconvectiontoenvironmentalhumidity.Quart. J.Roy.Meteor.Soc.,130,3055–3079.

    Dessler,A.E.,2002:Theeffectofdeep,tropicalconvectiononthe tropicaltropopauselayer.J.Geophys.Res.,107(D3),ACH 6-1–ACH6-5,doi:10.1029/2001JD000511.

    Ding,Y.,2005:AdvancedSynopticMeteorology.2nded.,China MeteorologicalPress,585pp.(inChinese)

    Feng,Z.,X.Q.Dong,B.K.Xi,C.Schumacher,P.Minnis,andM. Khaiyer,2011:Top-of-atmosphereradiationbudgetofconvectivecore/stratiformrainandanvilcloudsfromdeepconvectivesystems.J.Geophys.Res.,116(D23),D23202,doi: 10.1029/2011JD016451.

    Fischer,H.,andCoauthors,2003:Deepconvectiveinjectionof boundarylayerairintothelowermoststratosphereatmidlatitudes.Atmos.Chem.Phys.,3,739–745.

    Gettelman,A.,M.L.Salby,andF.Sassi,2002:Distributionand influenceofconvectioninthetropicaltropopauseregion.J. Geophys.Res.,107(D10),ACL6-1–ACL6-12,doi:10.1029/ 2001JD001048.

    Gouget,H.,G.Vaughan,A.Marenco,andH.G.J.Smit,2000: Decayofacut-offlowandcontributiontostratospheretroposphereexchange.Quart.J.Roy.Meteor.Soc.,126, 1117–1141.

    Govekar,P.D.,C.Jakob,M.J.Reeder,andJ.Haynes,2011: Thethree-dimensionaldistributionofcloudsaroundSouthernHemisphereextratropicalcyclones.Geophys.Res.Lett., 38(21),L21805,doi:10.1029/2011GL049091.

    Gulev,S.K.,O.Zolina,andS.Grigoriev,2001:ExtratropicalcyclonevariabilityintheNorthernHemispherewinterfromthe NCEP/NCARreanalysisdata.ClimateDyn.,17,795–809.

    Gyakum,J.R.,J.R.Anderson,R.H.Grumm,andE.L.Gruner, 1989:NorthPacificCold-Seasonsurfacecycloneactivity: 1975–1983.Mon.Wea.Rev.,117,1141–1155.

    Hall,T.J.,andT.H.VonderHaar,1999:Thediurnalcycleof westPacificdeepconvectionanditsrelationtothespatialand temporalvariationoftropicalMCSs.J.Atmos.Sci.,56,3401–3415.

    Holland,G.J.,A.H.Lynch,andL.M.Leslie,1987:AustralianEast-Coastcyclones.1.SynopticoverviewandCase-study. Mon.Wea.Rev.,115,3024–3036.

    Hoskins,B.J.,M.E.McIntyre,andA.W.Robertson,1985:On theuseandsignificanceofisentropicpotentialvorticitymaps. Quart.J.Roy.Meteor.Soc.,111,877–946.

    Jiang,J.H.,B.Wang,K.Goya,K.Hocke,S.D.Eckermann,J. Ma,D.L.Wu,andW.J.Read,2004:Geographicaldistributionandinterseasonalvariabilityoftropicaldeepconvection: UARSMLSobservationsandanalyses.J.Geophys.Res.,109, D03111,doi:10.1029/2003JD003756

    Kuang,Z.M.,andC.S.Bretherton,2006:Amass-fluxscheme viewofahigh-resolutionsimulationofatransitionfromshallowtodeepcumulusconvection.J.Atmos.Sci.,63,1895–1909.

    Kummerow,C.,W.Barnes,T.Kozu,J.Shiue,andJ.Simpson, 1998:TheTropicalRainfallMeasuringMission(TRMM) sensorpackage.J.Atmos.OceanicTechnol.,15,809–817.

    Li,W.,C.Schumacher,andS.A.McFarlane,2013:RadiativeheatingoftheISCCPupperlevelcloudregimesanditsimpact onthelarge-scaletropicalcirculation.J.Geophys.Res.,118, 592–604.

