• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Projections of the Advance in the Startof the Grow ing Season during the 21st Century Based on CM IP5 Simulations

    2015-04-20 05:59:27XIAJiangjiangYANZhongweiJIAGensuoZENGHeqingPhilipDouglasJONESZHOUWenandZHANGAnzhi
    Advances in Atmospheric Sciences 2015年6期

    XIA JiangjiangYAN ZhongweiJIA GensuoZENG Heqing Philip Douglas JONESZHOU Wenand ZHANG Anzhi

    1Key Laboratory of Regional Climate-Environment for East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029

    2Ministry of Environmental Protection of Jiuzhaigou Country,Sichuan623400

    3Climatic Research Unit,University of East Anglia,Norwich,UK

    4Center of Excellence for Climate Change Research and Department of Meteorology, King Abdulaziz University,Jeddah,Saudi Arabia

    5Guy Carpenter Asia-Pacific Climate Impact Centre,School of Energy and Environment, City University of Hong Kong,Hong Kong

    Projections of the Advance in the Startof the Grow ing Season during the 21st Century Based on CM IP5 Simulations

    XIA Jiangjiang?1,YAN Zhongwei1,JIA Gensuo1,ZENG Heqing2, Philip Douglas JONES3,4,ZHOU Wen5,and ZHANG Anzhi1

    1Key Laboratory of Regional Climate-Environment for East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029

    2Ministry of Environmental Protection of Jiuzhaigou Country,Sichuan623400

    3Climatic Research Unit,University of East Anglia,Norwich,UK

    4Center of Excellence for Climate Change Research and Department of Meteorology, King Abdulaziz University,Jeddah,Saudi Arabia

    5Guy Carpenter Asia-Pacific Climate Impact Centre,School of Energy and Environment, City University of Hong Kong,Hong Kong

    It is well-known that global warm ing due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation grow ing season(SOS)across the globe during the 20th century.Projections of further changes in the SOS for the 21stcentury under certain em issions scenarios(Representative Concentration Pathways,RCPs)are useful for improving understanding of the consequences of globalwarm ing.In this study,we fi rstevaluate a linear relationship between the SOS (defined using the normalized difference vegetation index)and the April temperature for most land areas of the Northern Hem isphere for 1982–2008.Based on this relationship and the ensemble projection of April temperature under RCPs from the lateststate-of-the-artglobal coupled climate models,we show the possible changes in the SOS for mostof the land areas of the Northern Hem isphere during the 21st century.By around 2040–59,the SOS w illhave advanced by-4.7 days under RCP2.6,-8.4 days under RCP4.5,and-10.1 days under RCP8.5,relative to 1985–2004.By 2080–99,itw illhave advanced by-4.3 days under RCP2.6,-11.3 days under RCP4.5,and-21.6 days under RCP8.5.The geographic pattern of SOS advance is considerably dependenton thatof the temperature sensitivity of the SOS.The larger the temperature sensitivity, the larger the date-shift-rate of the SOS.

    startof grow ing season(SOS),normalized difference vegetation index(NDVI),temperature sensitivity,Representative Concentration Pathways(RCPs),CM IP5

    1.Introduction

    Understanding how plant species have responded to global warm ing provides background information for predicting future changes in ecosystems.A number of previous studies have reported linear relationships between temperature and vegetation grow ing season indices for different regions.Regression results suggest thatan increase of 1?C in the average of an appropriate combination of monthly temperatures leads to differentshifts of the tim ing of the grow ing season(especially for the startof the grow ing season,SOS) for various species and locations across the world(Menzel and Fabian,1999;Sparks,2000;Chen and Pan,2002;Sparks and Menzel,2002;Fitter and Fitter,2002;Matsumoto et al.,2003;Chm ielewski et al.,2004;Piao et al.,2006;Dai et al.,2013,2014;Ge et al.,2014b;Wang et al.,2014). These results were obtained using phenologicalobservations (such as fi rst-flowering data and bud-burst-date data)as well as satellite-measured normalized difference vegetation index (NDVI)data.Shen etal.(2014)defined the temperature sensitivity of SOS as the phenological change per unit temperature and demonstrated that both the magnitude of the preseason temperature increase and the temperature sensitivity of the SOS can infl uence the advance of the SOS,which has been shown by observations during the last few decades(Lin-derholm,2006;Jeong etal.,2011).It is implied thatan appropriate combination ofmonthly temperatures may be used as a proxy of the SOS when phenological data are notavailable for the past,or for the future.

    Globalwarm ing caused an extension of the grow ing season during the 20th century(Linderholm,2006).According to IPCC(2013),globalwarm ing since 1950 isvery likely due to the observed increase in anthropogenic atmospheric greenhouse gas(GHG)concentrations,and this increase is almost certain to continue in the future.The long-lived GHG concentrations exerta strong control on the radiative forcing of the climate system,and then the ecosystem.It is beneficial to analyze possible impacts of globalwarm ing on the growing season in the future.The Coupled Model Intercomparison Project Phase 5(CM IP5)projections of climate change are forced by GHG emission scenarios consistent w ith the Representative Concentration Pathways(RCPs),which were formulated based on the projected population grow th,technological development,and societal responses in the future (Moss et al.,2010).The RCP scenarios provide a rough estimate of the fi xed radiative forcing by 2100(Taylor et al., 2012).The outputof climate models under the RCP scenarios provides a base forstudying possible changes in the SOS for the 21stcentury.

    A key question is whether the temperature sensitivity of the SOS remains constant at the century scale.In Shen et al.(2014),the temperature sensitivity was determ ined using the NDVI-derived SOS and effective pre-season temperature during 1982–2008.Wang etal.(2014)argued that the temperature sensitivity of a spring phenology index may change in time over a long period.However,Xia etal.(2013)found thatifonly the Apriltemperature isused,the temperature sensitivity isrobustthroughouta century-scale period atdifferent sites for mostof the land areas of the Northern Hemisphere. In the presentstudy,we investigate changes in the SOS under the RCP scenarios using the know ledge obtained from Xia et al.(2013).

