• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Im pact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau

    2015-04-20 05:59:14WANGLeidiDarenandHEQing
    Advances in Atmospheric Sciences 2015年6期

    WANG Leidi,L¨U Daren,and HE Qing

    1Key Laboratory of Middle Atmosphere and Global Environmental Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    The Im pact of Surface Properties on Downward Surface Shortwave Radiation over the Tibetan Plateau

    WANG Leidi1,2,L¨U Daren?1,and HE Qing1

    1Key Laboratory of Middle Atmosphere and Global Environmental Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing100029

    2University of Chinese Academy of Sciences,Beijing100049

    The complexity of inhomogeneous surface–atmosphere radiation transfer is one of the foremostproblems in the field of atmospheric physics and atmospheric radiation.To date,the influence of surface properties on shortwave radiation has not been wellstudied.The daily downward surface shortwave radiation of the latest FLASHFlux/CERES(Fast Longwave And Shortwave Fluxes Time Interpolated and Spatially Averaged/Clouds and the Earth’s Radiant Energy System)satellite data was evaluated againstin situdata.The comparison indicated that the differences between the two data sets are unstable and large over rugged terrain compared w ith relatively flat terrain,and the mean absolute error of the satellite products reaches 31.4 W m-2(12.3%)over rugged terrain.Based on the SSF(single satellite footprint)/CERES product,the influence of surface properties on the distribution of downward surface shortwave radiation(DSSR)was analyzed.The influence of surface properties on DSSR over the Tibetan Plateau is about tw ice as large as that in two other regions located at the same latitude(eastern China–western Pacific and subtropical North Pacific).A simulation was carried out w ith the help of the I3RC(International Intercomparision of Three-Dimensional Radiation Code)Monte Carlo 3D radiative transfer community model.The results showed that DSSR increases as surface albedo increases.Moreover,the impact of surface albedo on DSSR is larger if the spatial distribution of clouds is more non-uniform.It is hoped that these results w ill contribute to the developmentof 3D radiative transfer models and the improvementof satellite inversion algorithms.

    shortwave radiation,surface properties,Tibetan Plateau,satellite remote sensing

    1.Introduction

    Solar radiation is a significant source of heat for the earth–atmosphere system.The heterogeneity of surface solar radiation could affect the radiative energy budget,weather systems and climate change.The solar flux received by the surface involves the attenuation of insolation by scattering and absorption caused by atmospheric gases,aerosols,cloud particles,and surface properties.Among others,surface parameters generally include altitude,gradient,slope direction and surface albedo.Different surface properties result in different dynam ic and thermodynam ic processes,which influence the exchange of matter and energy between the land surface and the atmosphere.The surface albedo characterizes the surface reflection of solar radiation.It determ ines energy exchange between the surface and atmosphere, and it is a key factor influencing Earth’s climate system. Even a small change in surface albedo could shift the energy balance of the earth–atmosphere system,and result in regionaland globalclimate change(Wang etal.,2002;Stroeve et al.,2005).Over the Tibetan Plateau,the mean surface elevation is 4000 m above sea level.Its protruding nature w ith high elevation and complex surface properties results in equally complex weather and cloud systems over the region.There is a 3D radiative transfer problem in the inhomogeneous surface–atmosphere system.However,most radiative transfermodels and satellite inversion algorithms are highly simplified.Compared to atmospheric composition and clouds,the effects of surface properties on downward surface shortwave radiation(DSSR)have notbeen wellstudied until now.Thus,it is worth exploring the effects of surface properties on DSSR.

    As an important complement to ground observations, satellite remote sensing provides data w ith preferable continuity and homogeneity in both time and space,and has become an effective way to study surface radiation budgets. However,satellite products may be severely biased due to input data inaccuracy,algorithm errors,and the influence of surface properties and elevation differences(Yang et al.,2006).Thecomplexityofspatialorientationandtheoptical propertiesofthesurfacehavesofarbeeninvestigatedina relativelylimitednumberofradiativetransferschemes(e.g., DubayahandRich,1995;Wangetal.,2005;Liouetal.,2007; Helbigetal.,2009;Leeetal.,2013;St¨ockli,2013).Theireffectsonthesurfacesolarradiationbudgethavenotbeenwell accountedforinthemostwidelyappliedradiativetransfer schemesinwhichthelowerboundaryisassumedtobeunobstructed,horizontal,andhomogeneous.Therefore,itisnecessarytovalidatesatellitedataagainstinsituobservations, becausesuchvalidationsnotonlyguaranteedataqualitybut alsoprovideusefulinformationtoimprovetheretrievalalgorithms.Meanwhile,climatesimulationsrequireaccurateand stableradiationbudgetdata,andtheproductsobtainedfrom spaceareusefulforclimateresearch(Ohringetal.,2005).

    TheTibetanPlateauhasgreatimpactsonenergyandwatercyclesatbothregionalandglobalscales,makingita usefulresearchareafortestingthequalityofdataandthe estimationalgorithms.Yangetal.(2006,2008,2010)assessedthesatellite-estimatedsurfacedownwellingshortwave irradianceofISCCP-FD(InternationalSatelliteCloudClimatologyProject-FluxData)andGEWEX-SRB(GlobalEnergyandWaterCycleExperiment-SurfaceRadiationBudget)byusingtheinsitudataofseveralsurfacesitesover theTibetanPlateau.Comparisonsindicatedthattheerrors ofsatelliteproductsarespatiallydependentoverTibet,and discrepanciesbetweendifferentproductsareusuallylarger inthepresenceofhighlyvariableterrain.Guietal.(2009, 2010)comparedISCCP-FDandCERES-FSW(Cloudsand theEarth’sRadiantEnergySystem-MonthlyGriddedRadiativeFluxesandClouds)hourlysurfacesolarradiationwith groundmeasurements.Theresultsshowedthattheaccuracy ofsatellite-estimateddatacannotmeettherequirementsof researchcommunities,andsatellite-estimateddataoverthe TibetanPlateaumustbesubstantiallyimproved,especially fortheshortwavecomponents.

    ObservationsshowthatthedownwardshortwaveradiationoverTibetismuchhigherthanthatoversealevelalong thesamelatitude(Maetal.,2005;Wangetal.,2013).Inadditiontothehighelevation,thereareseveralwest–eastelongatedhighmountainsandmanyhillsleadingtothecomplex terrain.Thecomplexterraincanaffectsolarradiationindirect(DubayahandRich,1995;DubayahandLoechel,1997; Kangetal.,2002;Wangetal.,2005;Ryuetal.,2008;Helbig etal.,2009)andindirect(Kuwagataetal.,2001;Kurosaki andKimura,2002)ways.Besidesclouds,theleadinguncertaintiesinsurfacefluxesoriginatefromthesurfaceandnearsurfaceatmosphericproperties(Zhangetal.,2006,2007).

    Accordingtotheresultsofa3DMonteCarlophotontracingprogram,themeansurfacesolarfluxoveraregionwith complextopographycandeviatefromasmoothsurfacebyas muchas10–50Wm-2foranalbedoof0.2,andtheanomaliesofsolarfluxinclear–skyconditionscanbeasmuchas 600Wm-2(Liouetal.,2007).GiventhealtitudinaldependenceofDSSR,cautionisneededwhenapplyingcurrent satellitedatatoplateauregions.Groundmeasurementsover theTibetanPlateaucanbeusedasabenchmarkforevaluating satellitealgorithmsathighelevations(Yangetal.,2006).

    Mostevaluationsofsatelliteproductshavebeenperformedinlowelevationareaswithsmoothsurfaces,andhigh accuracyhasbeenshown.AsforthequalityofsatelliteproductsovertheTibetanPlateau,mostpreviousstudieshavefocusedsolelyonrelativelyshortperiodsofseveralmonths, andhavenotevaluatedthelatestFLASHFlux(FastLongwaveAndShortwaveFluxesTimeInterpolatedandSpatially Averaged)/CERESproduct.Itisunknowntowhatextent surfacepropertiesinfluencesatellite-estimatedDSSR.The transferofshortwaveradiationundertheco-existenceof3D cloudsandcomplexsurfacepropertiesstillrequiresexploration.

    Theremainderofthepaperisarrangedasfollows.Section2introducesthedatasetsandprocessingusedinthe study.Insection3,theDSSRfromthelatestFLASHFlux/ CERESdataoverawholeyearisassessedagainstthree groundsitesovertheTibetanPlateau,andtheimpactofsurfacepropertiesonthesatellite-estimatedDSSRisanalyzed. Then,theshortwaveradiationfluxtransferredthroughtwo typesofcloudsissimulatedusingastate-of-the-artmodel. Finally,theoverallconclusionsofthestudyandsomefurther discussionarepresentedinsection4.