    Lin,B.,B.A.Wielicki,P.Minnis,L.Chambers,K.M.Xu,Y.X. Hu,andA.Fan,2006:Theeffectofenvironmentalconditionsontropicaldeepconvectivesystemsobservedfromthe TRMMsatellite.J.Climate,19,5745–5761.

    Liu,C.T.,andE.J.Zipser,2005:Globaldistributionofconvectionpenetratingthetropicaltropopause.J.Geophys.Res., 110(D23),D23104,doi:10.1029/2005JD006063.

    Liu,C.T.,E.J.Zipser,andS.W.Nesbitt,2007:Globaldistributionoftropicaldeepconvection:Differentperspectivesfrom TRMMinfraredandradardata.J.Climate,20,489–503.

    Liu,G.S.,J.A.Curry,andR.S.Sheu,1995:Classificationof cloudsoverthewesternequatorialPacific-Oceanusingcombinedinfraredandmicrowavesatellitedata.J.Geophys.Res., 100(D7),13811–13826,doi:10.1029/95JD00823.

    Liu,P.,Y.Wang,S.Feng,C.Y.Li,andY.F.Fu,2012:Climatologicalcharacteristicsofovershootingconvectiveprecipitationin summerandwinteroverthetropicalandsubtropicalregions. ChineseJournalofAtmosphericSciences,36,579–589.(in Chinese)

    Luo,Y.L.,R.H.Zhang,W.M.Qian,Z.Z.Luo,andX.Hu,2011: IntercomparisonofdeepconvectionovertheTibetanPlateau-AsianmonsoonregionandsubtropicalNorthAmericainborealsummerusingCloudSat/CALIPSOdata.J.Climate,24, 2164–2177.

    Luo,Z.Z.,G.Y.Liu,andG.L.Stephens,2008:CloudSatadding newinsightintotropicalpenetratingconvection.Geophys. Res.Lett.,35(19),L19819,doi:10.1029/2008GL035330.

    Mace,G.G.,R.Marchand,Q.Q.Zhang,andG.Stephens,2007: GlobalhydrometeoroccurrenceasobservedbyCloudSat: Initialobservationsfromsummer2006.Geophys.Res.Lett., 34(9),L09808,doi:10.1029/2006GL029017.

    Mace,G.G.,Q.Q.Zhang,M.Vaughan,R.Marchand,G. Stephens,C.Trepte,andD.Winker,2009:Adescription ofhydrometeorlayeroccurrencestatisticsderivedfromthe firstyearofmergedCloudsatandCALIPSOdata.J.Geophys. Res.,114(D8),D00A26,doi:10.1029/2007JD009755.

    Mapes,B.E.,andR.A.Houze,1993:Cloudclustersandsuperclustersovertheoceanicwarmpool.Mon.Wea.Rev.,121, 1398–1415.

    Naud,C.M.,andY.H.Chen,2010: AssessmentofISCCPcloudinessovertheTibetanPlateauusingCloudSat-CALIPSO.J.Geophys.Res.,115(D10),D10203,doi: 10.1029/2009JD013053.

    Poulida,O.,R.R.Dickerson,andA.Heymsfield,1996:Stratospheretroposphereexchangeinamidlatitudemesoscaleconvective complex:1.Observations.J.Geophys.Res.,101(D3),6823–6836.

    Rodionov,S.N.,N.A.Bond,andJ.E.Overland,2007:TheAleutianLow,stormtracks,andwinterclimatevariabilityinthe BeringSea.DeepSeaResearchPartII,54,2560–2577.

    Sanders,F.,andJ.R.Gyakum,1980:Synoptic-dynamicclimatologyofthebomb.Mon.Wea.Rev.,108,1589–1606.

    Sherwood,S.C.,andA.E.Dessler,2000:Onthecontrolofstratospherichumidity.Geophys.Res.Lett.,27,2513–2516.

    Sprenger,M.,M.Maspoli,andH.Wernli,2003:Tropopause foldsandcross-tropopauseexchange:AglobalinvestigationbaseduponECMWFanalysesforthetimeperiodMarch 2000toFebruary2001.J.Geophys.Res.,108,doi:10.1029/ 2002JD002587.

    Stephens,G.L.,2005:Cloudfeedbacksintheclimatesystem:A criticalreview.J.Climate,18,237–273.