    It is clear that climate models are not perfect(Reichler and Kim,2008;Knutti,2008),but there have been substantial improvements from one generation of models to another [e.g.from CM IP1 to CM IP3,as summarized by Reichler and Kim(2008),and from CM IP3 to CM IP5,as summarized by Knuttiand Sedlacek(2013)].In fact,many coupled climate models w ith all radiative forcings perform well in simulating the global and northern hem ispheric mean surface air temperature evolutions of the 20th century(Cubasch etal.,2001; Zhou and Yu,2006;Meehl et al.,2007;Hegerl et al.,2007; Randall et al.,2007;Knutti et al.,2008).The consistency among models suggests that the projected changes for largescale climate features are structurally stable(M cWilliams, 2007).

    The aim of this study is to reveal possible shifts of the SOS during the 21stcentury in the land areas of the Northern Hemisphere by using the established linear relationship and CM IP5 monthly temperature simulations.The study includes the follow ing steps:

    (1)Evaluate the relationship between the SOS and April temperature(temperature sensitivity of SOS)based on observational data for 1982–2008 and reconstruct the SOS time series for the same period.

    (2)Evaluate the performance of CM IP5 coupled models by comparing the observed changes in monthly mean temperature and the simulated results for the past.

    (3)Quantify the possible changes in SOS for 2006–99 under the RCP scenarios w ith an uncertainty assessment.

    2.Data

    2.1.Temperature

    This study uses the global 0.5?×0.5?gridded land surface monthly(April)mean air temperature dataset(TS 3.10)for 1901–2008,developed at the Climatic Research Unit(CRU)(Harris et al.,2014).This dataset were obtained from the Climatic Research Unit,University of East Anglia,via their website(accessed 16 March 2014): http://badc.nerc.ac.uk/view/badc.nerc.ac.uk ATOM dataent 1256223773328276.

    2.2.NDVI data

    NDVIdata have been developed from the Advanced Very High-Resolution Radiometer(AVHRR)onboard the National Oceanic and Atmospheric Adm inistration’s(NOAA)polarorbiting satellites.The data are calibrated and processed by the National Aeronautics and Space Adm inistration’s (NASA)Global Inventory Monitoring and Modeling Systems (GIMMS)group,w ith a spatial resolution of8 km×8 km and a temporalresolution of15 days,for1982–2008.Furtherdata corrections(e.g.aerosol,cloud,volcanic,and sensor degradation)are also applied to improve the data quality(Tucker et al.,2005).The temperate vegetation areas of the Northern Hemisphere are chosen as the study area,where the seasonality of vegetation is evident(Slayback etal.,2003;Piao et al.,2006).The NDVI changes could be used to describe the“greenness”of vegetation.In this study,for each gird, the thresholds for the SOS are defined from the NDVI climatology.In the climatological annual cycle of NDVI,the SOS is determined by detecting the inflection date when this NDVI annual cycle time series begins to rise for a specific year(Zeng etal.,2011;Jeong etal.,2011).

    2.3.CM IP5 output

    The simulations of global coupled ocean–atmosphere general circulation models(CGCM s)provide the primary base for studying possible future climate changes(Kharin etal.,2007).The CM IP5 projections of climate change are forced by GHG emission scenariosconsistentwith the RCPs, as described in Moss etal.(2010).

    In this study,the RCP2.6,RCP4.5 and RCP8.5 scenarios are chosen to represent a range of possible outcomes for 2006–99(Table 1).The radiative forcing under RCP8.5 increases throughout the 21st century,and reaches a level of about8.5 W m-2by 2100.In addition to this“high”RCP8.5 scenario,there is an intermediate scenario,RCP4.5,whichreaches a level of about 4.5 W m-2by 2100.The RCP2.6 scenario is described as a peak-and-decay low scenario,in which the radiative forcing reaches a maximum near the m iddle of the 21st century before decreasing to an eventual low levelof 2.6 W m-2(Taylor etal.,2012).

    Table 1.Details of the RCPs.

    A collection of models can be used to determine the uncertainty range in projections(Tebaldiand Knutti,2007).In this study,we select16 CM IP5 models developed by 12 scientific organizations from 8 countries around the world(Table 2).The average of multiple models(multi-modelensemble,MME)performsbetter than any single modelwhen compared w ith observations(Gillettetal.,2002;Gleckler etal., 2008;Reichler and Kim,2008).In this study,we calculate the MME by averaging the results of the 16 models.Details of all the experiments and output of the models used in this study were obtained from the Working Group on Coupled Modelling(WGCM)under the World Climate Research Programme(WCRP),via their website(accessed 1 September 2013):http://cm ip-pcmdi.llnl.gov/cm ip5.

    3.M ethod

    To evaluate the performance of the CGCM s from CM IP5 in reproducing the current climate,simulations of the 20th century experiments,termed“historical”,are compared w ith the observations,for 1901–2004.The historical runs are driven by observed atmospheric composition changes(including both anthropogenic and natural sources).The historical scenarios cross much of the industrial period(from the 19th century to the present).Based on these results,the projection of monthly mean temperature change(then the changes in grow ing season indices)over the globe in the 21st century is discussed.

    For convenience of comparison w ith high-resolution NDVI data,we assume that large-scale climate change in temperature is in general of good spatial homogeneity,and hence the CRU observational data and the CGCM s’output are interpolated into a common grid of 8 km×8 km.This may lose some NDVI information at the finer-scale grids, but hopefully this does not have much effect on the results at the large-scale(hemispheric scale)for the pattern of SOS changes.

    For each grid,the linear regression coefficient between shifts of the SOS and changes in corresponding Aprilmean temperature is quantified for1982–2008,using least-squares methods.The coefficient is defined as the temperature sensitivity of the SOS for each grid.Only grids show ing significant correlation(w ith a significance level of 0.05)are considered in this study.Figure 1a shows an example of the temperature sensitivity of the SOS averaged over the analyzed areas(all the grids show ing significant correlation).It indicates that for a 1?C warm ing of the Aprilmean temperature, there should be an advancementof 2.1 days for the SOS.

    This linear relationship,i.e.the temperature sensitivity of the SOS,enables us to straightforwardly reconstruct the SOS time series.First,the April temperature anomalies are calcu-lated w ith respectto the whole period foreach grid.Then,the April temperature anomalies multiplied by the temperature sensitivity of the SOS defines the reconstructed SOS series for a given grid.

    Table 2.Details of the CM IP5 models used in this study.

