• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structures and Characteristics of the W indy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges

    2015-04-20 05:59:17CHENGXueLingHUANGJianWULinandZENGQingCun
    Advances in Atmospheric Sciences 2015年6期

    CHENG Xue-Ling,HUANG Jian,WU Lin,and ZENG Qing-Cun

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Institute of Tropical and Marine Meteorology,China Meteorological Administration,Guangzhou510080

    3Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    Structures and Characteristics of the W indy Atmospheric Boundary Layer in the South China Sea Region during Cold Surges

    CHENG Xue-Ling?1,HUANG Jian2,WU Lin1,and ZENG Qing-Cun3

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Institute of Tropical and Marine Meteorology,China Meteorological Administration,Guangzhou510080

    3Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029

    An observationalanalysis of the structures and characteristics of a w indy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper.It is found that the main structures and characteristics are the same as during strong w ind episodes w ith cold air outbreaks on land.The high frequency turbulent fluctuations(period<1 m in)are nearly random and isotropic w ith weak coherency,but the gusty w ind disturbances(1 m in<period<10 m in)are anisotropic w ith rather strong coherency.However,in the w indy atmospheric boundary layeratsea,compared w ith thatover land,there are some pronounced differences:(1)the average horizontalspeed is almostindependentofheight,and the vertical velocity is positive in the lower marine atmospheric boundary layer;(2)the vertical flux of horizontal momentum is nearly independentof height in the low layer indicating the existence of a constant flux layer,unlike during strong w ind over the land surface;(3)the kinetic energy and friction velocity of turbulent fluctuations are larger than those of gusty disturbances; (4)due to the independence of horizontal speed to height,the horizontal speed itself(not its vertical gradientused over the land surface)can be used as the key parameter to parameterize the turbulentand gusty characteristics w ith high accuracy.

    turbulence,w ind gust,coherentstructure,cold surge,w indy marine atmospheric boundary layer

    1.Introduction

    Boundary layers were fi rst investigated at the beginning of the 20th century by Prandtl(1904),and the fi rstgeophysical application of boundary layer theory belongs to Ekman (1905).Until now,there has been a theory system(which can be referred to as classical theory)on the structures and dynam ical characteristics of the atmospheric boundary layer (ABL)(Kolmogorov,1941,1962;Sutton,1953;Monin and Obukhov,1954;Lum ley and Panofsky,1964;Stull,1988; Sorbjan,1989;Kaimal and Finnigan,1994;Wyngaard, 2010);and these classical results have been w idely used in weather and climate forecasting models,such as the general circulation models of the National Center for Atmospheric Research(NCARa),Geophysical Fluid Dynam ics Laboratory(GFDLb),European Centre for Medium-Range Weather Forecasts(ECMWF)c,and the Weather Research and Forecasting Model(WRF)d,as wellas various other practicalatmospheric models.

    However,these studiesare based on the condition ofweak average w ind speed.Under thatcondition,follow ing the theory,the average speedchanges w ith height as a logarithmic function,and the turbulent spectrum obeys a-2/3 power law.In fact,in the real ABL,there are many cases of cold air outbreaks(cold surges;Ding etal.,2009).Usually, in these cases,the w ind speed averaged for 10 m in,at the 10 m height above ground,is larger than 10 m s-1.Moreover,values of>30 m s-1and even>40 m s-1are very often found forstorms and typhoons.It is important to study the structures and dynamical characteristics of w indy ABLs and to recognize their differences from classical theoreticalresults.

    In the land ABL,many observationshave long been made during strong w ind episodes,and by analyzing these valuable data ithas been possible to show many differences compared w ith weak w ind situations(Cheng et al.,2007;Zeng et al., 2007a;2007b;Zeng etal.,2010;Cheng etal.,2011;Cheng et al.,2012a,2012b,2012c).For example:(1)the power function is better than the logarithm ic function in fi tting the vertical distribution of average w ind speed,(2)w ind fluctuations are betterdivided into two types,i.e.(I)high frequency turbulent fluctuations(turbulent fluctuations,or simply“turbulence”forshort)w ith a frequency greater than 1/60 Hz(period<1 min),which is random and possesses weak coherency,and(II)gusty w ind disturbances(“gusts”for short) w ith a frequency between 1/60 and 1/600 Hz(period of 1–10 m in),which possesses rather regular structure and strong coherency;(3)turbulence lies in the inertial sub-range,and its spectrum obeys a-2/3 scaling law,as does the classical theory,but gusts are far from the inertial sub-range and the spectrum has a different form,even w ith a discrete maximum atsome main frequencies(usually in the range 1/120–1/240 Hz);(4)the constant flux layer does notexist,and the downward flux of momentum reaches its maximum atsome lower levelw ithin the boundary layer;(5)the downward flux of horizontal momentum contributed by gusts is as large as thatby turbulence;(6)both the turbulent kinetic energy and momentum flux are large in the lower layer,then decrease very quickly w ith height,show ing that turbulence is generated by land–air interactions near the ground surface;and(7) the maxima ofkinetic energy and momentum flux ofgusts are ata levelhigher than those of turbulence,show ing its generation is due to disturbances w ithin the ABL,but the influence of the ground surface is small.

    For the marine boundary layer,current models(such as the models of the NCAR,GFDL,and WRF)and the associated literature(Andreas,1992,1998,2010;Fairall et al., 1994)are all based on the classical turbulent and boundary layer theories.In particular,is taken as a logarithm ic distribution in all these models and studies.However,in fact,the occurrence of strong w inds over the sea surface is much more frequent than over land.Therefore,the structures and characteristics of the marine boundary layer during strong w ind episodes might also be different to those during weak w ind episodes,and a logarithm ic profi le ofmightbe doubtful.There have been some observationalexperiments conducted that were specifically focused on the marine boundary layer,such as Hum idity Exchange over the Sea Program(HEXOS)and Fronts and Atlantic Storm-Track Experiment(FASTEX),the MeetpostNoordw ijk platform in the North Sea(DeCosmo,1991;Sm ith etal.,1993;Andreas and DeCosmo,1999;Andreas,2010),and Coupled Ocean-Atmosphere Response Experiment(COARE)(Zeng et al., 2002).However,apart from Zeng et al.(2002),the analyses of these data have largely been based on the classical theory of the boundary layer.Although there were 322 hours of data in the FASTEX datasets,and sometimes the w ind speedreached 22 m s-1,Andreas(1998)derived the 10 m w ind speed as 32 m s-1by the logarithmic profi le,and the bulk turbulent flux algorithm was also used.

