• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and Evaluation of the GlobalAerosolOpticalProperties Simulated by an Online Aerosol-coup led Non-hydrostatic Icosahedral Atmospheric M odel

    2015-04-20 05:59:12DAITieSHIGuangyuandTeruyukiNAKAJIMA
    Advances in Atmospheric Sciences 2015年6期

    DAITieSHIGuangyuand TeruyukiNAKAJIMA

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute ofAtmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology,Nanjing210044

    3Collaborative Innovation Center on Forecastand Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology,Nanjing210044

    4Atmosphere and Ocean Research Institute,University of Tokyo,Kashiwa,Japan

    Analysis and Evaluation of the GlobalAerosolOpticalProperties Simulated by an Online Aerosol-coup led Non-hydrostatic Icosahedral Atmospheric M odel

    DAITie?1,2,3,SHIGuangyu1,3,and TeruyukiNAKAJIMA4

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute ofAtmospheric Physics,Chinese Academy of Sciences,Beijing100029

    2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology,Nanjing210044

    3Collaborative Innovation Center on Forecastand Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology,Nanjing210044

    4Atmosphere and Ocean Research Institute,University of Tokyo,Kashiwa,Japan

    Aerosolopticalproperties are simulated using the SpectralRadiation TransportModel for AerosolSpecies(SPRINTARS) coupled w ith the Non-hydrostatic ICosahedralAtmospheric Model(NICAM).The 3-yearglobalmean all-sky aerosoloptical thickness(AOT)at550 nm,the?Angstr¨om Exponent(AE)based on AOTs at440 and 870 nm,and the single scattering albedo (SSA)at 550 nm are estimated at 0.123,0.657 and 0.944,respectively.For each aerosol species,the mean AOT is w ithin the range of the AeroCom models.Both the modeled all-sky and clear-sky results are compared w ith observations from the Moderate Resolution Imaging Spectroradiometer(MODIS)and the Aerosol Robotic Network(AERONET).The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals,and the correlation and model skill can be slightly improved using the clear-sky results over most land regions.The differences between clear-sky and all-sky AOTs are larger over polluted regions.Compared w ith observations from AERONET,the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement,whereas the SSA variation is notwell captured.A lthough the spatiotemporal distributions of all-sky and clear-sky results are similar,the clear-sky results are generally better correlated w ith the observations.The clear-sky AOT and SSA are generally lower than the all-sky results,especially in those regions where the aerosol chem ical composition is contributed to mostly by sulfate aerosol.The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol,while the opposite is found over regions dominated by hydrophobic aerosol.

    aerosolopticalproperties,non-hydrostatic icosahedralatmospheric model,Moderate Resolution Imaging Spectroradiometer,Aerosol Robotic Network

    1.Introduction

    Atmospheric aerosols have great impacts on the environment,human health,and the earth’s climate(Twomey,1974; Kampa and Castanas,2008;Zhang etal.,2012a).Currently, the effects of aerosol on climate(especially the interactions among aerosols,radiation,and clouds)are one of the largest uncertaintiesin modelsimulationsand climate change assessment(Lohmann et al.,2010).To properly quantify aerosol effects on the climate system,we need to accurately estimate aerosol optical properties such as aerosol optical thickness (AOT),?Angstr¨om exponent(AE)and single scattering albedo (SSA)w ith models(Goto etal.,2012).

    The opticalproperties ofaerosols are determ ined notonly by the aerosol amount,but also by physical and optical parameters such as aerosolsize distribution,the mixing state of particles,hygroscopic grow th,and refractive indices,especially in absorbing particles such as black carbon(BC)and dust.These parameters are either prescribed empirically or calculated explicitly in global climate aerosolmodels(Kinne etal.,2006;Textor etal.,2007;Peng etal.,2012;Zhang etal.,2012b;Mann etal.,2014),and the uncertainties of such parameterscan induce significantdifferencesin the simulated aerosolopticalproperties(Goto etal.,2011b).Aerosolmodeling also suffers from poorly known aerosol life cycles and em ission inventories(Textor et al.,2006,2007).Thus,the aerosol model has to be evaluated against observations before we can place confidence in such a model(Takemura et al.,2002a;Prados etal.,2007;Chin etal.,2009;Su and Toon, 2011;Ridley etal.,2012).