    Fig.1.Temperature sensitivity of the SOS,e.g.the regression coefficients of the SOS onto April temperature for 1982–2008,(a)averaged over the analyzed areas and(b)at each grid. Only grids that show a significant linear relationship are marked(significance level:0.05). Units:d?C-1.

    4.Results

    4.1.Temperature sensitivity of the SOS

    The regression coefficients of the SOS on the April temperature range from-0.8 to-5 d?C-1(5%to 95%)formost of the land areasof the Northern Hemisphere(Fig.1b,mainly located between 30?N and 70?N).These linear regression coefficients are considered to represent the temperature sensitivity of SOS.The spatial distributions of the phenological sensitivity span a latitudinalgradientover the continents and a longitudinal gradient in the coastal zones,show ing larger values in southwestern North America,western Europe,and southern Asia.This pattern is consistent w ith the previous study of Xia etal.(2013).

    In response to climate warming,shifts of the SOS in the temperate zones are determined notonly by the temperature level in time but also by the temperature sensitivity.Having considered both factors,we reconstruct the time series of the SOS(the expected SOS).From 1982 to 2008,mostof the analyzed areas experience advanced SOS,forboth the observed (Fig.2a)and expected(Fig.2b)SOS.This is consistentw ith the previous study of Jeong etal.(2011).The geographical distribution of the trends derived from the expected SOS(Fig. 2b)is broadly consistentspatially w ith those of the observed trends,though in general the expected trends are smaller in magnitude than the observed.

    Fig.2.(a)Spatial distribution of the linear trends of the observed SOS.(b)The same as(a), except for the expected(reconstructed)SOS.Units:d(10 yr)-1.

    On average over the analyzed areas,the trends of the observed SOS(Fig.3)are-1.5 d(10 yr)-1,while those for the expected SOS are-0.8 d(10 yr)-1.The trends of the reconstructed indices explain only abouthalf of the observed trends.This is partly because the SOS is notdeterm ined only by temperature,but also other factors such as precipitation and humidity,which may change and/or reinforce the effect on phenology induced by climatic warm ing.Nevertheless, even based on the same AVHRR dataset,there is large uncertainty in estimating the phenological trends[e.g.they range from 0.4 to 1.9 d(10 yr)-1for China(Cong et al.,2013)], depending on the different methods applied to quantify the phenologicaldates.In comparison,the rate ofadvance of the expected and observed SOS are very sim ilar from the early 1990s.The correlation coefficients are about0.8 between the observed and expected time series for1982–2008.It is clear that the reconstructed phenological indices can capture the main features as observed on a hem ispheric-scale analysis.

    Itcan be concluded that this linear relationship enables us to study phenological changes in the SOS by using monthly mean temperature when NDVIdata are notavailable,e.g.the changes in SOS under the RCP scenarios in the 21stcentury.

    4.2.Projection of changes in the SOS under RCPs

    Many coupled climate models have the ability to simulate both the globaland Northern Hemisphere mean surface air temperature evolutions of the 20th century(Zhou and Yu, 2006;Hegerletal.,2007;Randalletal.,2007;Knutti,2008; IPCC,2013).It is clear that the performances of the CGCMs in reproducing the historicalchangesin April temperature are good enough that they can be used for projecting changes in the SOS in the future w ith reasonable confidence.In this study,we simply evaluate the behavior of the CGCM s from CM IP5 based on the April temperature,averaged over the Northern Hem isphere.

    Fig.3.Interannual variations in the observed(blue)and expected(red)SOS.Correlation between the two time series is given in the lower-rightcornerof the figure.

    Fig.4.Comparison of the observed(black line)northern hem ispheric–scale changes in surface temperature anomalies (relative to the average for the whole period)of Aprilw ith results simulated(red line)by climate models under the historical scenario for 1901–2004.Yellow shaded bands show the 5%to 95%uncertainty range for these simulations from the 16 climate models.

    Fig.5.The SOS time series averaged over the Northern Hemisphere during 2006–99 w ith respect to 1985–2004(historical scenario),projected by the CM IP5 models under the(a) RCP2.6,(b)RCP4.5,and(c)RCP8.5 scenarios.Negative(positive)values indicate the advance(delay)in the number of days w ith respect to 1985–2004.Orange shaded bands show the 5% to 95%uncertainty range for these simulations from the 16 climate models.The short horizontal lines indicate the averaged SOS for 2040–59 and 2080–99,w ith the m iddle ones being the SOS calculated from the MME,and the upper and lower ones the 5%and 95%ranges,respectively.

    Figure 4 shows that the observed April temperature,averaged over the Northern Hem isphere,shows an increasing trend for the whole period studied,w ith a rate of about 0.11?C(10 yr)-1.It also shows a multi-decadal variance,which experiences two increasing periods(from 1901 to the m id-1940s and from the mid-1960s to 2004).Between these increasing periods there is a decreasing period.The MME April temperature shows sim ilar variance to the observed one,including the increasing trend for the whole period[0.09?C(10 yr)-1].The 5%–95%uncertainty intervals assessed using the output of the 16 climate models,which are also given in Fig.4,indicate uncertainty intervals of the increasing trends from 0.04?C to 0.14?C(10 yr)-1for the simulated April temperature for the whole period.The increasing trends of April temperature between the observations and the simulations for 1951–2004 are also compared.The trend is 0.21?C(10 yr)-1for the observations,while the trend is 0.19?C(10 yr)-1for the MME[w ith uncertainty intervals of 0.09?C to 0.27?C(10 yr)-1].This indicates that the CGCM s have the ability to simulate the April temperature changes on a hemispheric scale fordifferentperiods.

    The simulated SOS shows sustained advancing trends for 2006–99 under the RCP4.5(Fig.5b)and RCP8.5(Fig.5c) scenarios.For the RCP2.6 scenario(Fig.5a),the SOS sustains an advancement rate for 2006–40,while from 2040 onwards the SOS is almost the same.The SOS calculated from the MME advances(negative value)-2.5 days(uncertainty intervalcalculated from the 16 simulations:-6.6 to 1.2 days)under RCP2.6,-4.5 days(-8.7 to-1.0 days)under RCP4.5,and-5.4 days(-9.8 to-2.0 days)under RCP8.5, when comparing 2040–59 w ith 1985–2004.The SOS advances-2.3 days(-6.8 to 1.5 days)under RCP2.6,-6.0 days(-11.0 to-1.8 days)under RCP4.5,and-11.5 days (-19.2 to-6.6 days)underRCP8.5,when comparing 2080–99 w ith 1985–2004.This indicates that the future projections of changes show a high degree ofuncertainty,butconsistency in the advancementdirection.