    Only Zeng et al.(2002)noticed the existence of gusts and used the drag coefficientDwhen calculating the momentum and thermal fluxes in the marine boundary layer;and in the calculation ofD,was replaced bycorrection term considering the statistical characteristics of gustiness. We have no intention of making a reanalysis of those observation data.Fortunately,we have some new data regarding the marine boundary layer during cold surges from January–May 2012 and 2013. These data were obtained during the Marine Meteorological Experiment Complex(MMEC) at Bohe,Guangdong Province,in a cooperative effort by the Institute of Tropicaland Marine Meteorology/China Meteorological Adm inistration,the Maom ing Meteorological Bureau/Guangdong Province,the Institute of Atmospheric Physics/Chinese Academy of Sciences,and China Ocean University.In this paper,we analyze these data to present the structures and characteristics of the marine ABL during the cold air outbreak,and compare them w ith those at land surface stations.

    2.The MMEC and instruments

    The MMEC at Bohe,Guangdong Province,comprises three sites:(1)Beishan Station,which is located on Lotus Head(a small and very narrow peninsula,like an arrow intruding into the sea)ata heightofabout10 m;(2)NearBeishan Station,there is an observation platform(21?26′21′′N, 111?23′44′′E)above the sea surface and 6.5 km from the shore,where the depth of the water is 16 m;(3)A 100 m meteorological tower(21?27′3′′N,111?22′28′′E)installed on a very small rocky island named Zhizi,which is located ata heightof10 m and 4.4 km from the shore,where the depth of the surrounding sea is 6–10 m.A map show ing the locations of the sites and also a picture of the platform are provided in Fig.1.

    A setof Doppler boundary layer w ind profi lers(Sumitomo Electric Industries,Osaka,Japan)is utilized atBeishan Station to measure the w ind profi le w ithin the whole ABL. The effective observation height of this setof instruments is from 100 m to 3500 m,the vertical resolution is 100 m,and the average sampling time is 10 m in.These observations provide the large-scale background for the analysis of the finerscale observations made at the observation platform and on Zhizi Island.

    There is a 25 m high tower on the observation platform w ith three sets of Gill R3-50 ultrasonic anemometers(Gill Instruments Lim ited,Hampshire,UK,measuring resolution: 0.01 m s-1;measurementaccuracy:<1%RMS(rootmean square)),which are installed at 24 m,16 m and 9 m above the tower base,and the tower base is 11 m above the sea surface.Besides,there is also a smallannex tower w ith one set of Gill R3-50 ultrasonic anemometers at 8 m above sea level.Accompanying these foursets ofultrasonic anemometers,there are foursetsof XW-TS1130 inclinometers(BeijingStarneto Technology CO.Ltd,Beijing,China,angle measuring range:±15?;measurementaccuracy:0.1?)for monitoring the attitudes of these anemometers.The frequency of the ultrasonic anemometers and inclinometers is 20 Hz.The instruments used for measuring other meteorological variables are supplementary(for checking the quality of the ultrasonic anemometer observations)and hence are notdescribed here.

    Fig.1.The marine meteorologicalscience experimentcomplex atBohe and the observation platform.

    On Zhizi Island there is a meteorological tower w ith six levels of NRG-Symphonic anemometers(NRG systems, Hinsburg,USA)at 10,20,40,60,80 and 100 m above the island and three levels of anemoscopes(NRG systems,Hinsburg,USA)at10,60 and 100 m above the island.These data are used for multiple checks of the observations ofby the observation platform and its extension to higheraltitude.

    In order to ensure the quality of observations,abnormal data recorded by the GillR3-50 ultrasonic anemometers were elim inated.Forexample,data were removed if the anemometers were contam inated by precipitation.A lso,any extraordinarily large valuesbeyond the reasonable range of the data,or exceeded the threshold of six times larger than the variance of the data obtained from the computation of the probability density function,were also removed.The supplementary data for replacing the elim inated data were obtained by interpolation from adjacentdata.

    The inclination of an ultrasonic anemometer can cause horizontal w ind velocity fluctuation to produce a relatively large component in the verticaldirection,so the vertical fluctuations as wellas the verticalvelocity become contam inated. Usually,the inclination of an ultrasonic anemometer can be corrected by allof the three coordinate system transform ing methods of the double rotation(DR)orplanar-fi t(PF)methods(Wilczak et al.,2001).In the present study we used the inclinometer settled on the reference plane of the anemometer to obtain the synchronous signals of inclination angles, and put these anglesinto the coordinate transformation to obtain the new velocity data: whereu0,v0,w0are the original signal of velocities,u,v,ware the revised velocities,andα,βare the inclination angles around thexaxis(pitch angle)andyaxis(yaw angle)respectively.Note,thatαandβare slow ly variable or even constant.A fter a single rotation,uis defined as the horizontal w ind speed along the downw ind direction(the direction in which the horizontal velocity vector is heading),and hence the average velocity ofv,i.e.is exactly zero according to such decomposition.

    3.The strong w ind cases and the methods of analysis

    The data obtained from MMEC during cold airoutbreaks (cold surges)from January–May 2012 and 2013 are analyzed in detail.During the period January–May 2012 there were 289 hours when w ind velocities reached 10 m s-1at 9 m height above the tower base of the observation platform(20 m above sea level),and 103 hours when they reached 12 m s-1.The period 23–24 March 2012 was a typicalcase during which a stream of cold air quickly descended over Guangdong Province and the South China Sea region,and above sea surface the cold surge enhanced the northeastw ind obviously.There was moderate to heavy rainfallover the north of the province,and light to moderate rainfall over central and southern regions.Some cities and counties suffered strong convective weather,such as short-term thunderstorms and highly intense rainfall.At the sea surface there were northeasterly w inds at force 7 accompanied by force 8 gusts.Figure 2 shows the 850 hPa weather map at0800 LST 24 March 2012.We can see thatthe strong w ind w ith a northern componentdoesnotappearatthe top of the boundary layer(approximately 850 hPa).Figure 3 is the one-hour-averaged time–heightw ind profi le at Beishan Station.Together,Figs.2 and 3 show that the cold airoutbreak was very shallow and strong w ind was a phenomenon thatoccurred in the boundary layer. They also show that very strong w ind was presentbetween 2100 LST 23 March and 1000 LST 24 March 2012,butbelow 1000 m.In such a large-scale background,the observationsat the observation platform and on Zhizi Island show that the strong horizontal w ind speed in the low layer of the ABL appeared w ith a peak at0001 LST 24 March and lasted for almost1 day(seen in Figs.4a and b).Note that there is very good structuralconsistency between the curvesin Figs. 4a and b.