    Stephens,G.L.,andCoauthors,2008:CloudSatmission:Performanceandearlyscienceafterthefirstyearofoperation.J. Geophys.Res.,113,doi:10.1029/2008JD009982.

    Wang,B.,R.G.Wu,andK.M.Lau,2001:Interannualvariability oftheAsiansummermonsoon:ContrastsbetweentheIndian andthewesternNorthPacific-eastAsianmonsoons.J.Climate,14,4073–4090.

    Wang,X.M.,X.K.Zou,andP.M.Zhai,2007:Researcheson extratropicalcyclonevariabilityinthenorthernhemisphere. AdvancesinClimateChangeResearch,3(3),154–157.(in Chinese)

    Wang,Z.,D.Vane,G.Stephens,andD.Reinke,2013:Level2 combinedradarandlidarcloudscenarioclassificationproductprocessdescriptionandinterfacecontroldocument.Jet PropulsionLaboratoryCaliforniaInstituteofTechnology,38 pp.

    Ye,A.F.,Z.F.Wu,W.J.Xiao,S.Hu,andY.C.Liu,2006:A studyofapplicationofCAPEinsevereconvectiveweather prediction.JournalofTropicalMeteorology,22(5),484–490. (inChinese)

    Yi,M.J.,Y.F.Fu,P.Liu,Z.W.Heng,Y.Gao,andX.Y.Hong, 2012:Analysisofthevariationofatmosphericcomposition intheuppertroposphereduringastrongconvectionineastern Chinainsummer.ChineseJournalofAtmosphericSciences, 36(5),901–911.(inChinese)

    Yuan,T.L.,andZ.Q.Li,2010:Generalmacro-andmicrophysical propertiesofdeepconvectivecloudsasobservedbyMODIS. J.Climate,23,3457–3473.

    Zhang,X.D.,J.E.Walsh,J.Zhang,U.S.Bhatt,andM.Ikeda, 2004:Climatologyandinterannualvariabilityofarcticcycloneactivity:1948–2002.J.Climate,17,2300–2317.

    Zhang,Y.X.,Y.H.Ding,andQ.P.Li,2012:Interdecadalvariationsofextratropicalcycloneactivitiesandstormtracksinthe NorthernHemisphere.ChineseJournalofAtmosphericSciences,36(5),912–928.(inChinese)

    :Yi,M.J.,Y.F.Fu,P.Liu,and Z.X.Zheng,2015:Deep convective clouds over the northern Pacific and their relationship w ith oceanic cyclones.Adv.Atmos.Sci.,32(6),821–830,

    10.1007/s00376-014-4056-9.

    (Received 29 April2014;revised 7 October 2014;accepted 31 October 2014)