    Figures 6 and 7 show the changes in the SOS under the RCP scenarios for 2040–59 and 2080–99,respectively,in terms of the results of the historical scenario for1985–2004. The patterns are sim ilar among these six geographicalmaps of changes in the SOS.The patterns of changes in the SOS under the RCP scenarios are different from the observed for the last few decades in some aspects.For example,greater advancement trends are observed in Europe(Fig.2a);while in the CM IP5 simulations,the larger changes in the SOS during the 21st century are in southwestern North America, western Europe,southern Asia,and parts of eastern Canada. It is worth noting that this pattern is sim ilar to the pattern of temperature sensitivity of the SOS(Fig.1),indicating that the regions w ith larger SOS temperature sensitivity need to have more attention paid to them.

    In addition,by comparing the land cover categories for 2006 using NASA’s Moderate Resolution Imaging Spectroradiometer(MODIS)(MCD12C1,collection V051,were obtained from the Land Processes Distributed Active Archive Center,via their website:https://lpdaac.usgs.gov/products/ modis productstable/m cd12c1,accessed 10 August 2013), we found that the areas w ith large changes in SOS are mainly covered by evergreen needleleaf forest,m ixed forest,and grasslands.For these regions,the simulated changes in the SOS imply considerable influences on the ecosystem structure and function,which deserve further study.

    5.Discussion

    Fig.6.Changes in the SOS for(a)RCP2.6,(b)RCP4.5 and(c)RCP8.5 for 2040–59 w ith respect to the results of 1985–2004 under the historicalscenario,calculated from MME.Units:d.

    Fig.7.Changes in SOS for(a)RCP2.6,(b)RCP4.5 and(c)RCP8.5 for 2080–99 w ith respect to the results of1985–2004 under the historicalscenario,calculated from MME.Units:d.

    This study investigated the possible changes in the SOS forparts of the land areas of the Northern Hemisphere during the 21st century,based on the temperature sensitivity of the SOS and the April temperature projected under the RCP scenarios from the lateststate-of-the-art CGCMs.Itwas found that the observed trend of the SOS is-1.5 d(10 yr)-1but the simulated one is-0.8 d(10 yr)-1for 1982–2008(Fig. 3),implying that the models underestimate the trend of the SOS by a factorof 1.875.We suggest that the projected SOS trends under the three RCPs scenarios should be multiplied by 1.875.Therefore,the SOS based on the MME simulation w illadvance by-4.7 days under RCP2.6,-8.4 days under RCP4.5,and-10.1 daysunderRCP8.5,for2040–59 relative to 1985–2004.Itw illadvance by-4.3 days under RCP2.6, -11.3 days under RCP4.5,and-21.6 days under RCP8.5 for2080–99 relative to 1985–2004.Itis worth noting that the advance of the SOS during the 21st century shows large regionaldifferences.Forexample,averaged over the study areas in China(20?–42?N,95?–120?E),the SOS w illadvance (the values in Fig.7 multiplied by 1.875)by-10.7 days under RCP2.6,-18.6 days under RCP4.5,and-37.5 days under RCP8.5 for 2080–99 relative to 1985–2004.These are larger than the results obtained by Ge et al.(2014a),who suggested that,in China during the 21stcentury,the average numberofdays by which the fi rst leaf date advances is about -19 days,-11 days and-7.4 days under the IPCC(2001) A2,A1B and B2 scenarios,respectively.This discrepancy is partly due to the differences of temperature changes between the RCP scenarios and the previous versions of the scenarios.Comparing the temperature sensitivity of the SOS(Fig. 1)and the changes in the SOS for the 21st century(Figs.6 and 7),we can conclude that the larger the local temperature sensitivity of the SOS,the more notable the shiftof the SOS, i.e.in southwestern North America,western Europe,southern Asia,and parts ofeastern Canada.

    Acknow ledgements.This work was supported by the CAS Strategic Priority Research Program—Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05090000),CityU Strategic Research(Grant No.7004164),and the National Natural Science Foundation of China(ProjectNo.41405082).

    REFERENCES

    Chen,X.Q.,and W.F.Pan,2002:Relationships among phenological grow ing season,time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China.Int.J.Climatol.,22,1781–2002.

    Chm ielewski,F.M.,A.Muller,and E.Bruns,2004:Climate changes and trends in phenology of fruit trees and field crops in Germany,1961–2000.Agric.Forest Meteor.,121,69–78.

    Cong,N.,T.Wang,H.J.Nan,Y.C.Ma,X.H.Wang,R.B.M yneni,and S.L.Piao,2013:Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010:A multimethod analysis.Global Change Biol.,19,881–891.

    Cubasch,U.,and Coauthors,2001:Projections of future climate change.Climate Change 2001:The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,J. T.Houghton et al.,Eds.,Cambridge University Press,Cambridge,UK.,525–582.

    Dai,J.H.,H.J.Wang,and Q.S.Ge,2013:Multiple phenological responses to climate change among 42 plantspecies in Xi’an, China.Int.J.Biometeor.,57,749–758.

    Dai,J.H.,H.J.Wang,and Q.S.Ge,2014:The spatial pattern of leaf phenology and its response to climate change in China. Int.J.Biometeor.,58,521–528.

    Fitter,A.H.,and R.S.R.Fitter,2002:Rapid changes in flowering time in British plants.Science,296,1689–1691.

    Ge,Q.S.,H.J.Wang,and J.H.Dai,2014a:Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-fi rstcentury.Int.J.Biometeor.,58(4),473–484.

    Ge,Q.S.,H.J.Wang,T.Rutishauser,and J.H.Dai,2014b:Phenological response to climate change in China:A meta-analysis. GlobalChange Biol.,doi:10.1111/gcb.12648.

    Gillett,N.P.,F.W.Zw iers,A.J.Weaver,G.C.Hegerl,M.R. A llen,and P.A.Stott,2002:Detecting anthropogenic influence w ith a multi-model ensemble.Geophys.Res.Lett.,29(20),31-1–31-4,doi:10.1029/2002GL015836.