    Fig.2.850 hPa weathermap at0800 LST 24 March 2012(provided by Guangdong Meteorological Bureau).

    Fig.3.Time–height w ind profi les of one-hour-averagedduring 23–24 March 2012 at Beishan Station.

    Here,we apply the method suggested by Zeng et al. (2010)to analyze the characteristics of the w indy marine ABL;that is,to divide the variablefinto three parts:10-m in-averagedgusty valueand turbulent valueTaking w ind velocityVVVfor example,we havewhere the subscripts“g”and“t”represent gusty w ind disturbance and turbulent fluctuation,respectively.Conventionally,VVVis decomposed asis called fluctuation(even turbulence), buthere we divideVVV′into two furtherparts,i.e.Besides,the three directionalcomponents of the vectorVVVare denoted as(u,v,w),whereuis the horizontal speed in the downw ind direction,thenand

    The average time is 10 min.Here,we use the simplest method to separate turbulent fluctuation and gusty w ind disturbance.That is,the frequency of the former is larger than 1/60 Hz,and the latter is between 1/60 Hz and 1/600 Hz. A lthough the frequency dividing these into two parts m ight be slightly different,and may change from case to case for strong and weak w ind situations,it is sufficient to take the value in applications as 1/60 Hz.We focus on analyzing the characteristics of turbulence and gusts,and the relationship between them w ith average w ind(primarily the horizontal average velocityDenoting the kinetic energy,friction velocity and the coherent index asEi,ui?andCirespectively, wherei=g,t,we have

    whereAijare the amplitudes of theifluctuation of thejcomponent,andi=g(gust)and t(turbulence),andj=u,v,w. Besides,The largerCiis,the higher the coherency and greater the regularity of the structure.

    4.The structures and characteristics of the w indy marine ABL during cold surges

    4.1.Average wind

    Fig.4.10-m in-averaged horizontaland verticalvelocities during 23–24 March 2012:(a)at four levels and w at two levels of the observation platform;(b)at six levels on Zhizi Island;(c)the distribution ofatevery levelof the observation platform;(d)the distribution ofu atevery levelof the tower on Zhizi Island;(e)as in (c)except for w at two levels;(f)the pairfor cold surge cases.

    Figure 4a shows the 10-m in-averaged time series of the w ind speedobtained by the observation platform ultrasonic anemometers at four levels during 23–24 March 2012.Note thatduring this cold surge the w ind direction(notgiven here) was very stable.For comparison,Fig.4b shows the same information butobtained by the anemometers on Zhizi Island atsix levels.In Fig.4a the vertical velocitiesat the levels 27 m and 35 m(above the sea surface)are also shown,and they are all positive.Note thatat the low levels of 8m and 20 m are influenced by the platform;hence,the resultsare not meaningful and not presented here.Furthermore,except for in summer,unfortunately there was no ultrasonic anemometeratthe toweron Zhizi Island;hence,there is nopresented in Fig.4b.Figure 4c shows the distribution ofvalues at every levelof the observation platform during 23–24 March 2012.The points are the ensemble means of the speeds.Figure 4d is the same as Fig.4c but for Zhizi Island.These two figures show that the w ind speedswere almost the same at every level,and the difference between levels was small. Therefore,the velocitygenerally did notchange w ith height below 110 m above sea level,orat leastbelow 35 m above sea level,during the cold surge episode.However,there are still some differences between Figs.4a and b,e.g.the 1 m s-1difference ofand the slightphase difference.These may be due to the different locations of the two sets of observations. Note that the vertical profi le ofis valid for all cold surge cases in the 2012 and 2013 w inter–spring seasons(figure notshown),which is one important characteristic of the w indy marine ABL,and itshows that the logarithm ic profi le ofis notvalid in such cases.

    Figure 4e shows the vertical velocityat the two levels mentioned above for the cold surge case during 23–24 March 2012,and Fig.4f shows the relationship betweenandThese figures show another important feature of the w indy marine ABL,i.e.that there is ascending atmospheric motion above the sea surface,and it can be parameterized well by one parameter,

    4.2.The characteristics of gusty and turbulentenergy

    Figure 5 givesan example oforiginalvelocity(u,w)measured by ultrasonic anemometers and the decompositions, (ug,wg)and(ut,wt),at the 8 m level.Figures 6 and 7 show the amplitudes of turbulent fluctuations,(At≡E1/2t), and gusty disturbances,(Ag≡E1/2g),and their components (Atu,Atv,Atw,Agu,Agv,Agw)against the average w ind speedis simplified asUin the figures).The regressions(parameterization formulas)are also given in these figures.Note that alldata obtained by MMEC for every case of whole air outbreak processes(0.5 m s-1<<16 m s-1)in January–May 2012 and 2013 were analyzed and are presented in Figs.6–10,except for Fig.8;and the regressions in Figs.6 and 7 are forall levels because theirdifferences between every levelare smalldue to the fact thatall four levels are in the lowest layer below 35 m height(above sea level)and the independence ofuto height.

    Figures 6 and 7 show that:(1)the gusty w ind disturbances are anisotropic,and the amplitudeAguis larger thanAgv,and both are larger than the vertical amplitude,i.e.Agu>Agv>Agw.However,the turbulence isalmostisotropic on the horizontalplane,AtuandAtvare almost the same,and only the verticalamplitudeAtwis somewhatsmaller.(2)Becauseis almost independent of height,the parameterization formulas forAijcan be developed by using the vertically averaged w ind speed as the unique parameter,and this parameter can also be considered as the 10 m w ind speed, as commonly accepted in the literature.(3)The accuracies of these regressions are high—except that ofAgv,which is moderate—especially for turbulentparameters.