    2.Materialsandmethods

    2.1.Insitudata

    Insituobservationsfromthreesitesareadoptedinthis study(Fig.1):

    (1)Yangbajain[(30.088?N,90.540?E);4350m]:This siteislocatedonthesouthernsideofNyainqentanglhaMountaininthecenteroftheTibetanPlateau.Itisannexedtothe InstituteofHighEnergyPhysicsoftheChineseAcademyof Sciences.

    (2)TheNamCoMonitoringandResearchStationfor MultisphereInteractions[(30.774?N,90.988?E);4730m]. ThissiteislocatedonthesoutheastshoreofNamCoLake, 220kmawayfromLhasa.ItwasestablishedbytheInstitute ofTibetanPlateauResearch,ChineseAcademyofSciences in2005.

    Fig.1.LocationsoftheYangbajain,NamCoandSACOLsites.

    (3)TheSemi-AridClimateandEnvironmentObservatoryofLanzhouUniversity[knownasSACOL;(35.946?N,104.137?E);1965.8m].ThissiteisnearthecityofLanzhou, onthesouthernbankoftheYellowRiverinnorthwestern China.Inparticular,thissiteisveryclosetothegeometric centerofChina’smainland.

    Thevaluesofsurfaceshortwaveirradianceweremeasuredbypyranometersateachsite[Yangbajain:TBQ-2-BI,HUATRON,Beijing,China(1-minresolution);NamCo: Model-CM,Kipp&Zonen,TheNetherlands(5-minresolution);SACOL:Model-CM,Kipp&Zonen,TheNetherlands (1-minresolution)].ThesensitivityoftheTBQ-2-B-Ipyranometeris10.22×10-6VW-1m2.TheTBQ-2-B-Ipyranometeriscomparabletootherpyranometers,andiswidely usedinmeteorologicalstations.Allthreesolarpyranometers wererigorouslytestedbeforeinstallation.Thetimesequence oftheinsitudataisfromApril2009toMarch2010atYangbajainandNamCo,andfromJanuary2009toAugust2010 atSACOL.Toacquirethebestpossibledataforsolarradiation,dailyqualityassurancechecksareessential.Thequality controlproceduresarederivedfromWMO(WorldMeteorologicalOrganization)andGeigeretal.(2002)withminor modifications.

    2.2.Satellitedata

    Byimprovingthesceneidentificationandincreasingthe sensitivityofangulardistributionmodels,CERESimproves theTOAfluxaccuracyforindividualcloudtypes,thereby providingamorereliabledatasetforstudyingradiativeprocessesandradiativeforcingbycloudtype(Loebetal.,2003). CEREShasfourlevelproducts.OurworkusedtheSSF(SingleScannerFootprint)productfromlevel2andFLASHFlux Version2Gfromlevel3.Theotherproductsafterlevel2are basedonthelevel2products.TheSSFproductcontainsone hourofinstantaneousCERESdataforasinglescannerinstrument.TheSSFcombinesinstantaneousCERESdatawith sceneinformationfromahigherresolutionimagersuchas VIRS(Visible/InfraredScanner)onTRMM(TropicalRainfallMeasuringMission)orMODIS(Moderate-Resolution ImagingSpectroradiometer)onTerraandAqua.EachSSF granulecontainsonehourofdata,whichisapproximately two-thirdsofanorbitfromasingleCERESinstrument.The widthoftheSSFswathislimitedtothewidthoftheimager swathwithwhichtheCERESdatawereconvolved.Each SSFfieldofview(FOV)representsonescannermeasurement.Measurementsaretakenevery0.01seconds.Accordingtodifferentalgorithms,theSSFcanbedividedintotwo products:the“A”modelproduct(Lietal.,1993)and“B”modelproduct(Guptaetal.,2001).

    2.3.Methods

    Thegriddedsatellitedatawerebilinearlyinterpolated ontothelocationsoftheinsitudata,sothesatelliteandin situdatacanbecompared.Itshouldbenotedthatdeviation existsinthegroundobservationsthemselves,andthevalidationtechniquesalsoproduceerrorsbecauseoftheinhomogeneousdistributionofmeteorologicalvariables.Thestatistical methodsusedinthisworkfollowpreviousstudies(Huang, 2004;Houborgetal.,2007;KimandLiang,2010;Yanget al.,2010).Thestatisticsarereportedinabsolute(Wm-2) andrelativeunits(percentageofaveragemeasuredglobalirradiance).Thestatisticsinabsoluteunitsaregivenby

    andthestatisticsinrelativeunitsaregivenby

    whereeandmrepresentsatellitepredictionsandgroundmeasurements,respectively;ˉeandˉmaretheaveragesofsatellite predictionsandgroundmeasurements,respectively;Nrepresentsthenumberofsamples;MErepresentsmeanerror; MAErepresentsmeanabsoluteerror;Rrepresentsthecorrelationcoefficient;andRMSDrepresentsroot-mean-square deviation.

    InthisstudyweusedtheI3RCMonteCarlo3Dradiative transfercommunitymodel(I3RC-community-monte-carlo). Thismodelhasbeentestedandfoundtobesuperiorandmore efficientincomputingthedownwellingfluxthanSHDOM (SphericalHarmonicDiscreteOrdinateMethod)(Cahalanet al.,2005;PincusandEvans,2009).Theheartofthemodel isamonochromaticintegrator,andmoredetailscanbefound inPincusandEvans(2009).Nevertheless,therearetwomajorlimitationsofthismodel:First,thecurrentcodecannot solveatmosphericmolecularabsorptionproblems.Second, thecurrentcodecanonlydealwithLambertiansurfaces.In ourstudy,thesimulationused109photonstoguaranteeprecision,basedonthesuggestionofEvansandMarshak(2005).

    Toensurebetteraccuracyforexaminingtheinterplayof thesurface,cloudsandsolarradiation,weperformedsimulationsatanonabsorbingwavelengthofcloudsinthevisiblespectrum(0.675μm)andanabsorbingwavelengthin thenear-infraredspectrum(2.13μm)underdifferentsurfacealbedoswithoutconsideringtheatmosphere.Unfortunately,thetopographiceffectwasnotimplementedbecause ofthelimitationofthecurrentMonteCarlocode.Thesetting ofsomebasicparametersfollowsthatofPincusandEvans (2009).Forallcalculations,thesunazimuthwassetto0?(inthisstudy,0?meansthatthesun’sraysaredirectedfrom thedirectionofincreasingx),andthesunzenithwassetto 30?.Inthisstudy,astratocumulusfield(Moengetal.,1996)andacumulusfield(StevensandLenschow,2001)areused astheinputoftheMonteCarlomodel.Figure2showsthe twocloudfields.Moreinformationaboutthesetwoclouds canbefoundinWangetal.(2014).

    3.Results

    3.1.Comparisonsofsatelliteandinsitudata

    First,weplottedthedaytimesolarradiationagainsttime. Dayswithaverysmoothcurvewereconsideredasclear-sky daysbecausecloudsleadtoclearfluctuationofsolarradiation.Figures3a,candeshowthescatterdiagramsforallallskydaysandFigs.3b,dandfforclear-skydays.Forallallskydays,therearelargedifferencesbetweenthetwoproducts.Amongthedifferentsites,thesatelliteerrorsaresmaller atSACOL,whichhasarelativelyflatsurfacecomparedtothe othertwositeswiththeirruggedterrain.ThecorrelationcoefficientsbetweenFLASHFluxandtheobservationare0.899, 0.884and0.966forYangbajain,NamCoandSACOL,respectively.Themeanabsoluteerrorsofsatellite-estimated dataare26.69Wm-2(10.96%),31.38Wm-2(12.26%)and 18.84Wm-2(15.93%),respectively.Theroot-mean-square errorsforthethreesitesrangefrom12.92%to16.86%.

    Fig.2.(a,b)Liquidwatercontent(units:gm-3),(c,d)effectiveparticleradius(units:μm),and(e,f) opticaldepth(units:1)atwavelength0.67μmof(a,c,e)stratocumulusand(b,d,f)cumulus.Note: thephotographscorrespondingtothecloudopticaldepthatwavelength0.67μmwereadoptedfromI3RC: http://i3rc.gsfc.nasa.gov/casesnew.html.[ReprintfromWangetal.(2014)]

    Fig.3.Scatter diagrams of the DSSR of FLASHFlux/CERES products versus in situ observations (units:W m-2):(a,b)Yangbajain;(c,d)Nam Co;(e,f)SACOL.R represents correlation;ME represents mean error;MAE represents mean absolute error;and RMSD represents root-mean-square deviation.