    Gleckler,P.J.,K.E.Taylor,and C.Doutriaux,2008:Performance metrics for climate models.J.Geophys.Res.,113,doi: 10.1029/2007JD008972.

    Harris,I.,P.D.Jones,T.J.Osborn,and D.H.Lister,2014:Updated high-resolution grid ofmonthly climatic observations—the CRU TS3.10 Dataset.Int.J.Climatol.,34,623–642.

    Hegerl,G.C.,and Coauthors,2007:Understanding and attributing climate change.Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth AssessmentReportofthe IntergovernmentalPanelon Climate Change,S.Solomon etal.,Eds.,Cambridge University Press, Cambridge,United Kingdom and New York,NY,USA,663–745.

    IPCC,2001:Climate Change 2001:Impacts,Adaptation,and Vulnerability.Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change,J.J.M ccarthy et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 1032 pp.

    IPCC,2013:Climate Change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Reportof the Intergovernmental Panel on Climate Change,T.F. Stocker etal.,Eds.,Cambridge University Press,Cambridge, United Kingdom and New York,NY,USA,1535 pp.

    Jeong,S.J.,C.H.Ho,H.J.Gim,and M.E.Brown,2011:Phenology shifts at start vs.end of grow ing season in temperature vegetation over the Northern Hemisphere for the period 1982–2008.Global Change Biology,17,2385–2399,doi: 10.1111/j.1365-2486.2011.02397.x.

    Kharin,V.V.,F.W.Zw iers,X.B.Zhang,and G.C.Hegerl, 2007:Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations.J. Climate,20,1419–1444.

    Knutti,R.,2008:Should we believe model predictions of future climate change?Philosophical Transactions of the Royal Society A,366,4647–4664,doi:10.1098/rsta.2008.0169.

    Knutti,R.,and J.Sedlacek,2013:Robustness and uncertainties in the new CM IP5 climate modelprojections.Nature Climate Change,3,369–373,doi:10.1038/nclimate1716.

    Knutti,R.,and Coauthors,2008:A review of uncertainties in global temperature projections over the twenty-fi rst century. J.Climate,21,2651–2663,doi:10.1175/2007JCLI2119.1.

    Linderholm,H.W.,2006:Grow ing season changes in the last century.Agric.Forest Meteor.,137,1–14,doi:10.1016/ j.agrformet.2006.03.006.

    Matsumoto,K.,T.Ohta,M.Irasawa,and T.Nakamura,2003:Climate change and extension of the Ginkgo biloba L.grow ing season in Japan.Global Change Biology,9,1634–1642,doi: 10.1046/j.1529-8817.2003.00688.x.

    McWilliams,J.C.,2007:Irreducible imprecision in atmospheric and oceanic simulations.Proc.Natl.Acad.Sci.USA,104, 8709–8713,doi:10.1073/pnas.0702971104.

    Menzel,A.,and P.Fabian,1999:Grow ing season extended in Europe.Nature,397,659.

    Meehl,G.A.,and Coauthors,2007:Global Climate Projections. Climate Change 2007:The PhysicalScience Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,S.Solomon et al.,Eds,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,747–845.

    Moss,R.H.,and Coauthors,2010:The nextgeneration of scenarios for climate change research and assessment.Nature,463, 747–756,doi:10.1038/nature08823.

    Piao,S.L.,J.Y.Fang,L.M.Zhou,P.Ciais,and B.Zhu,2006: Variations in satellite-derived phenology in China’s temperate vegetation.Global Change Biology,12,672–685,doi: 10.1111/j.1365-2486.2006.01123.x.

    Randall,D.A.,and Coauthors,2007:Climate models and their evaluation.Climate Change 2007:The Physical Science Basis.Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S.Solomon et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,589–662. Reichler,T.,and J.Kim,2008:How welldo coupled models simulate today’s climate?Bull.Amer.Meteor.Soc.,89,303–311, doi:10.1175/BAMS-89-3-303.

    Shen,M.G.,and Coauthors,2014:Earlier-Season vegetation has greater temperature sensitivity of spring phenology in northern hem isphere.Plos One,9(2),e88178,doi:10.1371/journal.pone.0088178.

    Slayback,D.A.,J.E.Pinzon,S.O.Los,and C.J.Tucker, 2003:Northern hem isphere photosynthetic trends 1982–99. Global Change Biology,9(1),1–15,doi:10.1046/j.1365-2486.2003.00507.x.

    Sparks,T.,2000:The long-term phenology ofwoodland species in Britain.Long-term Studies in British Woodland,Vol.34,English Nature Science Series,K.J.Kirby and M.D.Morecroft, Eds.,98–105.

    Sparks,T.H.,and A.Menzel,2002:Observed changes in seasons:An overview.Int.J.Climatol.,22,1715–1725,doi: 10.1002/joc.821.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CM IP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485–498,doi:10.1175/BAMS-D-11-00094.1.

    Tebaldi,C.,and R.Knutti,2007:The use of the multi-model ensemble in probabilistic climate projections.Philosophical Transactions of the Royal Society A,365,2053–2075,doi: 10.1098/rsta.2007.2076.

    Tucker,C.J.,J.E.Pinzon,M.E.Brown,D.A.Slayback,E.W. Pak,R.Mahoney,E.F.Vermote,and N.E.Saleous,2005: An extended AVHRR 8 km NDVI data set compatible w ith MODIS and SPOT vegetation NDVI data.Int.J.Remote Sens.,26,4485–4498.

    Wang,H.J.,J.H.Dai,J.Z.Zheng,and Q.S.Ge,2014:Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850–2009.Int.J.Climatol.,doi: 10.1002/joc.4026.

    Xia,J.J.,Z.W.Yan,and P.L.Wu,2013:Multidecadalvariability in localgrow ing season during 1901–2009.Climate Dyn.,41, 295–305.

    Zeng,H.Q.,G.S.Jia,and H.Epstein,2011:Recent changes in phenology over the northern high latitudes detected from multi-satellite data.Environ.Res.Lett.,6(4),045508,doi: 10.1088/1748-9326/6/4/045508.