    4.3.The vertical fl ux of horizontal momentum and friction velocity

    Figure 4 shows thatthe velocity increased obviously from 1800 LST 23 March and thatthe strong w ind lasted until1200 LST 24 March 2012.During this period the vertical fluxes of horizontalmomentum caused by both turbulence and gusts at various levels were also obviously large(Figs.8a–d).Figure 8e presents the verticalprofi les of these fluxes during this period.

    Figure 8 shows that the turbulent downward flux was larger than the gusty one,and that they were equally large only at the 35 m level.Besides,the turbulent(gusty)fluxes decreased(increased)slightly w ith height.The friction velocitiesut?andug?againstare shown in Figs.9a and b,and theirverticalprofi lesand distributionsatevery levelare given in Figs.9c and d.Figures 9a and b show that theug?andut?at all levels for all cases of cold surges can be very well expressed by parameterization formulas w ith a single parameteru.Furthermore,Figs.9c and d showug?<ut?at all levels, except for the 35 m levelwhereug?≈ut?,and thatbothug?andut?are independentof height(error<10%),albeitug?definitely increases w ith heightslightly.

    4.4.The coherent structure of gusty disturbances

    Once we have the kinetic energy and friction velocity of turbulence and gusts,their coherent indices,CgandCt,can be easily calculated according to Eqs.(7)and(8).TheCgandCtvalues for the case in March 2012 are given in Table 1. The results indicate thatmostCgvalues are much larger thanCtduring the strong w ind period,and the gusty disturbances possess a well-organized structure.

    4.5.The equivalent period of gusts

    The equivalentperiodTgofgustswas introduced by Zeng et al.(2010)to approximately present the real gusty trains whose period is variable from time to time but w ithin some range.Such a defined equivalentperiod of gusts is very useful for solving the problem of aerosol transport(Cheng etal.,2012c).

    Fig.5.Original velocity u(left),gusts ug(middle),and turbulence ut(right)at the 8 m levelof the platform tower at 0700 LST 24 March 2012.

    Fig.6.The amplitude of gusts and its three components against

    Fig.7.As in Fig.6 except for the turbulence(a)At,(b)Atu,(c)Atv,and(d)Atw.

    Fig.8.The vertical fluxes of momentum of turbulence(red)and gusts(black)at four levels(a–d)and their profi les(e).

    During the cold surge periods in January–May 2012 and 2013,theTgcomputed from the observedugat four levels is presented in Fig.10.It can be seen thatTgis located in the domain(2 m in,6 m in),and the period is stable atstrong w ind and almost reaches the saturation value of 2.6 m inutes. Compared to the equivalentperiod of gusts over land,where theTgis located in the domain(3 min,8 min)and the saturation period seems to be about4 min(Cheng etal.,2012a), the gusts in the marine boundary layer w ith strong w ind are smaller in scale than those over land.This phenomenon,and the independence ofto height,indicate that in oceanic regions the movable interface,the air–sea interaction and thesea-waves greatly influence the characteristics of the ABL.

    Table 1.The coherentcoefficients Cg(gusts)and Ct(turbulence)during the cold surge case in March 2012.

    Fig.9.Friction velocity change w ith average velocity(a,b)and their profi les and distributions atevery level(c,d).

    Fig.10.The change in equivalentperiod Tgw ith horizontalvelocity u.

    5.Concluding rem arks

    In the present reported study we analyzed the structures and characteristics of the marine ABL during strong cold surges in the South China Sea region.The results showed that most characteristics are consistent w ith the situation of strong w ind over land.For example:

    (1)There are both gusty w ind disturbances and high frequency turbulent fluctuations superposed on the basic strong w ind;the turbulence is random,nearly isotropic and weakly coherent,but the gusts possess rather more regular and stronger coherency,as well as anisotropy.W ith an increase in the average velocitythe equivalent period of gusts decreases and reaches saturation.

    (2)The characteristics of turbulence and gusts,such as the kinetic energy and momentum flux,can be expressed by parameterization formulas.

    Meanwhile,there are some differences,such as:

    (1)In the loweratmospheric layerabove the oceanic surface,the average horizontal speedis almost independent ofheight(unlike the increase w ith heightover land),and the verticalvelocity>0(unlike<0 over land).

    (2)There is a constant flux layer(the vertical fluxes of horizontal momentum are almost independent of height)in both the turbulence and gusts above the oceanic surface.

    (3)In oceanic regions,the parameterization formulas for the characteristics of the ABL can be presented well byrather thanover land.

    The strong w inds analyzed in ourearlierstudies over land and in the presentstudy over the ocean all took place during cold air outbreaks.The common laws indicate a similar influence of the underlying surface on the atmospheric motion, and the differences are due to the different characteristics of the underlying surface.In the oceanic region the underlying surface is movable and possesses multiple temporal-and spatial-scale motions;and around this interface the air–sea interactions are strong and highly complex.Therefore,more observations and analyses are needed.

    We have also carried outsim ilar work butduring the passage of typhoons.The prelim inary results show thatthe major characteristics are sim ilar to those reported in this paper,although the average w ind speed,gusts and turbulence are all very much stronger.We hope to report the results in a future paper.

    Acknow ledgements.This work was supported by the National Nature Science Foundation of China(NSFC,Grant Nos.40830103 and 41375018),a National Program on Key Basic Research project (973 Program)(Grant No.2010CB951804),the plan of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chem istry,Institute of Atmospheric Physics,Chinese Academy of Sciences(Grant No.LAPC-KF-2013-11),China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY200906008),and the program of the Chinese Academy of Sciences(Grant No.XDA10010403).We are also very grateful for the help provided by LIN L.X.(Chief Scientist of weather forecasts)and ZENG C.(Officer)at the Weather Forecast Division of Guangdong Meteorological Bureau,and ZHAO Y.J.(Senior Engineer)and LUO W.D.from the Institute of Atmospheric Physics, Chinese Academy of Sciences.