    ?Corresponding author:FU Yunfei

    Email:fyf@ustc.edu.cn

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    人妻夜夜爽99麻豆av| 午夜久久久久精精品| 午夜精品在线福利| 色综合站精品国产| 午夜福利高清视频| 日日摸夜夜添夜夜添av毛片 | 天美传媒精品一区二区| a级毛片免费高清观看在线播放| 3wmmmm亚洲av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美成人免费av一区二区三区| 国产成人aa在线观看| 性插视频无遮挡在线免费观看| 久久久国产成人精品二区| 淫妇啪啪啪对白视频| 亚洲三级黄色毛片| 在线免费观看不下载黄p国产 | 亚洲成人精品中文字幕电影| 亚洲一区二区三区色噜噜| 波多野结衣高清无吗| 亚洲熟妇熟女久久| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 1024手机看黄色片| 欧美激情在线99| 丁香欧美五月| 国产一区二区三区视频了| 国产一级毛片七仙女欲春2| 久久精品人妻少妇| 一区二区三区高清视频在线| 波多野结衣巨乳人妻| 亚洲男人的天堂狠狠| 极品教师在线视频| 国产av一区在线观看免费| 国产毛片a区久久久久| ponron亚洲| 人人妻人人澡欧美一区二区| 伊人久久精品亚洲午夜| 亚洲av成人精品一区久久| 国产精品伦人一区二区| 亚洲人与动物交配视频| 特大巨黑吊av在线直播| 麻豆成人av在线观看| 搡女人真爽免费视频火全软件 | 久久久久久久精品吃奶| 国产精品爽爽va在线观看网站| 观看美女的网站| 夜夜爽天天搞| 亚洲国产欧美人成| 久久久久久久午夜电影| 琪琪午夜伦伦电影理论片6080| 少妇裸体淫交视频免费看高清| 中亚洲国语对白在线视频| 午夜亚洲福利在线播放| 亚洲熟妇中文字幕五十中出| 亚洲av免费在线观看| 国产一区二区在线观看日韩| 国产伦精品一区二区三区视频9| 变态另类丝袜制服| 一区二区三区四区激情视频 | 亚洲成人久久性| 欧美激情国产日韩精品一区| 亚洲av二区三区四区| 老熟妇仑乱视频hdxx| 永久网站在线| 真人做人爱边吃奶动态| 十八禁国产超污无遮挡网站| 少妇熟女aⅴ在线视频| 国产在视频线在精品| 国产视频内射| 亚洲人成电影免费在线| 久久久色成人| 无人区码免费观看不卡| 成年免费大片在线观看| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 国产成年人精品一区二区| 舔av片在线| 亚洲电影在线观看av| 亚洲天堂国产精品一区在线| 波多野结衣巨乳人妻| 日韩欧美在线乱码| 又紧又爽又黄一区二区| 免费看a级黄色片| 日本精品一区二区三区蜜桃| 国产一区二区激情短视频| 色综合亚洲欧美另类图片| 日本五十路高清| 久久国产乱子伦精品免费另类| 搡老岳熟女国产| 国内揄拍国产精品人妻在线| 床上黄色一级片| 日韩欧美三级三区| 一进一出好大好爽视频| 国产欧美日韩一区二区三| 国产精品免费一区二区三区在线| 免费av毛片视频| 舔av片在线| 少妇裸体淫交视频免费看高清| 变态另类丝袜制服| 国产高清视频在线观看网站| 99在线人妻在线中文字幕| 国产国拍精品亚洲av在线观看| 国产精品爽爽va在线观看网站| 少妇的逼好多水| 国产精品av视频在线免费观看| 男人舔奶头视频| 国产精品久久久久久亚洲av鲁大| 亚洲成人精品中文字幕电影| 亚洲av.av天堂| 国产精品久久久久久亚洲av鲁大| 亚洲精品亚洲一区二区| 无遮挡黄片免费观看| 色噜噜av男人的天堂激情| 欧美午夜高清在线| 国产精品爽爽va在线观看网站| 久久人人爽人人爽人人片va | 国产欧美日韩一区二区三| 高清日韩中文字幕在线| 夜夜爽天天搞| 美女被艹到高潮喷水动态| 免费看a级黄色片| 99国产精品一区二区蜜桃av| 男女那种视频在线观看| 国产爱豆传媒在线观看| 色综合亚洲欧美另类图片| www.色视频.com| 美女大奶头视频| 久久热精品热| 亚洲国产精品999在线| 他把我摸到了高潮在线观看| 国产成年人精品一区二区| 淫秽高清视频在线观看| 国产欧美日韩一区二区三| 美女免费视频网站| 国内揄拍国产精品人妻在线| 欧美一区二区国产精品久久精品| 俺也久久电影网| 国产淫片久久久久久久久 | 日本一二三区视频观看| 精品无人区乱码1区二区| 成人亚洲精品av一区二区| 国产久久久一区二区三区| 免费无遮挡裸体视频| 美女大奶头视频| 日韩欧美三级三区| 美女大奶头视频| 国产一区二区在线观看日韩| 亚洲熟妇中文字幕五十中出| 嫩草影院精品99| 青草久久国产| 成人亚洲精品av一区二区| 国产精品永久免费网站| 国产亚洲欧美98| 午夜福利成人在线免费观看| 