    Zhou,T.J.,and R.C.Yu,2006:Twentieth century surface air temperature over china and the globe simulated by coupled climate models.J.Climate.,19(22),5843–5858.

    :Xia,J.J.,Z.W.Yan,G.S.Jia,H.Q.Zeng,P.D.Jones,W.Zhou,and A.Z.Zhang,2015:Projections of the advance in the start of the grow ing season during the 21st century based on CM IP5 simulations.Adv.Atmos.Sci.,32(6),831–838,

    10.1007/s00376-014-4125-0.

    (Received 18 June 2014;revised 8 October2014;accepted 22 October2014)

    ?Corresponding author:XIA Jiangjiang

    Email:xiajj@tea.ac.cn

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    美女 人体艺术 gogo| 欧美黑人欧美精品刺激| 熟女少妇亚洲综合色aaa.| 日本免费一区二区三区高清不卡| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看| 成人特级av手机在线观看| 国产精品乱码一区二三区的特点| 久久性视频一级片| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 成人无遮挡网站| 999久久久精品免费观看国产| 少妇的丰满在线观看| 国产成人精品无人区| 久久99热这里只有精品18| 又黄又粗又硬又大视频| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 欧美大码av| www.999成人在线观看| 成年女人看的毛片在线观看| 亚洲天堂国产精品一区在线| 成人av在线播放网站| 波多野结衣高清作品| 午夜福利高清视频| 国产伦一二天堂av在线观看| 国产精品久久电影中文字幕| 免费人成视频x8x8入口观看| 99热只有精品国产| 婷婷精品国产亚洲av在线| 99国产精品一区二区三区| 美女扒开内裤让男人捅视频| 免费观看的影片在线观看| avwww免费| 亚洲中文字幕日韩| 国产探花在线观看一区二区| 欧美丝袜亚洲另类 | 两个人看的免费小视频| 欧美日韩一级在线毛片| 国产一区二区三区在线臀色熟女| 国产三级中文精品| 亚洲专区字幕在线| 观看免费一级毛片| 国产亚洲精品久久久com| 亚洲性夜色夜夜综合| 琪琪午夜伦伦电影理论片6080| 国产一区二区在线av高清观看| 国产一区二区在线观看日韩 | 亚洲人成网站高清观看| 亚洲第一欧美日韩一区二区三区| 可以在线观看的亚洲视频| 99久久无色码亚洲精品果冻| 我要搜黄色片| 久久久国产精品麻豆| 日韩三级视频一区二区三区| 亚洲熟妇中文字幕五十中出| 色综合亚洲欧美另类图片| 久久欧美精品欧美久久欧美| 国产午夜福利久久久久久| 国产伦一二天堂av在线观看| 久久热在线av| xxx96com| 国产在线精品亚洲第一网站| 国产激情久久老熟女| 美女高潮的动态| 最新在线观看一区二区三区| 免费在线观看成人毛片| 在线免费观看不下载黄p国产 | 精品一区二区三区视频在线 | 在线观看美女被高潮喷水网站 | 麻豆国产97在线/欧美| 最新中文字幕久久久久 | 亚洲国产看品久久| 亚洲美女黄片视频| 亚洲国产看品久久| 国产精品香港三级国产av潘金莲| 午夜福利欧美成人| 久久精品aⅴ一区二区三区四区| 热99在线观看视频| 男女做爰动态图高潮gif福利片| 国产精品久久久av美女十八| av中文乱码字幕在线| 人人妻,人人澡人人爽秒播| 波多野结衣高清无吗| 国产野战对白在线观看| 精品一区二区三区视频在线观看免费| 欧美日韩综合久久久久久 | 看片在线看免费视频| 国产1区2区3区精品| 中文资源天堂在线| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av| 老熟妇乱子伦视频在线观看| 露出奶头的视频| 亚洲精品粉嫩美女一区| 亚洲狠狠婷婷综合久久图片| 精品国产乱码久久久久久男人| 搡老妇女老女人老熟妇| 日韩av在线大香蕉| 舔av片在线| 欧美日韩中文字幕国产精品一区二区三区| 床上黄色一级片| 成人特级av手机在线观看| 香蕉丝袜av| 欧美黑人巨大hd| 久久性视频一级片| av女优亚洲男人天堂 | 亚洲国产欧美网| 亚洲午夜理论影院| 日本熟妇午夜| 亚洲最大成人中文| 香蕉久久夜色| 少妇熟女aⅴ在线视频| 成人永久免费在线观看视频| 亚洲av成人一区二区三| 波多野结衣巨乳人妻| 黑人操中国人逼视频| 99国产精品99久久久久| 亚洲专区字幕在线| 搞女人的毛片| 一个人看的www免费观看视频| 99视频精品全部免费 在线 | 亚洲精品中文字幕一二三四区| 一个人观看的视频www高清免费观看 | 欧美一级a爱片免费观看看| 国产成人av激情在线播放| 麻豆成人午夜福利视频| 欧美在线一区亚洲| 久久这里只有精品中国| 1024香蕉在线观看| 亚洲18禁久久av| 十八禁网站免费在线| 亚洲狠狠婷婷综合久久图片| 五月玫瑰六月丁香| 国产精品日韩av在线免费观看| 国产亚洲欧美在线一区二区| 十八禁网站免费在线| 国产精品自产拍在线观看55亚洲| 亚洲av电影在线进入| 久久中文字幕一级| 在线观看美女被高潮喷水网站 | 又爽又黄无遮挡网站| 特大巨黑吊av在线直播| 怎么达到女性高潮| 韩国av一区二区三区四区| 欧美精品啪啪一区二区三区| 国产精品久久久久久久电影 | 国产高清视频在线播放一区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品av视频在线免费观看| 亚洲av美国av| 国产午夜精品久久久久久| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 午夜精品久久久久久毛片777| 精品一区二区三区四区五区乱码| 国产成人欧美在线观看| 久久人妻av系列| 亚洲av中文字字幕乱码综合| 韩国av一区二区三区四区| 在线十欧美十亚洲十日本专区| 一个人看的www免费观看视频| 又粗又爽又猛毛片免费看| 99re在线观看精品视频| 男女下面进入的视频免费午夜| 欧美日韩中文字幕国产精品一区二区三区| 嫩草影院入口| 日韩高清综合在线| 精品无人区乱码1区二区| 国产成人啪精品午夜网站| 免费在线观看日本一区| 亚洲国产精品合色在线| 