    REFERENCES

    Andreas,E.L.,1992:Sea spray and the turbulent air-sea heat fluxes.J.Geophys.Res.,97,11 429–11 441,doi:10.1029/ 92JC00876.

    Andreas,E.L.,1998:A new sea spray generation function for w ind speeds up to 32 ms-1.J.Phys.Oceanogr.,28,2175–2184.

    Andreas,E.L.,2010:Spray-Mediated enthalpy flux to the atmosphere and salt flux to the ocean in high w inds.J.Phys. Oceanogr.,40,608–619.

    Andreas,E.L.,and J.DeCosmo,1999:Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean.Air-Sea Exchange:Physics,Chemistry and Dynamics, G.L.Geernaert,Ed.,K luwer,327–362.

    Cheng,X.L.,Q.C.Zeng,F.Hu,and Z.Peng,2007:Gustiness and coherentstructure ofstrong w ind in the atmospheric boundary layer.Climatic and Environmental Research,12(3),227–243. (in Chinese)

    Cheng,X.L.,Q.C.Zeng,and F.Hu,2011:Characteristics of gusty w ind disturbances and turbulent fluctuations in w indy atmospheric boundary layer behind cold fronts.J.Geophys. Res.,116,D06101,doi:10.1029/2010JD015081.

    Cheng,X.L.,Q.C.Zeng,and F.Hu,2012a:Parameterizations of some important characteristics of turbulent fluctuations and gusty w ind disturbances in the atmospheric boundary layer.J. Geophys.Res.,117,D08113,doi:10.1029/2011JD017191.

    Cheng,X.L.,F.Hu,and Q.C.Zeng,2012b:Simulation of w ind gust structure in the atmospheric boundary layer w ith Lattice Boltzmann Method.Chinese Science Bulletin,57,1196–1203.

    Cheng,X.L.,Q.C.Zeng,and F.Hu,2012c:Stochastic modeling the effect of w ind gust on dust entrainment during sand storm.Chinese Science Bulletin,57,3595–3602,doi:10.1007/s11434-012-5230-z.

    DeCosmo,J.,1991:Air-sea exchange of momentum,heat and water vapor over whitecap sea states.Ph.D.thesis,Univ.of Wash.,Seattle,212 pp.

    Ding,T.,W.-H.Qian,and Z.-W.Yan,2009:Characteristics and changes of cold surge events over China during 1960-2007. Atmos.Oceanic Sci.Lett.,2,339–344.

    Ekman,V.W.,1905:On the influence of the earth’s rotation on ocean-currents.Ark.Mat.Astron.Fys.,2,1-52.

    Fairall,C.W.,J.D.Kepert,and G.J.Holland,1994:The effect of sea spray on surface energy transports over the ocean.The Global Atmosphere and Ocean System,2,121–142.

    Kaimal,J.C.,and J.J.Finnigan,1994:Atmospheric Boundary Layer Flows:Their Structure and Measurement.Oxford University Press,New York,289 pp.

    Kolmogorov,A.N.,1941:The localstructure of turbulence in incompressible viscous fluids atvery large Reynolds numbers. Dokl.Akad.Nauk.SSSR,30,299–303.Reprinted in Proc.R. Soc.London A,434,9–13(1991).

    Kolmogorov,A.N.,1962:A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid athigh Reynolds number.J.Fluid Mech., 13,82–85.

    Lum ley,J.L.,and H.A.Panofsky,1964:The Structure of Atmospheric Turbulence.Interscience,New York,239 pp.

    Monin,A.S.,and A.M.Obukhov,1954:Basic laws of turbulent m ixing in the surface layer of the atmosphere.Tr.Akad.Nauk SSSR Geofiz.Inst,24,163–187.

    Prandtl,L.,1904:Uber Flussigkeitsbewegung beisehrkleiner Reibung,Verhandlungen des dritten internationalen Mathematiker-Kongresses,Heidelberg,489–491,Leipzig.(English trans.,2001:On the motion of fluids w ith very little friction,in Early Developments of Modern Aerodynamics,J.A. D.Ackroyd,B.P.Axcell,A.I.Ruban,eds.,Butterworth-Heinemann,Oxford,UK,77–84.)

    Smith,M.H.,P.M.Park,and I.E.Consterdine,1993:Marine aerosol concentrations and estimated fluxes over the sea. Quart.J.Roy.Meteor.Soc.,119,809–824.

    Sorbjan,Z.,1989:Structure of the Atmospheric Boundary Layer. Prentice Hall,Englewood Cliffs,New Jersey,317 pp.

    Stull,R.B.,1988:An Introduction to Boundary Layer Meteorology.Kluwer Academic Publishers,Norwell,Mass,738 pp.

    Sutton,O.G.,1953:Micrometeorology.M cGraw-Hill,New York, 333 pp.

    Wilczak,J.M.,S.P.Oncley,and S.A.Stage,2001:Sonic anemometer tiltcorrection algorithms.Bound.-Layer Meteor., 99,127–150.

    Wyngaard,J.C.,2010:Turbulence in the Atmosphere.Cambridge University Press,393 pp.

    Zeng,Q.C.,X.L.Cheng,and F.Hu,2007a:The mechanism of soilerosion and dustemission under the action of nonsteady strong w ind w ith descending motion and gustw ind.Climatic and Environmental Research,12(3),244–250.(in Chinese)

    Zeng,Q.C.,F.Hu,and X.L.Cheng,2007b:The mechanism of dust entrainment by gustw ind.Climatic and Environmental Research,12(3),251–255.(in Chinese)

    Zeng Q.-C.,X.L.Cheng,F.Hu,and Z.Peng,2010:Gustiness and coherent structure of strong w ind and their role in the dustem ission and entrainment.Adv.Atmos.Sci.,27(1),1–13, doi:10.1007/s00376-009-8207-3.

    Zeng,X.,Q.Zhang,D.Johnson,and W.-K.Tao,2002:Parameterization ofw ind gustiness for the computation ofocean surface fluxes atdifferentspatial scales.Mon.Wea.Rev.,130,2125–2133.

    :Cheng,X.-L.,J.Huang,L.Wu,and Q.-C.Zeng,2015:Structures and characteristics of the w indy atmospheric boundary layer in the South China Sea region during cold surges.Adv.Atmos.Sci.,32(6),772–782,

    10.1007/s00376-014-4228-7.