    Underclear-skyconditions(Figs.3b,d,f),theDSSRresultsbasedontheFLASHFlux/CERESproductsandinsitu datashowamuchbetterrelationshipthanthatunderall-sky conditions.AtYangbajainandNamCo,theFLASHFlux value tends to be lower than ground measurements on every clear-sky day.The mean error is-16.57 W m-2(-6.66%) for Yangbajain,-17.09 W m-2(-6.34%)for Nam Co,and -4.39 W m-2(-0.95%)for SACOL.At the same time,the RMSD is very small,which suggests the difference between the two datasetsisvery stable.The satellite productsare more consistent w ith surface measurements under cloudless conditions than under all-sky conditions.The differences indicate that the satellite errors partly result from the algorithms, which ignore 3D cloud properties.The quality of the satellite inversion productsis spatially dependent,and tends to be better for the area w ith smooth terrain.

    The mean error forallall-sky days is negative at Yangbajain and Nam Co,and positive at SACOL.The positive bias at SACOL site may be mainly attributable to the underestimation of the aerosol amount in the retrieval process,especially foraerosol in the sub-thin-cloud layer(Hayasaka etal., 2006).Very low aerosol optical values have been observed over the Tibetan Plateau because of the sparse population and m inimal industrialactivity(Cong etal.,2009).Therefore,at Yangbajain and Nam Co,the DSSR is much less affected by aerosols.The causes of the negative biases atYangbajain and Nam Co are not immediately obvious.The negative biases may be due to the neglect of 3D radiative effects under the conditionsof the heterogeneouscloudsand complex surface, satellite overestimation ofaerosolopticaldepth,orother reasons.

    But how does the error between satellite and in situ measurements differ among the twelve months of the calendar year? Figure 4 shows the MAE and RMSD as a function of the calendar month.The MAE and RMSD vary w ith month.At Yangbajain,the MAE varies from 7.58%up to 26.56%w ith the highest value in June,and the RMSD varies from 9.49%up to 18.35%w ith the highest value in May.At Nam Co,the MAE ranges from 8.69% to 33.82%w ith the lowest value in January and the highest value in May,and the RMSD ranges from 10.07%to 22.99%w ith the lowest value in January and the highest value in May. At SACOL,the error changes smoothly throughout the year,except in a few months.There is apeakoftheMAE(26.05%)inSeptember.TheRMSDremainsatabout11%,withahighestvalueof24.18%in Septemberandsecondhighestvalueof18.39%inNovember.

    Fig.4.TheerrorofFLASHFlux/CERESDSSRforallall-sky daysineverymonth:(a)meanabsoluteerror;(b)root-meansquaredeviation.

    Theerrorvariesatdifferentsiteswithdifferentsurface properties.TheerroratSACOLisrelativelystableoverthe wholeyear,whichisprobablyrelatedtotherelativelystable cloudactivity.AtYangbajainandNamCo,theerrorinMay andJuneislargerthanthatofothermonths.Thepeakerror inMayandJuneisassociatedwiththelargecloudamount duringthattime(HuoandL¨U,2012).ThelargeRMSDindicatesthatthespatialandtemporalvariabilityofcloudscontributestoconsiderableuncertaintyinMayandJune.The differencesbetweentheFLASHFluxandsurfacemeasurementsaredifferentamongdifferentsites.Thesedifferences areunstableandlargeoverruggedterraincomparedwithrelativelyflatterrain,especiallywhencloudactivityishighly frequent.Theaboveresultsindicatelargeuncertaintyinthe couplingbetween3Dheterogeneouscloudsandcomplexsurfacepropertiesonradiativetransferprocesses.Thecomplex surfacepropertiescaninducecomplexweathertypesandsky conditions,whicheventuallyformsacomplexphysicalrole toaffecttheradiationtransferprocess.

    3.2.Thespatialvariationofsatellite-derivedinstantaneousDSSR

    ThissubsectiondescribedtheworkusingtheSSF/ CERESinstantaneousorbitproducts.Thecoefficientofvariability(CV),whichismainlyusedtocomparethedispersion ofthedifferentgroups,istheratioofthestandarddeviation tothecorrespondingaverageofasetofdata.Inorderto evaluatetheeffectofsurfacepropertiesonthedistribution ofDSSR,threeregionswerechosentoobtaindomainaverages.Thesethreeregionswerelocatedatthesamelatitudes(26?–40?N)butatdifferentlongitudes:easternChina–westernPacific(ECWP,105?–135?E),subtropicalNorthPacific(NP,150?–180?E),andtheTibetanPlateau(TP,75?–105?E).Basedondigitalelevationdataattheresolutionof 500mfromSRTM(ShuttleRadarTopographyMission), NASA,Fig.5showstheelevationoftheTPandECWPregion.Thewhiteregionontherightrepresentstheocean.The NPregionischaracterizedbyseasurfaceandisnotshown inFig.5.Clear-skyconditionsweredefinedasoccurring whentheclearareapercentagecoverageatthesubpixelresolutionwasgreaterthan99.9%.Duringtheperiod1April 2009to31March2010,themonorailtrackswithinanhour thatcontainedclear-skysamplingpoints(M)ofmorethan 500werechosenasourexperimentaldatabase;thenumber ofsuchtrackswas145intheTPregion,190intheECWP region,and54intheNPregion.

    Figure6showsthevariationofthespatialCVofDSSRin the1htrack,plottedbytheordinalnumberofeligibletracks (N)fromJanuarytoDecemberonthehorizontalaxisandthe CVontheverticalaxis.Thenumberabovethehorizontalaxis representsthemonthcorrespondingtoN,andsomemonths arenotmarkedinthefigurebecauseoftheinexistenceof eligibleorbitsortoofeweligibletracks.Theseunmarked monthsincludeJune,JulyandAugustfortheTPregion(Fig. 6a),andJanuaryfortheNPregion(Fig.6c).Themonths betweenAprilandSeptemberarereferredtoasthesummer halfyear,andothersarereferredtoasthewinterhalfyear. Ifthemonorailtrackswithinanhourthatcontainedclear-sky samplingpointsofmorethan800werechosen,thenumber ofsuchtrackswas56intheTPregion,128intheECWP region,and15intheNPregion.ThedistributionsofthespatialCVforthesamplingpointsofmorethan800werethe sameasthoseforthesamplingpointsofmorethan500,so thefiguresforthesamplingpointsofmorethan800arenot shown.

    TheCERESproductsdonotfullyaccountfortheimpactofthevariedsurfaceproperties,especiallytheimpact ofcomplextopography.TheerrorsincomputingtheradiativetransfercaninfluencetheDSSRresults.Therearetwo waysinwhichthesurfaceinfluencestheCV:oneisthenature oftheradiativetransferrelatedtothesurface,andtheotheris thelimitationofthesatelliteinversionalgorithminresolving thesophisticatedsurfaceproperties.Itishardtocompletely separatethesetwoeffectsundercurrentconditions.However,thereareonlyslightdifferencesbetweenthe“A”model productsandthe“B”modelproductsintheirspatialCVsof DSSRunderclear-skyconditions(Fig.6),whichsuggests thattheDSSRerrorinducedbythelimitationsofthesatellite inversionalgorithmhaslittleimpactontheCV.Therefore, thenatureoftheradiativetransferisthedominantfactorin theoccurrenceofthedifferentCVinthedifferentregions. TheinfluenceofsurfacecharacteristicsontheDSSRdisplays annualvariation,andthisannualvariationpresentsthesame patternastheshapeoftheopeningupoftheparabolicinthe threedifferentareas.TheannualvariabilitiesoftheCVin theTPandECWPregionsmaybemainlyattributabletothe shadingeffect.Theshadingeffectisrelativelysmallwhenthe solaraltitudeangleishigh,whichwouldleadtothelowerCV inthesummerhalfyear.IntheNPregion,thewavechanges mayleadtotheannualvariabilityoftheCV.Thewavesare closelyrelatedtothewindspeeds.Inwinter,theNPregion takesthebruntoftheprevailingwesterlies,whichresultsinthe high w ind speeds.In summer,the w ind speeds are relatively small in the NP region because of the influence of the subtropicalhigh pressure.The CV ranges from about1%to 17%in the TP.The overall ranges of CV in the ECWP and NP regions are very sim ilar,and the CV varies from 1%up to 13%.The ranges of CV are similar in the NP and ECWP regionsprobably because the entire NP region and abouthalf of the ECWP region are covered by ocean.The land surface of the ECWP region is much less variable than that of the TP region,while the underlying surface of the NP region is mainly affected by waves.The sim ilar ranges of the CV in the ECWP and NP regions may indicate that the influence of huge waves on the CV can be as large as thatof the land surface.