99视频精品全部免费 在线 | 一个人免费在线观看电影 | 国内精品一区二区在线观看| 熟女电影av网| 国产精品久久久久久久电影 | 亚洲 国产 在线| 日韩三级视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| 男人舔奶头视频| 巨乳人妻的诱惑在线观看| 国产三级黄色录像| 18禁裸乳无遮挡免费网站照片| 99久久综合精品五月天人人| 精品国内亚洲2022精品成人| 亚洲色图av天堂| av国产免费在线观看| 亚洲精品中文字幕一二三四区| 最近在线观看免费完整版| 欧美成人性av电影在线观看| 成年人黄色毛片网站| 亚洲天堂国产精品一区在线| 看黄色毛片网站| 身体一侧抽搐| 日本 av在线| 一个人免费在线观看的高清视频| 久久久久国内视频| 91麻豆av在线| 窝窝影院91人妻| 精品不卡国产一区二区三区| 色噜噜av男人的天堂激情| 亚洲国产欧美人成| 嫁个100分男人电影在线观看| av片东京热男人的天堂| 国内精品久久久久精免费| 欧美日韩瑟瑟在线播放| 国内精品美女久久久久久| 日本 av在线| 欧美一区二区精品小视频在线| 久久久久久九九精品二区国产| 午夜福利18| 99在线人妻在线中文字幕| www.www免费av| 桃色一区二区三区在线观看| 国产成人av激情在线播放| 亚洲专区国产一区二区| 亚洲精品在线观看二区| www.999成人在线观看| 麻豆av在线久日| aaaaa片日本免费| 丁香六月欧美| 熟女电影av网| 99re在线观看精品视频| 国产一区二区三区在线臀色熟女| 一本一本综合久久| 久久久久国产一级毛片高清牌| 国产激情偷乱视频一区二区| 好看av亚洲va欧美ⅴa在| 一进一出抽搐gif免费好疼| 国产私拍福利视频在线观看| 亚洲av第一区精品v没综合| 久久这里只有精品19| 人妻丰满熟妇av一区二区三区| 麻豆成人av在线观看| 少妇丰满av| 母亲3免费完整高清在线观看| 欧美3d第一页| 99久久精品一区二区三区| 国产午夜福利久久久久久| 色吧在线观看| 黄频高清免费视频| 老司机午夜十八禁免费视频| 国产激情欧美一区二区| 不卡一级毛片| 亚洲激情在线av| 欧美成人性av电影在线观看| 免费在线观看成人毛片| 波多野结衣巨乳人妻| 日本黄大片高清| 国产黄a三级三级三级人| 桃红色精品国产亚洲av| svipshipincom国产片| 激情在线观看视频在线高清| 日韩成人在线观看一区二区三区| 97超视频在线观看视频| 午夜免费激情av| 国产成人av激情在线播放| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| 免费搜索国产男女视频| 最近在线观看免费完整版| 高潮久久久久久久久久久不卡| 1000部很黄的大片| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| 午夜免费观看网址| 国产精品久久久久久人妻精品电影| 色av中文字幕| 国产精品国产高清国产av| 少妇丰满av| 在线观看美女被高潮喷水网站 | svipshipincom国产片| 好看av亚洲va欧美ⅴa在| 精品人妻1区二区| 国产一区二区三区在线臀色熟女| 熟女人妻精品中文字幕| 免费在线观看日本一区| 国产一级毛片七仙女欲春2| 1024香蕉在线观看| 免费观看的影片在线观看| 久久久精品大字幕| 日本黄大片高清| 免费高清视频大片| 青草久久国产| 精品国内亚洲2022精品成人| 欧美三级亚洲精品| 国产成年人精品一区二区| 一本一本综合久久| 国产精品野战在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜免费观看网址| 高清毛片免费观看视频网站| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区mp4| 在线免费观看的www视频| 真人一进一出gif抽搐免费| 国产又黄又爽又无遮挡在线| 欧美日韩综合久久久久久 | 成人特级黄色片久久久久久久| 国产私拍福利视频在线观看| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 一区二区三区高清视频在线| 九色成人免费人妻av| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 51午夜福利影视在线观看| www.熟女人妻精品国产| 国产亚洲精品久久久久久毛片| 午夜免费观看网址| a在线观看视频网站| 久久人妻av系列| 999精品在线视频| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 国内毛片毛片毛片毛片毛片| 成年女人毛片免费观看观看9| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 色播亚洲综合网| 九色国产91popny在线| 日本黄色视频三级网站网址| 19禁男女啪啪无遮挡网站| 亚洲成a人片在线一区二区| 特级一级黄色大片| 国产不卡一卡二| 丝袜人妻中文字幕| 成人欧美大片| av中文乱码字幕在线| 成在线人永久免费视频| 成熟少妇高潮喷水视频| 在线观看66精品国产| 日韩欧美三级三区| 国产成人aa在线观看| 国产伦在线观看视频一区| 国产一区二区在线观看日韩 | 久久久国产成人免费| 亚洲 国产 在线| 亚洲国产中文字幕在线视频| 久久久久亚洲av毛片大全| 99热这里只有是精品50| 黑人操中国人逼视频| 日韩免费av在线播放| 亚洲无线在线观看| 黄片大片在线免费观看| 熟女少妇亚洲综合色aaa.| 黄色日韩在线| av中文乱码字幕在线| 日本a在线网址| 国产久久久一区二区三区| 黄色 视频免费看| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区| 中文亚洲av片在线观看爽| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 国产精品99久久久久久久久| 亚洲国产看品久久| 久久性视频一级片| 韩国av一区二区三区四区| 国产又色又爽无遮挡免费看| 久久午夜亚洲精品久久| 看黄色毛片网站| 国产精品久久久av美女十八| 高清毛片免费观看视频网站| 亚洲av中文字字幕乱码综合| 午夜影院日韩av| 久久精品91无色码中文字幕| 国产精品野战在线观看| 一级a爱片免费观看的视频| 亚洲五月天丁香| 日韩大尺度精品在线看网址| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 一区二区三区国产精品乱码| www日本黄色视频网| 毛片女人毛片| 亚洲av成人一区二区三| 亚洲美女视频黄频| 热99re8久久精品国产| 又黄又爽又免费观看的视频| 免费高清视频大片| 一进一出抽搐动态| 