    (Received 12 April2014;revised 16 October 2014;accepted 06 November 2014)

    ?Corresponding author:CHENG Xue-Ling

    Email:chengxl@mail.iap.ac.cn

    aNationalCenter for Atmospheric Research.Community Earth System Model.http://www2.cesm.ucar.edu.

    bGeophysical Fluid Dynamics Laboratory.Earth System Model.http://www.gfdl.noaa.gov/earth-system-model.

    cEuropean Centre for Medium-Range Weather Forecasts.http://www.ecmw f.int/.

    dWeather Research and Forecasting.http://w rf-model.org/index.php.

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    嫩草影院入口| 国产亚洲5aaaaa淫片| 久久久久久久久大av| 欧美zozozo另类| 国产人妻一区二区三区在| 国产在视频线在精品| 伊人久久精品亚洲午夜| 97人妻精品一区二区三区麻豆| 亚洲欧洲日产国产| 97精品久久久久久久久久精品| 成人综合一区亚洲| 国内少妇人妻偷人精品xxx网站| 久久这里只有精品中国| 激情 狠狠 欧美| 水蜜桃什么品种好| 免费av观看视频| 边亲边吃奶的免费视频| 男女国产视频网站| 麻豆乱淫一区二区| 高清视频免费观看一区二区 | 校园人妻丝袜中文字幕| 欧美丝袜亚洲另类| 搞女人的毛片| 纵有疾风起免费观看全集完整版 | 一个人观看的视频www高清免费观看| 高清欧美精品videossex| 一级av片app| 国产亚洲av片在线观看秒播厂 | 午夜福利网站1000一区二区三区| 人妻夜夜爽99麻豆av| 国产一级毛片七仙女欲春2| 日韩一本色道免费dvd| 日韩精品有码人妻一区| 精品久久久久久电影网| 国产成人91sexporn| 国产 亚洲一区二区三区 | 日本wwww免费看| 日韩制服骚丝袜av| 黑人高潮一二区| 欧美zozozo另类| 一级黄片播放器| 天堂影院成人在线观看| 寂寞人妻少妇视频99o| 亚洲一级一片aⅴ在线观看| 一本久久精品| 午夜免费观看性视频| 午夜福利高清视频| 国产精品精品国产色婷婷| 少妇熟女欧美另类| 成人高潮视频无遮挡免费网站| 精品人妻视频免费看| 一级二级三级毛片免费看| 国产乱来视频区| 免费看不卡的av| 亚洲精品日韩在线中文字幕| 嫩草影院新地址| 18禁动态无遮挡网站| 熟妇人妻久久中文字幕3abv| 91久久精品电影网| 亚洲av免费在线观看| 亚洲欧美日韩卡通动漫| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线观看播放| 国产精品无大码| 一个人免费在线观看电影| 超碰97精品在线观看| 久久久久久久久久成人| 亚洲美女视频黄频| 亚洲国产最新在线播放| 久久这里有精品视频免费| 精品人妻偷拍中文字幕| 日本av手机在线免费观看| 国产精品久久久久久久久免| 亚洲成人av在线免费| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看| 成人综合一区亚洲| 亚洲乱码一区二区免费版| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 亚洲国产精品sss在线观看| 国产av不卡久久| 日本与韩国留学比较| 99视频精品全部免费 在线| 日韩欧美精品v在线| av在线天堂中文字幕| 乱系列少妇在线播放| 啦啦啦韩国在线观看视频| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 免费看美女性在线毛片视频| 欧美高清性xxxxhd video| 内地一区二区视频在线| 欧美一级a爱片免费观看看| 亚洲av中文字字幕乱码综合| 一个人看视频在线观看www免费| 国产有黄有色有爽视频| 欧美日韩在线观看h| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 国内精品宾馆在线| 一级av片app| 美女被艹到高潮喷水动态| 久久久久久久久久久免费av| 22中文网久久字幕| 亚洲自偷自拍三级| 最后的刺客免费高清国语| 99热这里只有精品一区| 1000部很黄的大片| 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 黄色一级大片看看| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 国产男女超爽视频在线观看| 丰满乱子伦码专区| 欧美丝袜亚洲另类| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| 国产69精品久久久久777片| 岛国毛片在线播放| 国产成人精品婷婷| 免费看日本二区| 国产男女超爽视频在线观看| av一本久久久久| 一级av片app| 国产高清不卡午夜福利| 亚洲精品国产成人久久av| 男人狂女人下面高潮的视频| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 免费在线观看成人毛片| 亚洲最大成人中文| 美女国产视频在线观看| 欧美zozozo另类| 啦啦啦啦在线视频资源| 成年女人在线观看亚洲视频 | 欧美一级a爱片免费观看看| 欧美高清成人免费视频www| 国产男女超爽视频在线观看| 国产爱豆传媒在线观看| 又大又黄又爽视频免费| 国产亚洲最大av| 久久久久九九精品影院| 男人狂女人下面高潮的视频| 日韩电影二区| 少妇高潮的动态图| 日日啪夜夜撸| 国产男人的电影天堂91| 久久99热这里只频精品6学生| 免费在线观看成人毛片| 免费观看精品视频网站| 欧美日韩在线观看h| videossex国产| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线| 好男人视频免费观看在线| 成年女人在线观看亚洲视频 | 免费观看性生交大片5| 极品少妇高潮喷水抽搐| 自拍偷自拍亚洲精品老妇| 91精品伊人久久大香线蕉| 精品久久久噜噜| 久久99精品国语久久久| 亚洲四区av| 亚洲性久久影院| 一级毛片 在线播放| 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 97在线视频观看| 欧美日韩亚洲高清精品| 22中文网久久字幕| 性色avwww在线观看| a级一级毛片免费在线观看| 国产 