    Evaluations of simulated aerosoloptical fields in climate models have been performed in many previous studies,and resulting know ledge of aerosol processes has generally improved(Chin etal.,2002;Kinne etal.,2003;Lee and Adams, 2010;Chin et al.,2014).This makes modeled AOTs generally comparable to observations.However,the pathway to making such a match is less well constrained,and uncertainties associated w ith aerosol and aerosol–cloud interaction modeling are still large(Textor et al.,2006;Lee et al.,2013).Model results and observations are often compared in an inconsistent manner(Chin et al.,2002).Observations of aerosol optical properties are generally retrieved only under cloud-free conditions,whereasmodel results used for comparison are generally calculated under all-sky conditions.The effect of such an inconsistent comparison on modeled AOT evaluation has been studied recently(Colarco et al.,2010).The indication is that sampling model output consistently w ith satellite AOT retrievals is a more appropriate methodology to making aerosolmodelevaluations. Separating the modeled aerosol optical properties w ith a new aerosol-coupled version of the Non-hydrostatic ICosahedralAtmospheric Model(NICAM)into all-sky and clear-sky properties,we presenta model to observation comparison of the AOT,AE and SSA using both the modeled all-sky and clear-sky results in the presentstudy.In the nextsection,the model setup and observation data used are described.The general model performances are shown in section 3.1.The model results are further evaluated by comparing them w ith MODIS and AERONET retrievals in sections 3.2 and 3.3,respectively.The paper closes w ith a conclusion in section 4.

    2.M odeldescription and observation data

    2.1.Model description

    The Non-hydrostatic ICosahedral Atmospheric Model (NICAM)isdesigned to perform cloud-resolving simulations by directly calculating deep convection and mesoscale circulations,which play key roles not only in tropical circulation but also the global circulation of the atmosphere(Satoh et al.,2008).The model has been used for several types of global cloud-resolving experiments w ith horizontal resolutions up to 3.5 km(Satoh et al.,2008),including a realistic simulation of the Madden–Julian Oscillation(M iura et al.,2007).These studies demonstrate that NICAM reproduces the detailed features of global cloud and precipitation fields.The Spectral Radiation Transport Model for Aerosol Species(SPRINTARS)is a global three-dimensionalaerosol transport–radiation model,described fully in Takemura etal. (2000;2002a;2009)and Goto etal.(2011a).In the aerosolcoupled version of NICAM(Suzuki et al.,2008),which is referred to as NICAM+SPRINTARS,the mass m ixing ratios of the main tropospheric aerosols,i.e.,carbonaceous aerosols (BC and organic carbon),sulfate,soil dust,sea salt,and the precursor gases of sulfate,are predicted w ith the transport processes including advection,convection,diffusion,gravitational settling,and wet and dry deposition.The advection scheme of NICAM has desirable requirements for tracer transportsimulations:mass conservation,monotonicity,and efficiency(Niwa etal.,2011b).These facts encourage us to use NICAM+SPRINTARS as an aerosol transportmodel.

    The present study requires a long-term model integration to include the aerosol seasonal variation.This makes it too expensive to perform the modelsimulation w ith cloudresolving resolutions,which directly simulate the cloud microphysics using a one-moment(Tomita,2008)or twomoment bulk scheme(Seiki and Nakajima,2014;Seiki et al.,2014)for several days only(M iura et al.,2007;Suzuki et al.,2008). NICAM can also be run at coarser resolutions(Niwa et al.,2011a;Dai et al.,2014a),using the prognostic Arakawa–Schubert cumulus convection scheme (Arakawa and Schubert,1974)and large-scale condensation scheme(Le Trent and Li,1991)for cloud parameterization.NICAM is still advantageous when run at coarser resolutions,especially for transport simulations,because of the conservation of mass.Thus,we perform the model simulation w ith a coarse horizontal resolution of 224 km and 40 vertical layers and the model top located at 40 km for four years(2005–08).The fi rst year is used for spinup.The column cloud fraction is calculated w ith the commonly used maximum-random overlap method(Geleyn and Hollingsworth,1979).The other model physics,such as the m inimal advanced treatments of surface interaction and runoff(MATSIRO)land surface scheme(Takata etal.,2003), the two-streamk-distribution radiation scheme(Nakajima et al.,2000;Sekiguchiand Nakajima,2008),and the level2 vertical turbulence closure scheme(Mellor and Yamada,1974) are identical to those used in the cloud-resolving resolutions. NationalCenters for EnvironmentalPrediction(NCEP)Final (FNL)operational global tropospheric analyses are used for the initialand boundary conditions.