国产激情偷乱视频一区二区| 亚洲欧美日韩东京热| 波多野结衣高清无吗| 在线观看美女被高潮喷水网站 | 在线观看午夜福利视频| 乱人视频在线观看| 两个人视频免费观看高清| 毛片女人毛片| x7x7x7水蜜桃| 桃红色精品国产亚洲av| 午夜精品在线福利| 亚洲精品456在线播放app | 欧美黄色淫秽网站| 久久伊人香网站| 午夜免费男女啪啪视频观看 | 亚洲av.av天堂| 男女床上黄色一级片免费看| 嫩草影院新地址| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 亚洲av五月六月丁香网| 久久久久久久久久黄片| 欧美成人一区二区免费高清观看| 老鸭窝网址在线观看| 美女xxoo啪啪120秒动态图 | 啦啦啦韩国在线观看视频| 国产精品野战在线观看| 精品不卡国产一区二区三区| 3wmmmm亚洲av在线观看| 97超视频在线观看视频| 久久精品国产亚洲av香蕉五月| 久久中文看片网| 噜噜噜噜噜久久久久久91| 中国美女看黄片| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 午夜免费男女啪啪视频观看 | 精品一区二区免费观看| 成人特级av手机在线观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品av在线| 日本成人三级电影网站| 亚洲欧美日韩东京热| 成人毛片a级毛片在线播放| 99热只有精品国产| 久久九九热精品免费| www.熟女人妻精品国产| 美女被艹到高潮喷水动态| 亚洲一区二区三区不卡视频| 国产一级毛片七仙女欲春2| 精品一区二区免费观看| 最近最新免费中文字幕在线| 蜜桃亚洲精品一区二区三区| 高清在线国产一区| 高潮久久久久久久久久久不卡| 成人一区二区视频在线观看| 99久久九九国产精品国产免费| 国产精品亚洲一级av第二区| 国产黄a三级三级三级人| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 欧美国产日韩亚洲一区| 欧美三级亚洲精品| 日本精品一区二区三区蜜桃| 午夜精品久久久久久毛片777| 9191精品国产免费久久| 日韩成人在线观看一区二区三区| 日本a在线网址| 国产成人啪精品午夜网站| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 色av中文字幕| 国产野战对白在线观看| 免费观看的影片在线观看| 国产探花极品一区二区| 欧美性猛交黑人性爽| 午夜久久久久精精品| 久久国产乱子伦精品免费另类| 午夜精品在线福利| av天堂中文字幕网| 一区二区三区四区激情视频 | 成人特级av手机在线观看| 尤物成人国产欧美一区二区三区| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 在线观看午夜福利视频| 久久久久久久久久成人| 久久精品影院6| 欧美高清性xxxxhd video| 亚洲精品亚洲一区二区| 国产真实乱freesex| 国产精品98久久久久久宅男小说| 成人午夜高清在线视频| 国产成+人综合+亚洲专区| 天堂√8在线中文| 别揉我奶头 嗯啊视频| 人人妻人人澡欧美一区二区| 三级毛片av免费| 国产精品亚洲一级av第二区| 嫩草影院入口| 99久久九九国产精品国产免费| 一个人免费在线观看的高清视频| 国产精品野战在线观看| 免费电影在线观看免费观看| 日本三级黄在线观看| 国产av在哪里看| 精品欧美国产一区二区三| 国产黄片美女视频| 狠狠狠狠99中文字幕| 成人欧美大片| 久久精品影院6| 99久久成人亚洲精品观看| 深夜a级毛片| bbb黄色大片| 欧美三级亚洲精品| 俺也久久电影网| 激情在线观看视频在线高清| 亚洲av第一区精品v没综合| 看片在线看免费视频| 日韩欧美一区二区三区在线观看| 日本黄色片子视频| av中文乱码字幕在线| av女优亚洲男人天堂| 在线观看66精品国产| 制服丝袜大香蕉在线| 欧美潮喷喷水| 久久精品影院6| 又爽又黄a免费视频| 丁香欧美五月| 成年女人毛片免费观看观看9| 在线观看av片永久免费下载| 欧美日韩福利视频一区二区| 悠悠久久av| 亚洲欧美清纯卡通| 午夜两性在线视频| 亚洲av一区综合| 99久久成人亚洲精品观看| 亚洲 国产 在线| av视频在线观看入口| 国产探花在线观看一区二区| 天堂动漫精品| 精品人妻一区二区三区麻豆 | 一个人看的www免费观看视频| 国产国拍精品亚洲av在线观看| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 嫩草影院入口| 国产大屁股一区二区在线视频| 国产欧美日韩一区二区精品| 最近最新中文字幕大全电影3| 国产精华一区二区三区| 99热这里只有精品一区| 少妇人妻一区二区三区视频| aaaaa片日本免费| 