    Fig.5.Elevation(at the resolution of 500 m from SRTM,NASA)of the TP and ECWP regions (units:m).The white region on the right represents the ocean.

    Fig.6.Coefficient of spatial variation for SSF/CERES DSSR:(a)Tibetan Plateau(TP);(b) eastern China–western Pacific(ECWP);(c)subtropical North Pacific Ocean(NP).The number of clear pixels is larger than 500 in one hour on the satellite scanning track;“A”and“B”respectively represent the satellite data from the“A”model and“B”model.The horizontal axis shows the ordinal number of eligible tracks N from January to December.The number above the horizontalaxis represents the month corresponding to N.

    In the three regions w ithin the same latitudes,solar radiation in the TP is the most strongly affected by the underlying surface conditions.Table 1 illustrates the spatial CV of DSSR in the three areas.In the situation of M being greater than 500,the average CV is 9.44%for the TP region,4.95%for the ECWP region,and 3.49%for the NP region.In the situation of M being greater than 800,the average CV is 10.5%for the TP region,5.11%for the ECWP region,and 3.55%for the NP region,respectively.The sunlight or solar fluxes that reach the surface can be physically grouped into the follow ing five components:direct flux,diffuse flux,direct-reflected flux,diffuse-reflected flux,and coupled flux.The direct-reflected flux,which consistsofphotons directly from the sun w ithoutencountering scattering,and aresubsequently reflected by surrounding terrain,is the dom inantcomponentcontributing to the differentDSSR between the flatsurface and the surface w ith complex topography(Lee et al.,2013).As can be seen from the above,the impact of underlying surface conditions is the lowest in the NP region and the greatest in the TP region,which is about tw ice as large as that in the other two regions.

    Table 1.Statistics for the DSSR under clear-sky conditions.

    Fig.7.The variation of SSF/CERES DSSR in one hour on the satellite scanning track(units:W m-2):(a,b) Tibetan Plateau(TP);(c,d)Eastern China–western Pacific(ECWP);(e,f)subtropical North Pacific Ocean(NP). Both the height in the verticaldirection and the coloring stands for the value of DSSR.The dark spots at the bottom of each panel represent the locations under clear skies.Taking(a)as an example,the label“2010030908”means between 0800 and 0859 on 9 March 2010 UTC.

    Figure 7 demonstrates the variation of DSSR in one hour for several satellite scanning tracks when M is greater than 800.The days chosen in Figs.6a–f are very close,and the DSSR for a large region as a whole has no obvious change in one or two days,so the variationsare comparable.Figures 7a and e show the variation in the TP and NP regions on the same day(9 March 2010 UTC),respectively.The clear-sky sampling pointsin the monorailtrack w ithin an hourare 1256 for Fig.7a,and 814 for Fig.7e.The CV of DSSR is 5.98% for the TP region and 3.17%for the NP region.A lthough the distribution of clear-sky sampling points can affect the CV, the surface properties still contribute the most to the DSSR and its CV.Figures 7b and f are for two tracks w ith similar clear-sky sampling points(1036 and 1091,respectively)on nearby days.The spatial CV of DSSR is 6.95%in the TP region and 4.10%in the NP region.Figures 7c and d show the spatial variation of DSSR w ithin one hour for two tracks in the ECWP region.M is 2722 for Fig.7c and 851 for Fig.7d. The CV is 2.55%and 4.95%,respectively.The above case analyses show that the underlying surface properties affect the distribution of DSSR the mostin the TP region.

    3.3.Simulation by the I3RC model

    Shortwave flux transmittance(T)is the ratio of the surface horizontal solar radiation to extraterrestrial radiation (Liou,2002).Under the concurrence of variable surface albedo and 3D clouds,what is the effect of surface albedo on the shortwave flux transm ittance?As an example,Fig.8 shows the distributions of the shortwave flux transmittance of stratocumulusclouds.Figures8a–d are for the wavelength of 0.675μm,and Figs.8e–h are for the wavelength of 2.13 μm.Foreach simulation ata certain wavelength,the surface albedo was 0.0 for Figs.8a and e,0.2 for Figs.8b and f,0.4 for Figs.8c and g,and 0.6 for Figs.8d and h.For the regions w ith white color,the transm ittance is greater than 1.0, which means that the enhancementof the radiation caused by cloud cover is more evident than the reducing effect.We know thatsuch a phenomenon is mainly induced by scattered radiation resulting from the underlying surface and inhomogeneous structure of clouds in principle.From the figures,we conclude that the distributions of shortwave radiation transmittance in the three domains are similar,which is mainly caused by the structure of clouds.The average T at0.675μm is 0.686,0.745,0.815 and 0.900 for a surface albedo of 0.0, 0.2,0.4 and 0.6,and at2.13μm it is 0.512,0.548,0.589 and 0.638,respectively.It is clear that the shortwave flux transmittance increases as the surface albedo increases.

    Another example is for the impactof cumulus cloud on the distribution of the shortwave flux transm ittance(Fig.9). Figures 9a–d are at 0.675μm,and Figs.9e–h are at 2.13 μm.The average T at0.675μm is 0.900,0.929,0.959,and 0.992 for a surface albedo of 0.0,0.2,0.4 and 0.6,respec-

    Fig.8.Simulated shortwave flux transm ittance of stratocumulus cloud atwavelengths(a–d)0.675 μm and(e–h)2.13μm.The surface albedos are 0.0 in(a,e),0.2 in(b,f),0.4 in(c,g)and 0.6 in(d, h).

    tively,and at 2.13μm it is 0.860,0.880,0.901 and 0.923, respectively.For cumuluscloud,the effectsofsurface albedo on downward shortwave radiation flux are weaker than for stratocumuluscloud.Thisisbecause the stratocumuluscloud field has a much more complex structure than thatof cumulus cloud.Surface properties have a strongereffecton solar radiation under the sky ofmore complex 3D clouds.The largest effectoccurs in regions w ith cloud gaps.This is mainly attributed to the increase of the diffuse radiation,while the direct solar radiation component is almost unaffected.If the spatial changes of cloud properties(e.g.cloud optical thickness,liquid water content,effective particle radius,cloud coverage and geometry)are more complex,the role of surface albedo on DSSR is stronger.At the same time,we can see that DSSR w ill increase as surface albedo increases.As the surface albedo increases,more photons w ill be reflected to the sky instead of reaching the ground,and participate in the processesofmultiple scattering.A proportion of those re-flected photons w ill transfer to the ground through a complex physicalprocess.

    Fig.9.Simulated shortwave flux transm ittance of cumulus cloud atwavelengths(a–d)0.675 μm and(e–h)2.13μm.The surface albedos are 0.0 in(a,e),0.2 in(b,f),0.4 in(c,g)and 0.6 in(d,h).

    Previous studies on surface albedo have paid much more attention to its effecton the upward surface shortwave radiation than itseffecton the DSSR(e.g.,Lietal.,1993;Gupta et al.,2001;Ma and Pinker,2012;Qin etal.,2012).Our study shows thatsurface albedo has an important role in the value of DSSR itself.Given the importance of the upward surface shortwave radiation based on surface albedo and DSSR,it is necessary to consider the effect of surface albedo on the surface radiation budget.Surface albedo is a dynam ic parameter.It can change notonly w ith the variation of surfaceconditions,suchasthephysicalandchemicalpropertiesof soil,butalsowiththesun’sangle.Surfacealbedoitselfis complexanduncertain.Atpresent,theproblemoftheerror duetosurfacealbedointhesatelliteinversionandradiative transferalgorithmisachallengeinthefieldofatmospheric science.Furtherstudyisstillneeded.