    The emission inventories of BC are based on the Global Em issions Inventory Activity(GEIA)database(Cooke and Wilson,1996),as monthly means w ithout yearly variation, w ith the exception of the fossil fuel consumption em ission. The latter is based on yearly mean data taken from the Aero-Com phase-IIdataset(Diehletal.,2012).Assuming different em ission ratios of OC to BC according to the burning conditions(Takemura etal.,2000;Takemura etal.,2002a),the OC em ission flux is calculated by the model itself.The inventory of sulfate aerosolprecursor(SO2)is also taken from the AeroCom phase-IIdataset.The dustand sea saltem ission fluxes are parameterized as in Takemura etal.(2009).The oxidant concentrations,such as ozone and hydroxyl radical,which are required to calculate sulfate chem istry(Takemura et al.,2000),are given by a global chemical transportmodel(Sudo et al.,2002).For proper simulation of the aerosol distribution,the modeled w ind,water vapor,and temperature fields are nudged to the NCEP FNL analysis data w ith a time-scale of six hours.

    The modeled AOT,AE and SSA are calculated in the same way as Daietal.(2014a)by using the new ly proposed opticalparameters.Hygroscopic grow ths for sulfate,organic carbon,and sea salt are parameterized as a function of relative hum idity to consider the aerosol water uptake(Takemura etal.,2002a).The relative humidity iscalculated identically forclear-sky and cloud-sky gridsbased on the Clausius–Clapeyron equation w ith grid mean values(i.e.,grid mean specific hum idity and temperature).The model integral time step is 20 m inutes,and the aerosoloptical properties are calculated at each integral time step but archived at every 3 hours.The modeled daily mean aerosolopticalpropertiesare simple means of the eight instantaneous snapshots per day. To exam ine the effectof cloud on the evaluation of the model results,we separate the simulated monthly mean aerosolopticalproperties into clear-sky and all-sky properties.We sample the modeled daily aerosoloptical properties to the daily cloud-free observations and calculate the modeled clear-sky monthly aerosoloptical properties by averaging the sampled daily results,whereas the all-sky ones are calculated w ithout any conditionalsampling.

    2.2.The MODIS products

    The Moderate Resolution Imaging Spectroradiometer (MODIS)is a key instrument onboard the NASA earth observing system satellites(Salomonson et al.,1989;Barnes et al.,1998).It has the ability to monitor the spatiotemporal variation of the globalaerosoland cloud fields over both ocean and land w ith severalwell-calibrated spectralchannels (King etal.,1992;Kaufman etal.,1997;Tanre′ etal.,1997). To elim inate the strong solar reflectance by cloud,MODIS Level 2 AOT retrieval at a 10×10 km2resolution considersonly the bestcloud-free pixelsusing a sophisticated cloud screen as a preprocessing step(Ackerman etal.,1998;Martins etal.,2002;Remer etal.,2005).The Level2 AOT is furtheraggregated to Level3 gridded globalproductata 1?×1?resolution(King etal.,2003;Remer and Kaufman,2006).In the present study,the MODIS Collection 5.1 daily Level 3 products of AOT at550 nm and cloud fraction from both the Terra and Aqua satellites are used,which can be downloaded freely from NASA’s innovative data analysis and visualization system(http://disc.sci.gsfc.nasa.gov/giovanni/overview/ index.htm l)(Ackerand Leptoukh,2007).

    2.3.AERONET dataset

    The Aerosol Robotic Network(AERONET)provides the largest dataset of global aerosol optical properties derived from ground-based remote sensing using sun/skyradiometers(Holben etal.,1998;Dubovik etal.,2000).In the presentstudy,the daily average AERONET Level2.0 almucantar inversion products are used for comparison(http:// aeronet.gsfc.nasa.gov/cgi-bin/combined data access inv). The AERONET AOTs and SSAs at both 440 and 675 nm are interpolated to compare w ith the modeled results at550 nm under the assumption that the AOTs are proportional to wavelength on a logarithm ic scale.The AE used for comparison is determ ined from the AOTs at440 and 870 nm.