一个人看的www免费观看视频| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 国产爱豆传媒在线观看| 淫秽高清视频在线观看| 99久久成人亚洲精品观看| 99久久久亚洲精品蜜臀av| 免费人成视频x8x8入口观看| 亚洲 欧美一区二区三区| 少妇丰满av| 欧美日韩一级在线毛片| 一个人看视频在线观看www免费 | 他把我摸到了高潮在线观看| 黄片大片在线免费观看| 国产熟女xx| 色吧在线观看| e午夜精品久久久久久久| 一二三四在线观看免费中文在| 色综合站精品国产| 日韩欧美在线二视频| 午夜视频精品福利| 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 首页视频小说图片口味搜索| 久久国产精品影院| 极品教师在线免费播放| 真实男女啪啪啪动态图| av中文乱码字幕在线| 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 国产高清激情床上av| 老司机午夜十八禁免费视频| 成年女人看的毛片在线观看| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合| 亚洲片人在线观看| 可以在线观看的亚洲视频| 亚洲最大成人中文| 亚洲精品粉嫩美女一区| 精品99又大又爽又粗少妇毛片 | 女同久久另类99精品国产91| 一个人免费在线观看的高清视频| 伦理电影免费视频| 亚洲美女黄片视频| 最近在线观看免费完整版| 一卡2卡三卡四卡精品乱码亚洲| 黄色片一级片一级黄色片| 国产乱人伦免费视频| 久久久久久大精品| 国内久久婷婷六月综合欲色啪| 男女午夜视频在线观看| 欧美乱妇无乱码| 老司机深夜福利视频在线观看| 日韩三级视频一区二区三区| 午夜成年电影在线免费观看| 最好的美女福利视频网| 性色avwww在线观看| 国产伦一二天堂av在线观看| 精品乱码久久久久久99久播| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 一本综合久久免费| 女生性感内裤真人,穿戴方法视频| 日本在线视频免费播放| 人人妻人人澡欧美一区二区| 国产淫片久久久久久久久 | 18禁国产床啪视频网站| 国产视频内射| 12—13女人毛片做爰片一| 午夜免费激情av| 成年版毛片免费区| 黄频高清免费视频| 中文字幕高清在线视频| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 五月伊人婷婷丁香| 免费在线观看亚洲国产| 老熟妇仑乱视频hdxx| 国产亚洲av嫩草精品影院| 成人国产综合亚洲| 免费看美女性在线毛片视频| 国产1区2区3区精品| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色| 99国产极品粉嫩在线观看| 最近在线观看免费完整版| 全区人妻精品视频| 国产精品久久视频播放| 日韩精品中文字幕看吧| 国产精品av久久久久免费| 色综合婷婷激情| 琪琪午夜伦伦电影理论片6080| 男女那种视频在线观看| 少妇人妻一区二区三区视频| 日本黄色片子视频| 精品人妻1区二区| 热99re8久久精品国产| 一进一出抽搐gif免费好疼| 好男人在线观看高清免费视频| 99视频精品全部免费 在线 | 手机成人av网站| а√天堂www在线а√下载| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 看片在线看免费视频| 国产欧美日韩精品亚洲av| 观看免费一级毛片| 一进一出好大好爽视频| 国产精品久久电影中文字幕| 搡老岳熟女国产| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 精品国产亚洲在线| 久久久久国内视频| 黑人巨大精品欧美一区二区mp4| 免费人成视频x8x8入口观看| 手机成人av网站| 最近最新中文字幕大全免费视频| 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 国产精品九九99| 国内精品久久久久精免费| 亚洲av成人av| 欧美一级a爱片免费观看看| 88av欧美| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 一本精品99久久精品77| 一进一出好大好爽视频| 国产精品 欧美亚洲| 热99在线观看视频| 国产精品 欧美亚洲| 热99在线观看视频| 国产精品久久电影中文字幕| 久久这里只有精品中国| 精品99又大又爽又粗少妇毛片 | 免费高清视频大片| 欧美一级a爱片免费观看看| 日本精品一区二区三区蜜桃| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| av欧美777| 欧美成人免费av一区二区三区| 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| 人人妻人人澡欧美一区二区| aaaaa片日本免费| 亚洲av成人不卡在线观看播放网| 久99久视频精品免费| 亚洲专区中文字幕在线| 亚洲人与动物交配视频| 日韩欧美国产一区二区入口| 精品一区二区三区四区五区乱码| 精品人妻1区二区| av片东京热男人的天堂| 人人妻人人澡欧美一区二区| 国产视频内射| 最好的美女福利视频网| 国产单亲对白刺激| 搡老岳熟女国产| 成人亚洲精品av一区二区| av欧美777| 国产人伦9x9x在线观看| 国产精品,欧美在线| 日本一本二区三区精品| www.999成人在线观看| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 可以在线观看毛片的网站| 久久久国产精品麻豆| 中文资源天堂在线| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 最近最新免费中文字幕在线| 久久香蕉精品热| 好男人在线观看高清免费视频| 亚洲专区中文字幕在线| 国产视频内射| 亚洲成人中文字幕在线播放| 午夜成年电影在线免费观看| 久久久久久久久久黄片| 日韩大尺度精品在线看网址| 日韩三级视频一区二区三区| 色综合婷婷激情| 免费观看人在逋| 亚洲午夜精品一区,二区,三区| 免费看十八禁软件| 精品国产超薄肉色丝袜足j| 国产淫片久久久久久久久 | 亚洲av熟女| 亚洲电影在线观看av| 亚洲成人久久爱视频| 亚洲乱码一区二区免费版| 校园春色视频在线观看| 亚洲美女视频黄频| 国产精品一区二区免费欧美| 久久久水蜜桃国产精品网| 亚洲av成人一区二区三| 日本a在线网址| 又紧又爽又黄一区二区| 后天国语完整版免费观看| 巨乳人妻的诱惑在线观看| 日本三级黄在线观看| 色吧在线观看| 看片在线看免费视频| 亚洲九九香蕉| 一个人看的www免费观看视频| 青草久久国产| 精品人妻1区二区| 色综合欧美亚洲国产小说|