    4.Conclusionanddiscussion

    4.1.Conclusion

    Asabasicproblemintheearth–atmospheresystem,detailedstudiesoftheradiativetransferprocesscontributeto furtherresearchonclimatechangeandthephysicsofremote sensing.IntheTPregion,itsprotrudingnaturewithhigh elevationandcomplexsurfacepropertiesresultsinequally complexweatherandcloudsystems.Asaresult,presentradiativetransfermodelsandsatelliteinversionalgorithmscannotmeetthenecessaryrequirements.Satelliteremotesensing hasbecomemoreandmorewidelyusedinthegeosciences. However,satellitedatashouldbeevaluatedagainstinsituobservationsbeforebeingused.TheTPischaracterizedbyhigh elevationandcomplexsurfaceproperties,andthusactsasa usefulbenchmarkforevaluatingsatellitedata.InsituobservationsatYangbajain,NamCo,andSACOLwereadoptedin thisstudytoevaluateFLASHFluxsatellitedata.Theeffects ofsurfacepropertiesontheDSSRwereanalyzedbycomparingtheTP,ECWPandNPregions.TheI3RCmodelwas usedtostudytheeffectsofsurfacealbedoontheDSSR.The mainresultscanbesummarizedasfollows:

    (1)Underclear-skyconditions,thesatelliteproductsand insitudataareconsistentwithacorrelationof0.992atYangbajain,0.991atNamCosite,and0.998atSACOL.Themean absoluteerrorofsatellite-estimatedproductsisabout6.7%at Yangbajain,6.3%atNamCo,and3.4%atSACOL.Under all-skyconditions,theerrorincreasessignificantlybecause thepresentalgorithmsignore3Dcloudproperties.Thequalityofthesatelliteinversionproductsisspatiallydependent, andittendstobebetterforsmootherterrain.Theerrorincreasesandbecomesmorevariablewiththeincreasingcomplexityofsurfaceproperties.

    (2)TheCVwasusedtoevaluatetheeffectofsurface propertiesonthedistributionofDSSR.Theworkwasperformedbychoosingthreeregionslocatedatthesamelatitudes(26?–40?N),includingtheTPregion(75?–105?E), theECWPregion(105?–135?E),andtheNPregion(150?–180?E).TheCVhasanannualcycle,whichishigherinthe winterhalfyearandlowerinthesummerhalfyear.ThemaximumCVreachesabout17%intheTPregion,andabout 13%intheothertworegions.Whentheclear-skysampling pointsofthemonorailtrackwithinanhouraregreaterthan 500,theaverageCVis9.44%fortheTPregion,4.95%for theECWPregion,and3.49%fortheNPregion.Whenthe clear-skysamplingpointsaregreaterthan800,theaveraged CVis10.5%,5.11%and3.55%,respectively.Theimpactof underlyingsurfacefeaturesintheTPregionisabouttwiceas largeasintheECWPorNPregions.

    (3)TheI3RCnumericalsimulationsshowedthatsurface albedoaffectsDSSRdramatically.DSSRincreasesassurfacealbedoincreases,andtheimpactofsurfacealbedoon DSSRislargerifthespatialdistributionofcloudsismore non-uniform.Surfacealbedoisjustoneoftheparametersof surfaceproperties.Itisnecessarytoconsidertheeffectof surfacealbedoonthesurfaceradiationbudget.

    4.2.Discussion

    Currentsatelliteproductsfacegreatchallengesoverthe TPbecauseofthecomplexsurfaceandskyconditions.SurfacepropertiesdramaticallyaffectthedistributionofDSSR overtheTP,whichinturnwillmodulatetheenergycycleand furtherleadtoaseriesofclimaticandmeteorologicalconsequences.Thepresentstudyqualitativelyandquantitatively indicatedthattheeffectofsurfacefeaturesisanabsoluterestrictionfortheprecisionofcurrentradiativetransfermodelsandsatelliteinversionalgorithms.Inareaswithacomplexsurface,thevariabilityofthatunderlyingsurfaceand itsradiativepropertiescombinetogeneratecomplicatedspatialandtemporalpatternsofsurfaceradiationbudgets.Underclear-skyconditions,shortwavesurfaceeffectscanleadto surfacetemperaturedifferencesofupto2.5K,andlongwave effectstodifferencesofupto1K(Mannersetal.,2012).The TPhasverydifferentcharacteristicsofDSSRcomparedto otherregions.Moreattentionshouldbepaidtotheeffectof theunderlyingsurfaceonthesurfaceradiationbalance.

    Intermsoftheeffectofsurfaceproperties,mostpreviousstudieshavesimplyperformedtheirworkunderclearskyconditions(e.g.Liouetal.,2007;Mannersetal.,2012; Leeetal.,2013).However,theEarth’saveragecloudfraction isabouttwothirds(Madduxetal.,2010),andthecomplexityofsurfacepropertiescaninduceequallycomplexweather typesandskyconditions.Complexsurfacesand3Dclouds coexistmostofthetime.Inoursimulation,onlythesurfacealbedoeffectwasinvestigatedundertheskywith3D cloudsbecauseofthelimitationofthecurrentI3RCMonte Carlocode.Oursimulationshowedthattheimpactofsurface albedoonDSSRislargerifthespatialdistributionofclouds ismorenon-uniform.Theproblemwillbemorecomplex ifthetopographiceffectisaddedintotheradiativetransfer model.Inthefuture,weintendtoperformstudiesofthetopographiceffectbyimprovingtheI3RCMonteCarlomodel, orbyusingothereffectivemodels.Thepresentworkcanbe usedasafoundationuponwhichwecanbuildandthinkabout howtoextractthesurfaceshortwaveradiationvaluesbyusing moreaccuratemethodsandsatellitedata.Itisimperativeto establishinhomogeneoussurface–atmospherecouplinginto radiativetransfermodels.

    Acknowledgements.ThisresearchwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.41127901) andtheStrategicPriorityResearchProgram–ClimateChange:CarbonBudgetandRelevantIssues(GrantNo.XDA05040300).The authorswouldliketothankProfs.HUANGJian-Ping,ZHANGWu, MAYao-Ming,XUANYue-Jian,andCHENHong-Binfortheir provisionofinsitudata.TheauthorswouldalsoliketothankProf.TamasVARNAIandProf.RobertPINCUSfortheirmanysuggestionsanddiscussionsontheMonteCarlomodel.

    REFERENCES

    Cahalan,R.F.,andCoauthors,2005:TheI3RC:Bringingtogether themostadvancedradiativetransfertoolsforcloudyatmospheres.Bull.Amer.Meteor.Soc.,86(9),1275–1293.

    Cong,Z.Y.,S.C.Kang,A.Smirnov,andB.Holben,2009: AerosolopticalpropertiesatNamCo,aremotesiteincentralTibetanPlateau.Atmos.Res.,92(1),42–48.

    Dubayah,R.C.,andS.Loechel,1997:Modelingtopographicsolar radiationusingGOESdata.J.Appl.Meteor.,36(2),141–154.

    Dubayah,R.C.,andP.M.Rich,1995:TopographicsolarradiationmodelsforGIS.Int.J.GeographicalInform.Syst.,9(4), 405–419.

    Evans,K.F.,andA.Marshak,2005:Numericalmethods.3DRadiativeTransferinCloudyAtmospheres.A.MarshakandA. B.Davis,Eds.,Springer,Berlin,261–274.

    Geiger,M.,L.Diabate,L.Menard,andL.Wald,2002:Aweb serviceforcontrollingthequalityofmeasurementsofglobal solarirradiation.SolarEnergy,73(6),475–480.

    Gui,S.,S.L.Liang,andL.Li,2009:ValidationofsurfaceradiationdataprovidedbytheCERESovertheTibetanPlateau. 200917thInternationalConferenceonGeoinformatics,Fairfax,VA,1–6.

    Gui,S.,S.L.Liang,K.C.Wang,andL.Li,2010:Assessmentof threesatellite-estimatedlandsurfacedownwellingshortwave irradiancedataSets.IEEEGeosci.RemoteSens.Lett.,7(4), 776–780.

    Gupta,S.K.,D.P.Kratz,Jr.P.W.Stackhouse,andA.C. Wilber,2001:TheLangleyparameterizedshortwavealgorithm(LPSA)forsurfaceradiationbudgetstudies(version1.0).NASA/TP-2001-211272.

    Hayasaka,T.,K.Kawamoto,G.Shi,andA.Ohmura,2006:Importanceofaerosolsinsatellite-derivedestimatesofsurface shortwaveirradianceoverChina.Geophys.Res.Lett.,33, L06802,doi:10.1029/2005GL025093.

    Helbig,N.,H.L¨owe,andM.Lehning,2009:Radiosityapproach forthesurfaceradiationbalanceincomplexterrain.J.Atmos. Sci.,66,2900–2912.

    Houborg,R.,H.Soegaard,W.Emmerich,andS.Moran,2007: Inferencesofall-skysolarirradianceusingTerraandAqua MODISsatellitedata.Int.J.RemoteSens.,28(20),4509–4535.