1000部很黄的大片| 精品欧美国产一区二区三| 国产精品亚洲一级av第二区| 性色avwww在线观看| 伦理电影大哥的女人| 免费看美女性在线毛片视频| 亚洲无线观看免费| 国产精品女同一区二区软件 | 成人国产综合亚洲| 美女xxoo啪啪120秒动态图 | 久久久久九九精品影院| 免费av不卡在线播放| 丝袜美腿在线中文| 看十八女毛片水多多多| 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人| 99国产精品一区二区三区| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 久久久精品大字幕| 99在线人妻在线中文字幕| 天堂网av新在线| 美女黄网站色视频| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 亚洲第一电影网av| 久久中文看片网| 高清在线国产一区| 黄片小视频在线播放| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 国产精品永久免费网站| 宅男免费午夜| 亚洲在线自拍视频| 亚洲内射少妇av| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 午夜免费男女啪啪视频观看 | 欧美精品啪啪一区二区三区| 亚洲熟妇中文字幕五十中出| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| 亚洲国产欧洲综合997久久,| 免费看日本二区| 一区二区三区高清视频在线| 亚洲黑人精品在线| 又紧又爽又黄一区二区| 日本一二三区视频观看| 欧美日韩黄片免| 午夜精品在线福利| 日韩免费av在线播放| 可以在线观看的亚洲视频| 在线观看av片永久免费下载| 亚洲欧美激情综合另类| 精品人妻视频免费看| 男人狂女人下面高潮的视频| 少妇丰满av| 亚洲人成网站在线播| av欧美777| 99热这里只有精品一区| 久久精品国产清高在天天线| 国产大屁股一区二区在线视频| 宅男免费午夜| 免费在线观看日本一区| 欧美一区二区国产精品久久精品| 在线观看舔阴道视频| 偷拍熟女少妇极品色| 91狼人影院| 观看美女的网站| 国产精品乱码一区二三区的特点| 免费搜索国产男女视频| 熟女电影av网| 亚洲国产色片| 久久久久亚洲av毛片大全| 亚洲欧美激情综合另类| 美女免费视频网站| www.熟女人妻精品国产| 国产精品一区二区三区四区久久| 国产精品野战在线观看| 深爱激情五月婷婷| 在线十欧美十亚洲十日本专区| 欧美成人性av电影在线观看| 麻豆成人av在线观看| 日本一二三区视频观看| 国产高清视频在线播放一区| 99热6这里只有精品| 亚洲精品在线观看二区| 极品教师在线视频| 丰满的人妻完整版| 亚洲欧美精品综合久久99| 日本五十路高清| 99在线视频只有这里精品首页| 波野结衣二区三区在线| 嫩草影院新地址| 色综合婷婷激情| АⅤ资源中文在线天堂| 国产精品永久免费网站| 日本五十路高清| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 51午夜福利影视在线观看| 99久久精品一区二区三区| 精品久久国产蜜桃| 欧美日本视频| 中文字幕熟女人妻在线| 国产欧美日韩精品一区二区| 一进一出好大好爽视频| 国产精品久久久久久久久免 | 久久久久久大精品| 又黄又爽又刺激的免费视频.| 男女做爰动态图高潮gif福利片| 级片在线观看| 麻豆国产97在线/欧美| 久久久久久久久中文| 午夜亚洲福利在线播放| 又紧又爽又黄一区二区| 成人性生交大片免费视频hd| 国产精品一区二区性色av| 性色avwww在线观看| 免费av不卡在线播放| 欧美激情在线99| 天天一区二区日本电影三级| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| 国产精品久久久久久精品电影| 男人狂女人下面高潮的视频| 欧美日本亚洲视频在线播放| aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 欧美国产日韩亚洲一区| 久久人人爽人人爽人人片va | 亚洲一区二区三区色噜噜| 亚洲国产色片| 日本与韩国留学比较| 国产成人aa在线观看| 国产一区二区三区视频了| 国产麻豆成人av免费视频| 亚洲国产精品sss在线观看| 国产精品永久免费网站| 亚洲精品粉嫩美女一区| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 国产午夜福利久久久久久| 亚洲人成电影免费在线| 搡老岳熟女国产| 乱码一卡2卡4卡精品| 国产精品三级大全| 国产精品乱码一区二三区的特点| 亚洲五月婷婷丁香| 精品人妻1区二区| 