一区精品| 18禁裸乳无遮挡免费网站照片| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 国产中年淑女户外野战色| www.av在线官网国产| 亚洲精品乱久久久久久| 18禁动态无遮挡网站| 寂寞人妻少妇视频99o| 欧美日韩视频高清一区二区三区二| 99久久人妻综合| 中文字幕av成人在线电影| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 免费观看a级毛片全部| 春色校园在线视频观看| 少妇高潮的动态图| 国产精品精品国产色婷婷| 伊人久久国产一区二区| 日本色播在线视频| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 国产成人精品婷婷| 特大巨黑吊av在线直播| 欧美精品一区二区大全| 美女内射精品一级片tv| 不卡视频在线观看欧美| 亚洲精品国产成人久久av| 色尼玛亚洲综合影院| 久久久亚洲精品成人影院| 色播亚洲综合网| 欧美变态另类bdsm刘玥| 国产成年人精品一区二区| 国产单亲对白刺激| 久久精品人妻少妇| 午夜福利视频1000在线观看| 欧美不卡视频在线免费观看| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品 | 三级国产精品片| 99视频精品全部免费 在线| 99九九线精品视频在线观看视频| 精品一区二区三卡| 国产成人免费观看mmmm| 干丝袜人妻中文字幕| 天堂中文最新版在线下载 | 在现免费观看毛片| 亚洲av二区三区四区| 男女国产视频网站| 免费观看精品视频网站| 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 两个人的视频大全免费| 日本一二三区视频观看| 一夜夜www| 国产综合懂色| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| 精品熟女少妇av免费看| 性插视频无遮挡在线免费观看| kizo精华| 黑人高潮一二区| 中文字幕亚洲精品专区| 亚洲欧美精品专区久久| 久99久视频精品免费| 国产精品1区2区在线观看.| 嫩草影院精品99| 国产色爽女视频免费观看| 汤姆久久久久久久影院中文字幕 | 免费无遮挡裸体视频| 综合色av麻豆| 免费少妇av软件| 黄片wwwwww| 少妇人妻精品综合一区二区| 中文天堂在线官网| 一区二区三区乱码不卡18| 十八禁网站网址无遮挡 | 欧美激情久久久久久爽电影| 久久综合国产亚洲精品| 少妇的逼水好多| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 天天一区二区日本电影三级| 中文字幕亚洲精品专区| 直男gayav资源| 日韩在线高清观看一区二区三区| ponron亚洲| 国产欧美另类精品又又久久亚洲欧美| 国产黄色小视频在线观看| 亚洲成人一二三区av| 欧美日本视频| 两个人的视频大全免费| 成人特级av手机在线观看| 亚洲最大成人手机在线| 欧美97在线视频| 两个人的视频大全免费| 高清av免费在线| 免费在线观看成人毛片| 国产亚洲精品av在线| 亚洲国产精品sss在线观看| 免费观看性生交大片5| 亚洲国产成人一精品久久久| 一个人看的www免费观看视频| 色综合亚洲欧美另类图片| 精品久久久久久久末码| 国产精品麻豆人妻色哟哟久久 | 国产综合精华液| 成人鲁丝片一二三区免费| 午夜视频国产福利| 久久99蜜桃精品久久| 免费观看的影片在线观看| 可以在线观看毛片的网站| 日韩人妻高清精品专区| or卡值多少钱| 女人被狂操c到高潮| 精品少妇黑人巨大在线播放| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 日韩电影二区| 91午夜精品亚洲一区二区三区| 激情五月婷婷亚洲| 三级国产精品片| 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 一二三四中文在线观看免费高清| 亚洲久久久久久中文字幕| 亚洲国产高清在线一区二区三| 久久97久久精品| 91狼人影院| 久久久久久久午夜电影| 欧美变态另类bdsm刘玥| 国产亚洲最大av| 国产淫语在线视频| 少妇的逼好多水| 老女人水多毛片| 最新中文字幕久久久久| 九九爱精品视频在线观看| 国产午夜精品久久久久久一区二区三区| 97精品久久久久久久久久精品| 两个人的视频大全免费| 简卡轻食公司| 在线观看av片永久免费下载| 久久精品夜色国产| 午夜日本视频在线| 午夜爱爱视频在线播放| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 日本一二三区视频观看| 寂寞人妻少妇视频99o| 男插女下体视频免费在线播放| .国产精品久久| 午夜福利视频精品| 国产男女超爽视频在线观看| 国产精品久久久久久av不卡| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 大陆偷拍与自拍| 六月丁香七月| 色网站视频免费| 一区二区三区四区激情视频| 色综合色国产| 国产精品久久久久久av不卡| 成人亚洲欧美一区二区av| 美女内射精品一级片tv| 在线天堂最新版资源| 午夜老司机福利剧场| 免费av不卡在线播放| av卡一久久| 国内精品一区二区在线观看| 日日摸夜夜添夜夜爱| 日本熟妇午夜| 少妇猛男粗大的猛烈进出视频 | 久久久久精品久久久久真实原创| 99久久人妻综合| 亚洲国产av新网站| 观看免费一级毛片| 亚洲av成人av| a级一级毛片免费在线观看| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看 | 女人久久www免费人成看片| 啦啦啦中文免费视频观看日本| 国产探花极品一区二区| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 天天躁日日操中文字幕| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 免费观看在线日韩| 亚洲国产色片| 亚洲av中文av极速乱| 午夜激情福利司机影院| 欧美日韩在线观看h| 国产一级毛片在线| 成人国产麻豆网| 别揉我奶头 嗯啊视频| 亚洲伊人久久精品综合| 国产日韩欧美在线精品| 久久久久久久午夜电影| 亚洲无线观看免费| 69av精品久久久久久| 女人久久www免费人成看片| 性插视频无遮挡在线免费观看| 黄色日韩在线| 2021少妇久久久久久久久久久| 三级国产精品欧美在线观看| 最近的中文字幕免费完整| 亚洲精品乱码久久久久久按摩| 最近2019中文字幕mv第一页| 亚洲精品,欧美精品| 欧美丝袜亚洲另类| 日本午夜av视频| 精品99又大又爽又粗少妇毛片| 搡女人真爽免费视频火全软件| 99久久人妻综合| 