    Huang,J.Y.,2004:MeteorologicalStatisticalAnalysisandForecastMethod.ChinaMeteorologicalPress,Beijing,298pp.(in Chinese)

    Huo,J.,andD.R.L¨U,2012:CloudamountanalysisatYangbajingofTibetin2009–2010usingall-skyimages.Climaticand EnvironmentalResearch,17(4),393–399.(inChinese)

    Kang,S.,S.Kim,andD.Lee,2002:Spatialandtemporalpatterns ofsolarradiationbasedontopographyandairtemperature. CanadianJournalofForestResearch,32(3),487–497.

    Kim,H.Y.,andS.L.Liang,2010:Developmentofahybrid methodforestimatinglandsurfaceshortwavenetradiation fromMODISdata.RemoteSens.Environ.,114,2393–2402.

    Kurosaki,Y.,andF.Kimura,2002:RelationshipbetweentopographyanddaytimecloudactivityaroundTibetanPlateau.J. Meteor.Soc.Japan,80(6),1139–1355.

    Kuwagata,T.,A.Numaguti,andN.Endo,2001:Diurnalvariation ofwatervaporoverthecentralTibetanPlateauduringsummer.J.Meteor.Soc.Japan,79,401–418.

    Lee,W.L.,K.N.Liou,andC.C.Wang,2013:Impactof3-DtopographyonsurfaceradiationbudgetovertheTibetan Plateau.Theor.Appl.Climatol.,113,95–103.

    Li,Z.,H.G.Leighton,K.Masuda,andT.Takashima,1993:EstimationofSWfluxabsorbedatthesurfacefromTOAreflected flux.J.Climate,6(2),317–330.

    Liou,K.N.,2002:AnIntroductiontoAtmosphericRadiation.2nd ed.,AcademicPress,Boston,583pp.

    Liou,K.N.,W.Lee,andA.Hall,2007:Radiativetransferin mountains:ApplicationtotheTibetanPlateau.Geophys.Res. Lett.,34,L23809,doi:10.1029/2007GL031762.

    Loeb,N.G.,N.M.Smith,S.Kato,W.F.Miller,S.K.Gupta, P.Minnis,andB.A.Wielicki,2003:Angulardistribution modelsfortop-of-atmosphereradiativefluxestimationfrom thecloudsandtheEarth’sradiantenergysysteminstrument ontheTropicalRainfallMeasuringMissionsatellite.PartI: Methodology.J.Appl.Meteor.,42,240–265.

    Ma,Y.,andR.T.Pinker,2012:Modelingshortwaveradiative fluxesfromsatellites.J.Geophys.Res.,117,D23202,doi: 10.1029/2012JD018332.

    Ma,Y.,andCoauthors,2005:Diurnalandinter-monthlyvariation oflandsurfaceheatfluxesoverthecentralTibetanPlateau area.Theor.Appl.Climatol.,80,259–273.

    Maddux,B.,S.A.Ackeman,andS.Platnick,2010:ViewinggeometrydependenciesinMODIScloudproducts.J.Atmos. OceanicTechnol.,27(9),1519–1528.

    Manners,J.,S.B.Vosper,N.Roberts,2012:Radiativetransferoverresolvedtopographicfeaturesforhigh-resolution weatherprediction.Quart.J.Roy.Meteor.Soc.,138,720–733.

    Moeng,C.H.,andCoauthors,1996:Simulationofastratocumulustoppedplanetaryboundarylayer:Intercomparisonamong differentnumericalcodes.Bull.Amer.Meteor.Soc.,77(2), 261–278.

    Ohring,G.,B.Wielicki,R.Spencer,B.Emery,andR.Datla,2005: Satelliteinstrumentcalibrationformeasuringglobalclimate change.Bull.Amer.Meteor.Soc.,86,1303–1314.

    Pincus,R.,andK.F.Evans,2009:Computationalcostandaccuracyincalculatingthree-dimensionalradiativetransfer:ResultsfornewimplementationsofMonteCarloandSHDOM. J.Atmos.Sci.,66,3131–3146.

    Qin,J.,K.Yang,S.Liang,andW.Tang,2012:Estimationofdaily meanphotosyntheticallyactiveradiationunderAll-Skyconditionsbasedonrelativesunshinedata.J.Appl.Meteor.Climatol.,51,150–160.

    Ryu,Y.,S.Kang,S.K.Moon,andJ.Kim,2008:Evaluationof landsurfaceradiationbalancederivedfrommoderateresolutionimagingspectroradiometer(MODIS)overcomplexterrainandheterogeneouslandscapeonclearskydays.Agric. Forest.Meteorol.,148(10),1538–1552.

    Spencer,J.W.,1971:Fourierseriesrepresentationoftheposition ofthesun.Search,2,172.

    Stevens,B.,andD.H.Lenschow,2001:Observations,experiments,andlargeeddysimulation.Bull.Amer.Meteor.Soc., 82(2),283–294.

    St¨ockli,R.,2013:TheHelioMontSurfaceSolarRadiationProcessing.ScientificReportMeteoSwiss,No.93,122pp.

    Stroeve,J.,J.E.Box,F.Gao,S.Liang,A.Nolin,andC.Schaaf, 2005:AccuracyassessmentoftheMODIS16-dayalbedo productforsnow:ComparisonswithGreenlandinsuitmea-surements.RemoteSens.Environ.,94(1),46–60.

    Wang,K.C.,X.J.Zhou,J.M.Liu,andM.Sparrow,2005:Estimatingsurfacesolarradiationovercomplexterrainusing moderate-resolutionsatellitesensordata.Int.J.RemoteSens., 26(1),47–58.

    Wang,L.D.,D.R.L¨u,andW.X.Zhang,2013:StudyoncharacteristicofsolarradiationatNamCoandYangbajainin Qinghai-XizangPlateau.PlateauMeteorology,32(2),315–326.(inChinese)

    Wang,L.D.,D.R.L¨u,andJ.Huo,2014:ObservationandsimulationofabnormaltransmittanceoverYangbajing,Tibet.AtmosphericandOceanicSciencesLetters,7,190–197,doi: 10.3878/j.issn.1674-2834.13.0086.

    Wang,S.,R.F.Grant,D.L.Verseghy,andT.A.Blac,2002:Modellingcarbondynamicsofborealforestecosystemsusingthe Canadianlandsurfacescheme.ClimaticChange,55(4),451–477.

    Yang,K.,T.Koike,P.Stackhouse,C.Mikovitz,andS.J.Cox, 2006:AnassessmentofsatelliteSurfaceradiationProducts forhighlandswithTibetinstrumentaldata.Geophys.Res. Lett.,33,L22403,doi:10.1029/2006GL027640.

    Yang,K.,R.T.Pinker,Y.M.Ma,T.Koike,M.M.Wonsick, S.J.Cox,Y.C.Zhang,andP.Stackhouse,2008:Evaluationofsatelliteestimatesofdownwardshortwaveradiation overtheTibetanPlateau.J.Geophys.Res.,113,D17204,doi: 10.1029/2007JD009736.

    Yang,K.,J.He,W.J.Tang,J.Qin,andC.C.K.Cheng,2010: Ondownwardshortwaveandlongwaveradiationsoverhigh altituderegions:ObservationandmodelingintheTibetan Plateau.Agric.Forest.Meteor.,150(1),38–46.

    Zhang,Y.C.,W.B.Rossow,andJr.P.W.Stackhouse,2006: Comparisonofdifferentglobalinformationsourcesusedin surfaceradiativefluxcalculation:Radiativepropertiesofthe near-surfaceatmosphere.J.Geophys.Res.,111,D13106,doi: 10.1029/2005JD006873.

    Zhang,Y.C.,W.B.Rossow,andJr.P.W.Stackhouse,2007:Comparisonofdifferentglobalinformationsourcesusedinsurface radiativefluxcalculation:Radiativepropertiesofthesurface. J.Geophys.Res.,112,D01102,doi:10.1029/2005JD007008.

    :Wang,L.D.,D.R.L¨u,and Q.He,2015:The impactofsurface properties on downward surface shortwave radiation over the Tibetan Plateau.Adv.Atmos.Sci.,32(6),759–771,

    10.1007/s00376-014-4131-2.