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 中文字幕高清在线视频| 日韩av在线大香蕉| 两个人的视频大全免费| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| 中文字幕av在线有码专区| 狠狠狠狠99中文字幕| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 日韩中字成人| 日韩国内少妇激情av| 久久亚洲真实| ponron亚洲| 99久国产av精品| 精品乱码久久久久久99久播| 午夜日韩欧美国产| 嫩草影院入口| 在线观看av片永久免费下载| 成人亚洲精品av一区二区| 五月玫瑰六月丁香| 久久久久久久久久成人| 成人午夜高清在线视频| 黄色一级大片看看| 亚洲av第一区精品v没综合| 色5月婷婷丁香| 极品教师在线免费播放| 人人妻人人看人人澡| 亚洲熟妇熟女久久| 国内精品久久久久精免费| 国产精品,欧美在线| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 蜜桃亚洲精品一区二区三区| 国产三级在线视频| 免费在线观看成人毛片| 一进一出抽搐gif免费好疼| 国产淫片久久久久久久久 | 久久久久久国产a免费观看| 成人欧美大片| 国产成人福利小说| 99久久精品一区二区三区| 免费大片18禁| 国产精品久久久久久久电影| 色视频www国产| 免费av毛片视频| 中文字幕av在线有码专区| 夜夜爽天天搞| 91午夜精品亚洲一区二区三区 | 亚洲专区国产一区二区| 18禁黄网站禁片午夜丰满| 精品国产三级普通话版| 麻豆一二三区av精品| 一个人观看的视频www高清免费观看| 成人av一区二区三区在线看| 特大巨黑吊av在线直播| 少妇的逼好多水| 国内精品一区二区在线观看| 一级作爱视频免费观看| 男女下面进入的视频免费午夜| 日日夜夜操网爽| 日韩av在线大香蕉| 91字幕亚洲| 国内久久婷婷六月综合欲色啪| 国产精品日韩av在线免费观看| 757午夜福利合集在线观看| 最近在线观看免费完整版| 国产午夜精品久久久久久一区二区三区 | 欧美日韩国产亚洲二区| 国产精华一区二区三区| 国产精品久久久久久亚洲av鲁大| 哪里可以看免费的av片| 国产探花极品一区二区| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网| 日本黄色片子视频| 男人舔女人下体高潮全视频| 变态另类丝袜制服| 日韩 亚洲 欧美在线| 国产一区二区三区视频了| 久久久国产成人免费| 一区二区三区高清视频在线| 青草久久国产| 永久网站在线| 简卡轻食公司| 悠悠久久av| 免费观看的影片在线观看| 一个人看的www免费观看视频| 成人无遮挡网站| 身体一侧抽搐| 无人区码免费观看不卡| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 热99在线观看视频| 观看免费一级毛片| 精品久久久久久久久av| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| av在线观看视频网站免费| 日本一本二区三区精品| av视频在线观看入口| 大型黄色视频在线免费观看| 亚洲天堂国产精品一区在线| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| 亚洲第一电影网av| 免费大片18禁| 99久久久亚洲精品蜜臀av| 日本三级黄在线观看| 黄色视频,在线免费观看| 国产一级毛片七仙女欲春2| 欧美极品一区二区三区四区| 淫秽高清视频在线观看| 亚洲电影在线观看av| 亚洲av不卡在线观看| 九九热线精品视视频播放| 日韩中文字幕欧美一区二区| 国产v大片淫在线免费观看| 久久精品综合一区二区三区| 久久国产精品影院| 国产成人欧美在线观看| 精品久久国产蜜桃| 国产精品亚洲一级av第二区| 日韩有码中文字幕| 久久国产乱子伦精品免费另类| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇中文字幕五十中出| 人人妻人人看人人澡| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 亚洲精品456在线播放app | 日韩成人在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| 久久久久久久久久黄片| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区成人| 亚洲专区中文字幕在线| 久久国产精品人妻蜜桃| 丝袜美腿在线中文| av中文乱码字幕在线| 亚洲三级黄色毛片| 国模一区二区三区四区视频|