我的女老师完整版在线观看| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 少妇的逼好多水| 久久久久久久久中文| 欧美性感艳星| 国产成人精品福利久久| 亚洲综合精品二区| 一区二区三区高清视频在线| 国产精品国产三级国产专区5o| 日韩欧美精品v在线| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 国产欧美日韩精品一区二区| 欧美性猛交╳xxx乱大交人| 一个人看视频在线观看www免费| 69av精品久久久久久| 网址你懂的国产日韩在线| videossex国产| 天堂中文最新版在线下载 | 一级黄片播放器| 91aial.com中文字幕在线观看| 女人被狂操c到高潮| 少妇丰满av| 久久精品国产鲁丝片午夜精品| 国产 亚洲一区二区三区 | 国产色爽女视频免费观看| 久久久国产一区二区| 国产又色又爽无遮挡免| 女人十人毛片免费观看3o分钟| 欧美最新免费一区二区三区| 成年人午夜在线观看视频 | 中文乱码字字幕精品一区二区三区 | 欧美一区二区亚洲| 精品酒店卫生间| 久久久久九九精品影院| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 热99在线观看视频| 免费少妇av软件| 综合色av麻豆| 精品酒店卫生间| 国产在视频线精品| 亚洲精品自拍成人| 特大巨黑吊av在线直播| 美女黄网站色视频| 欧美变态另类bdsm刘玥| 亚洲欧美日韩卡通动漫| 成年女人看的毛片在线观看| 99热全是精品| 日韩不卡一区二区三区视频在线| 黄色欧美视频在线观看| 国产精品精品国产色婷婷| 岛国毛片在线播放| 国产精品熟女久久久久浪| 男女边摸边吃奶| 午夜精品在线福利| 欧美xxⅹ黑人| 国产乱来视频区| 又大又黄又爽视频免费| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 国产成人精品福利久久| 亚洲av免费高清在线观看| 婷婷色麻豆天堂久久| 晚上一个人看的免费电影| 国产精品一及| 国产精品人妻久久久影院| 免费人成在线观看视频色| 听说在线观看完整版免费高清| 少妇的逼水好多| 麻豆国产97在线/欧美| 成人综合一区亚洲| 日韩制服骚丝袜av| 18禁动态无遮挡网站| 中文欧美无线码| 亚洲国产精品成人久久小说| 亚洲av日韩在线播放| 午夜福利视频1000在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品成人综合色| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 欧美日本视频| 91久久精品国产一区二区三区| 日韩欧美一区视频在线观看 | 2021少妇久久久久久久久久久| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频| 国产精品一区二区三区四区免费观看| 日本爱情动作片www.在线观看| 国产探花极品一区二区| 天美传媒精品一区二区| 十八禁网站网址无遮挡 | 久久久久免费精品人妻一区二区| 国产精品久久久久久av不卡| 欧美xxⅹ黑人| 又爽又黄无遮挡网站| 国产精品一及| 久久亚洲国产成人精品v| 亚洲高清免费不卡视频| 男的添女的下面高潮视频| 99久国产av精品| 国产欧美另类精品又又久久亚洲欧美| 国产午夜精品论理片| 丰满少妇做爰视频| 亚洲av国产av综合av卡| 直男gayav资源| 国国产精品蜜臀av免费| 特级一级黄色大片| 久久久久九九精品影院| 亚洲真实伦在线观看| 99久久人妻综合| 久久久久久久午夜电影| 成人亚洲精品一区在线观看 | 嫩草影院精品99| av福利片在线观看| 97精品久久久久久久久久精品| 免费播放大片免费观看视频在线观看| 久久精品熟女亚洲av麻豆精品 | 国产精品不卡视频一区二区| 毛片一级片免费看久久久久| 中文字幕av成人在线电影| 久久久久久久国产电影| 亚洲av福利一区| 99re6热这里在线精品视频| 99久久精品国产国产毛片| 亚洲欧美精品专区久久| 亚洲人成网站高清观看| 久久99热这里只频精品6学生| 欧美xxⅹ黑人| 晚上一个人看的免费电影| 国产亚洲91精品色在线| 九草在线视频观看| 在线免费十八禁| 男人舔女人下体高潮全视频| 午夜免费观看性视频| 久久韩国三级中文字幕| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 国国产精品蜜臀av免费| 夫妻性生交免费视频一级片| 亚洲精品成人av观看孕妇| 久久久久久伊人网av| 国产亚洲精品av在线| 亚洲va在线va天堂va国产| 国产亚洲5aaaaa淫片| 最近最新中文字幕大全电影3| 18禁在线播放成人免费| 永久网站在线| 中文字幕亚洲精品专区| 97在线视频观看| av天堂中文字幕网| 国产精品一二三区在线看| 日韩欧美三级三区| 亚洲欧美日韩东京热| 一本一本综合久久| 久久精品久久久久久噜噜老黄| 成人欧美大片| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 国产一区有黄有色的免费视频 | 日韩在线高清观看一区二区三区| 亚洲va在线va天堂va国产| 91aial.com中文字幕在线观看| 精品久久久噜噜| 免费观看无遮挡的男女| 亚洲精品亚洲一区二区| 在线观看人妻少妇| 青青草视频在线视频观看| 国产成人精品久久久久久| 欧美成人精品欧美一级黄| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 三级毛片av免费| av免费在线看不卡| 搞女人的毛片| 熟女人妻精品中文字幕| 久久久久久久久大av| 欧美人与善性xxx| 麻豆成人午夜福利视频| 日韩制服骚丝袜av| 亚洲,欧美,日韩| av女优亚洲男人天堂| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 高清欧美精品videossex| eeuss影院久久| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 日韩中字成人| 久久久久久久久中文| 日本一二三区视频观看| 欧美bdsm另类| 欧美高清成人免费视频www| 国产亚洲精品久久久com| 男人舔女人下体高潮全视频| 亚洲欧美成人精品一区二区| 99久国产av精品国产电影| 精品国产三级普通话版| 日韩国内少妇激情av| 精品久久久精品久久久| 亚洲丝袜综合中文字幕| 男女国产视频网站| 一个人看视频在线观看www免费| 国产免费视频播放在线视频 | 色综合站精品国产| 日韩国内少妇激情av| 97热精品久久久久久| 天堂中文最新版在线下载 | 久久6这里有精品| 日韩一本色道免费dvd| 十八禁国产超污无遮挡网站| 国产免费视频播放在线视频 | 久久精品国产亚洲av天美| 噜噜噜噜噜久久久久久91| 国产成人精品久久久久久| 日本三级黄在线观看|