    (Received 20 June 2014;revised 11 October 2014;accepted 22 October 2014)

    ?Corresponding author:L¨U Daren

    Email:ludr@mail.iap.ac.cn

    ?Institute of Atm ospheric Physics/Chinese Academ y of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    久久精品久久精品一区二区三区| 最近手机中文字幕大全| 黑人欧美特级aaaaaa片| 又黄又粗又硬又大视频| 蜜桃国产av成人99| 国产精品蜜桃在线观看| 午夜激情av网站| 国产 精品1| 人人妻人人添人人爽欧美一区卜| 欧美在线黄色| 精品人妻一区二区三区麻豆| 99热全是精品| 国产在视频线精品| 亚洲欧美一区二区三区久久| 亚洲色图综合在线观看| 我的亚洲天堂| 婷婷色麻豆天堂久久| 亚洲国产日韩一区二区| 丰满饥渴人妻一区二区三| 欧美日韩亚洲国产一区二区在线观看 | 精品一区在线观看国产| 欧美少妇被猛烈插入视频| 成人国产av品久久久| av福利片在线| 亚洲欧美一区二区三区黑人| 国产福利在线免费观看视频| 国产熟女午夜一区二区三区| 久久久国产一区二区| 制服人妻中文乱码| 国产精品国产三级国产专区5o| 国产免费又黄又爽又色| 国产精品 国内视频| 2018国产大陆天天弄谢| 亚洲国产精品成人久久小说| 久久精品aⅴ一区二区三区四区| 成年美女黄网站色视频大全免费| 色综合欧美亚洲国产小说| 一级毛片电影观看| 在线观看人妻少妇| 老熟女久久久| 久久久久久久大尺度免费视频| 国产精品麻豆人妻色哟哟久久| 亚洲国产毛片av蜜桃av| 人妻 亚洲 视频| 亚洲国产看品久久| 少妇精品久久久久久久| 另类亚洲欧美激情| 精品酒店卫生间| 欧美xxⅹ黑人| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 色视频在线一区二区三区| 亚洲自偷自拍图片 自拍| 秋霞在线观看毛片| 亚洲精品一区蜜桃| 欧美激情 高清一区二区三区| 久久国产精品大桥未久av| 日韩人妻精品一区2区三区| 午夜激情久久久久久久| 女性被躁到高潮视频| 亚洲第一av免费看| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 欧美 日韩 精品 国产| 黄色视频不卡| 人人妻人人澡人人看| 国产1区2区3区精品| 亚洲精品国产av蜜桃| 精品酒店卫生间| 精品国产一区二区久久| 日本欧美国产在线视频| 精品一区二区三卡| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 国产av精品麻豆| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 精品一品国产午夜福利视频| 大陆偷拍与自拍| 街头女战士在线观看网站| 又大又黄又爽视频免费| svipshipincom国产片| 看免费av毛片| 嫩草影院入口| 男女午夜视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 色综合欧美亚洲国产小说| 欧美日韩精品网址| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| 亚洲四区av| 国产淫语在线视频| 两性夫妻黄色片| 久久97久久精品| 亚洲专区中文字幕在线 | 啦啦啦在线免费观看视频4| 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 国产成人欧美在线观看 | 国产亚洲av片在线观看秒播厂| 国产熟女欧美一区二区| 久久ye,这里只有精品| 一区二区三区激情视频| 国产在线视频一区二区| 亚洲精品乱久久久久久| 黄网站色视频无遮挡免费观看| 久久av网站| 婷婷色综合大香蕉| 老司机亚洲免费影院| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看 | 精品人妻熟女毛片av久久网站| 在线观看免费午夜福利视频| 国产片特级美女逼逼视频| 欧美在线黄色| 国产一区二区三区av在线| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区二区三区在线| 夫妻午夜视频| 亚洲精品国产av蜜桃| 亚洲人成77777在线视频| 桃花免费在线播放| 日韩免费高清中文字幕av| 国产亚洲精品第一综合不卡| 肉色欧美久久久久久久蜜桃| 欧美精品av麻豆av| www.自偷自拍.com| 欧美精品一区二区大全| 综合色丁香网| 新久久久久国产一级毛片| 国产精品一区二区在线观看99| 欧美激情高清一区二区三区 | 久久精品久久久久久久性| 天天影视国产精品| 免费人妻精品一区二区三区视频| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| 久久99精品国语久久久| 国产在视频线精品| 人妻 亚洲 视频| 91国产中文字幕| 日本爱情动作片www.在线观看| 久久久久久人人人人人| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| av.在线天堂| 夫妻午夜视频| 精品亚洲乱码少妇综合久久| 天天操日日干夜夜撸| 欧美久久黑人一区二区| 国产精品久久久av美女十八| 亚洲精品日韩在线中文字幕| 亚洲欧美一区二区三区久久| 国产毛片在线视频| 爱豆传媒免费全集在线观看| 欧美 日韩 精品 国产| 精品国产乱码久久久久久男人| 国产精品免费大片| 亚洲专区中文字幕在线 | 亚洲熟女毛片儿| 黄色一级大片看看| 中文字幕色久视频| 老司机靠b影院| 99精国产麻豆久久婷婷| 两个人看的免费小视频| 日韩制服丝袜自拍偷拍| 久久99一区二区三区| 天堂8中文在线网| 三上悠亚av全集在线观看| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 婷婷色av中文字幕| 欧美精品一区二区大全| 久久精品国产综合久久久| 国产又爽黄色视频| 91国产中文字幕| 咕卡用的链子| 国产一区二区三区综合在线观看| 欧美中文综合在线视频| av在线app专区| 天堂中文最新版在线下载| 国产一区二区 视频在线| 人人妻,人人澡人人爽秒播 | 少妇人妻 视频| 哪个播放器可以免费观看大片| 精品少妇内射三级| 亚洲第一青青草原| 大码成人一级视频| 18禁观看日本| 超色免费av| 女人爽到高潮嗷嗷叫在线视频| 成人午夜精彩视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 嫩草影院入口| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www| 久热爱精品视频在线9| 国产欧美亚洲国产| 精品午夜福利在线看| 精品国产超薄肉色丝袜足j| 精品国产一区二区三区久久久樱花| 男女边吃奶边做爰视频| 午夜福利视频在线观看免费| av福利片在线| 国产乱来视频区| 99国产综合亚洲精品| 中文字幕最新亚洲高清| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 一二三四在线观看免费中文在| 岛国毛片在线播放| av天堂久久9| 乱人伦中国视频| 欧美在线一区亚洲| 亚洲,一卡二卡三卡| 丝袜在线中文字幕| 青春草视频在线免费观看| 国产探花极品一区二区| 久久99精品国语久久久| 精品久久久精品久久久| 99国产精品免费福利视频| 成人国语在线视频| www.自偷自拍.com| 亚洲天堂av无毛| 老司机亚洲免费影院| 黄色视频不卡| av一本久久久久| 嫩草影视91久久| 一级片免费观看大全| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| 三上悠亚av全集在线观看| 电影成人av| 中文字幕高清在线视频| 十八禁网站网址无遮挡| 国产高清国产精品国产三级| 在线观看人妻少妇| 一区二区av电影网| 晚上一个人看的免费电影| 纵有疾风起免费观看全集完整版| 欧美乱码精品一区二区三区| 国产伦理片在线播放av一区| 男女高潮啪啪啪动态图| 亚洲国产看品久久| 一本色道久久久久久精品综合| 亚洲国产欧美日韩在线播放| 亚洲国产欧美一区二区综合| 超碰成人久久| 欧美日韩综合久久久久久| 国产一区二区 视频在线| 久久国产精品男人的天堂亚洲| 美女主播在线视频| 天堂俺去俺来也www色官网| 免费观看av网站的网址| 亚洲国产最新在线播放| 精品酒店卫生间| 久久ye,这里只有精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产麻豆69| 久久久久久免费高清国产稀缺| 亚洲欧美一区二区三区黑人| 国产在视频线精品| 精品酒店卫生间| 久久影院123| 国产免费又黄又爽又色| 亚洲成国产人片在线观看| 欧美日韩亚洲高清精品| 中文欧美无线码| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 久久久久人妻精品一区果冻| 午夜福利一区二区在线看| 七月丁香在线播放| 伊人久久国产一区二区| 精品国产乱码久久久久久小说| 亚洲精品第二区| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| kizo精华| 男女边吃奶边做爰视频| 在线观看免费视频网站a站| 七月丁香在线播放| 成年av动漫网址| 街头女战士在线观看网站| 97人妻天天添夜夜摸| 国产av码专区亚洲av| av国产精品久久久久影院| 午夜福利一区二区在线看| 国产精品人妻久久久影院| 亚洲专区中文字幕在线 | 熟妇人妻不卡中文字幕| 欧美精品一区二区免费开放| 亚洲欧美精品综合一区二区三区| 国产成人精品久久久久久| 大片免费播放器 马上看| av视频免费观看在线观看| 在线观看三级黄色| 男女午夜视频在线观看| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 一区在线观看完整版| 在线免费观看不下载黄p国产| 亚洲欧美精品自产自拍| 超碰成人久久| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区久久| 色网站视频免费| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 国产亚洲最大av| 精品一区二区三卡| 国产一区亚洲一区在线观看| 国产日韩欧美在线精品| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 亚洲精品自拍成人| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 国产黄色视频一区二区在线观看| 国产精品久久久久久人妻精品电影 | 亚洲成人国产一区在线观看 | 国产亚洲av高清不卡| 男的添女的下面高潮视频| 欧美 日韩 精品 国产| 亚洲精品视频女| 老司机影院成人| 99国产综合亚洲精品| 精品少妇内射三级| 黑丝袜美女国产一区| 国产免费视频播放在线视频| 国产免费现黄频在线看| 99久久综合免费| 欧美日本中文国产一区发布| 啦啦啦视频在线资源免费观看| 男女床上黄色一级片免费看| 综合色丁香网| 精品少妇黑人巨大在线播放| 综合色丁香网| 黄色视频不卡| 热re99久久国产66热| 五月开心婷婷网| 久久青草综合色| 欧美人与善性xxx| 国产精品女同一区二区软件| 亚洲精品美女久久久久99蜜臀 | 十分钟在线观看高清视频www| 狠狠婷婷综合久久久久久88av| 亚洲精品自拍成人| 十八禁人妻一区二区| 国产成人av激情在线播放| 亚洲欧洲精品一区二区精品久久久 | 国产精品无大码| 午夜日韩欧美国产| 97在线人人人人妻| 亚洲伊人色综图| 人成视频在线观看免费观看| 色吧在线观看| 精品少妇久久久久久888优播| 亚洲av成人不卡在线观看播放网 | 国产精品一区二区精品视频观看| 岛国毛片在线播放| 日本猛色少妇xxxxx猛交久久| 一区二区三区四区激情视频| 久久婷婷青草| av网站免费在线观看视频| 夫妻午夜视频| 国产深夜福利视频在线观看| 精品免费久久久久久久清纯 | 青草久久国产| 性少妇av在线| 一区二区三区激情视频| 性高湖久久久久久久久免费观看| 日韩一卡2卡3卡4卡2021年| 欧美成人午夜精品| 天天添夜夜摸| 国产精品 欧美亚洲| 久久精品久久精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 国产在视频线精品| 亚洲国产av新网站| 久久久久久久久免费视频了| 老司机靠b影院| 一级,二级,三级黄色视频| 男女国产视频网站| av天堂久久9| 日本91视频免费播放| 街头女战士在线观看网站| 久久这里只有精品19| 天堂俺去俺来也www色官网| 黄频高清免费视频| 色视频在线一区二区三区| 王馨瑶露胸无遮挡在线观看| 1024香蕉在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美少妇被猛烈插入视频| 亚洲伊人色综图| 免费高清在线观看视频在线观看| 欧美少妇被猛烈插入视频| 极品少妇高潮喷水抽搐| 天天躁夜夜躁狠狠久久av| 久久性视频一级片| www日本在线高清视频| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频| 日日摸夜夜添夜夜爱| 考比视频在线观看| 各种免费的搞黄视频| 99久久综合免费| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 亚洲激情五月婷婷啪啪| 国产精品久久久久成人av| 另类精品久久| 男女之事视频高清在线观看 | 少妇被粗大猛烈的视频| 老司机在亚洲福利影院| 免费观看av网站的网址| 国产精品一国产av| 在线免费观看不下载黄p国产| 成人亚洲精品一区在线观看| 我的亚洲天堂| 免费看av在线观看网站| 男女免费视频国产| 午夜福利影视在线免费观看| 韩国精品一区二区三区| 一区在线观看完整版| 99久国产av精品国产电影| 亚洲人成77777在线视频| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 国产精品久久久久成人av| 男女午夜视频在线观看| av福利片在线| 精品国产超薄肉色丝袜足j| 国产精品 国内视频| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| av电影中文网址| a级片在线免费高清观看视频| 午夜激情久久久久久久| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91 | 老司机在亚洲福利影院| 精品国产超薄肉色丝袜足j| 婷婷色麻豆天堂久久| 丝袜脚勾引网站| 免费观看av网站的网址| 欧美乱码精品一区二区三区| 飞空精品影院首页| 别揉我奶头~嗯~啊~动态视频 | 成人亚洲欧美一区二区av| 男男h啪啪无遮挡| 欧美黑人精品巨大| 七月丁香在线播放| 18禁观看日本| 看非洲黑人一级黄片| xxx大片免费视频| 一个人免费看片子| 亚洲伊人久久精品综合| 在现免费观看毛片| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 91成人精品电影| 免费观看人在逋| 国产老妇伦熟女老妇高清| 亚洲国产成人一精品久久久| 中文欧美无线码| 午夜福利影视在线免费观看| 色网站视频免费| 亚洲av福利一区| 精品亚洲成国产av| 国产一区二区在线观看av| 女性被躁到高潮视频| 久久国产精品男人的天堂亚洲| 一本色道久久久久久精品综合| 精品亚洲成国产av| 中文字幕另类日韩欧美亚洲嫩草| 人妻人人澡人人爽人人| 男女床上黄色一级片免费看| 久久久久人妻精品一区果冻| 美女视频免费永久观看网站| 午夜av观看不卡| 久久久久久免费高清国产稀缺| 日韩一本色道免费dvd| 多毛熟女@视频| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 亚洲精品aⅴ在线观看| av女优亚洲男人天堂| 美女脱内裤让男人舔精品视频| 日韩成人av中文字幕在线观看| 中文字幕亚洲精品专区| 99香蕉大伊视频| 一边摸一边抽搐一进一出视频| 最近最新中文字幕大全免费视频 | 亚洲综合色网址| avwww免费| 免费久久久久久久精品成人欧美视频| 亚洲精品成人av观看孕妇| 婷婷色麻豆天堂久久| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全免费视频 | 亚洲欧美一区二区三区国产| 你懂的网址亚洲精品在线观看| 老司机亚洲免费影院| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 日日爽夜夜爽网站| 91成人精品电影| 午夜激情久久久久久久| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 国产精品久久久久久精品电影小说| 久久久久久久久久久久大奶| 一级a爱视频在线免费观看| 18禁国产床啪视频网站| 国产一区二区三区综合在线观看| 搡老乐熟女国产| 亚洲四区av| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影 | 香蕉丝袜av| 激情五月婷婷亚洲| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 最近的中文字幕免费完整| 两性夫妻黄色片| av女优亚洲男人天堂| 又大又爽又粗| 99久国产av精品国产电影| 久久久久久久久久久久大奶| 2018国产大陆天天弄谢| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 免费在线观看完整版高清| 日韩av免费高清视频| 亚洲视频免费观看视频| 久久精品久久精品一区二区三区| 大香蕉久久网| 久久久久精品国产欧美久久久 | 免费观看a级毛片全部| 久久久久久久国产电影| 日韩不卡一区二区三区视频在线| 老汉色∧v一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 91精品伊人久久大香线蕉| 免费观看人在逋| 国产精品一区二区精品视频观看| 在线天堂最新版资源| 丝袜脚勾引网站| 免费人妻精品一区二区三区视频| 性色av一级| 亚洲精品视频女| 亚洲精品在线美女| 日韩一本色道免费dvd| 超碰97精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品高潮呻吟av久久| 亚洲激情五月婷婷啪啪| 妹子高潮喷水视频| 亚洲美女视频黄频| 天天躁狠狠躁夜夜躁狠狠躁| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| 在线观看一区二区三区激情| 多毛熟女@视频| 色婷婷久久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 18禁观看日本| 亚洲成国产人片在线观看| h视频一区二区三区| 9色porny在线观看| 美女高潮到喷水免费观看| 大片免费播放器 马上看| 亚洲欧美精品自产自拍| 一边摸一边做爽爽视频免费| 日韩精品有码人妻一区| 涩涩av久久男人的天堂| 国产成人啪精品午夜网站| 国产探花极品一区二区| 美女福利国产在线| 久久久久精品人妻al黑| 一本久久精品| 午夜福利网站1000一区二区三区| 久久久久网色| 国产精品一国产av| 超碰97精品在线观看| 亚洲伊人久久精品综合| 成年动漫av网址| 观看美女的网站| 亚洲欧美精品综合一区二区三区| 观看av在线不卡| 少妇精品久久久久久久| √禁漫天堂资源中文www| 九草在线视频观看| 色视频在线一区二区三区| 精品国产乱码久久久久久男人| 久久人人爽人人片av| 99香蕉大伊视频| 国产xxxxx性猛交| 色吧在线观看| 欧美精品高潮呻吟av久久|