    3.Results

    3.1.Global aerosol distribution with NICAM

    Figure 1 shows the three-year averaged global distribution of simulated AOT under all-sky conditions at the wavelength of 550 nm for individual aerosol components and its relative contribution to the total AOT.The sulfate and dust aerosols are located mainly in the Northern Hem isphere, whereas the carbonaceous aerosols and sea salt are located mainly in the Southern Hem isphere.High AOT values(>0.2) for sulfate aerosolare found in eastern Asia and Europe because of the high em ission of the sulfate aerosol precursor SO2from fossil fuel consumption.Carbonaceous aerosols originating from biomass burning are prom inent in central and southern A frica,Southeast Asia,and South America, w ith AOT values generally higher than 0.2.The maximum value of dust AOT(>0.3)is seen over the Sahara Desert area,and the dustw ith high AOT em itted from the deserts of East Asia is also simulated well(Wang etal.,2008;Bietal., 2011).High sea salt AOT(>0.1)located near 60?S directly reflects the high em ission rates due to the strong surface w ind. In terms of the global3-yearmeans,soildustaerosolhas the largestAOT(0.035),followed by sulfate aerosol(0.032),carbonaceous aerosol(0.030),and sea salt(0.026).As shown in Table 1,the mean AOTs of NICAM for both aerosol species and the totalare allw ithin the ranges of the 20 aerosolmodels that participated in the AeroCom exercise(Kinne et al., 2006).For dust aerosol,sulfate aerosol and the total,the mean AOTs are close to(~10%)the AeroCom means.For carbonaceous aerosoland sea salt,the mean AOTs are 30.4% higher and 18.7%lower than the AeroCom means,respectively.Sulfate aerosol usually contributes more than 40% to the total AOT over major pollution regions,such as East Asia,Europe,and eastern America.On the other hand,carbonaceous aerosols contribute most(>60%)to the totalAOT overbiomass burning regions.Sea saltaerosolcontributes the most to the AOT over oceans,except the paths of the Asian aerosol transpacific transportand the Sahara dusttransatlantic transport.Dustaerosolcontributesover60%to the totalAOT over the desertsource and outfl ow regions.

    AE indicates the wavelength dependence of AOT,which is used commonly to infer the aerosol particle size distribution and chem ical composition(Chung et al.,2012;Logan et al.,2013).Small aerosol particles(i.e.sulfate and carbonaceous)have strong wavelength dependence and thus large AE.SSA governs the strength of aerosol in absorption(Dubovik et al.,2000).The AE and SSA both have spatial distributions related to the aerosol chemical composition(figure not shown for brevity).Large AEs(>1.0)in biomass burning and pollution regions are found becausesmall aerosol particles(sulfate and carbonaceous)are dominant in such areas.Small AEs(<0.6)are seen in the dust or sea salt aerosol predominant regions because the aerosol particles are large.Dustand carbonaceous aerosols make the SSAs as smallas 0.86–0.90 because of theirstrong absorption properties.Over the remote ocean,especially in the Southern Hem isphere,the SSAs are around 1.0,as non-absorbing sea saltaerosoldominates.

    Fig.1.NICAM-simulated 3-yearaveraged all-sky AOTs at550 nm(leftcolumn)for individualaerosolcomponents and its contribution to the total AOT(rightcolumn).

    Table 1.Globally and annually averaged AOTs at550 nm w ith NICAM+SPRINTARS,the AeroCom means,and the AeroCom ranges.

    3.2.Comparisons with MODIS retrievals

    The modeled climatology of all-sky AOTs at550 nm,the corresponding MODIS retrievals,and the discrepancies for January,April,July,and October are shown in Fig.2.The simulated AOTs can reproduce the general characteristics of aerosol distribution as observed by MODIS.AOTs are commonly higher over the Saharan,Arabian and East Asian regions,and the seasonal variation of AOT w ith higher values in Apriland July ismostly regulated by the largerdustaerosol em issions(Yang etal.,2008;Ridley etal.,2012).Although the model tends to overestimate the AOTs overbiomass burning regions in July,the strong seasonal cycles of the biomass burning in the Congo and Amazon basins are captured.The transpacific transportof the aerosolplume from EastAsia to North America(Takemura etal.,2002b;Logan etal.,2010) is evident from both the model and satellite results.The discrepancies reveal the model tends to underestimate the transatlantic transport of the Saharan Desert dust and overestimate the transpacific transportof the EastAsian aerosols, exceptduring the summerseason.

    To investigate the effectof cloud cover on AOT simulation,the modeled climatology of all-sky and clear-sky AOTs are compared in Fig.3.Distinct differences are found over the regionsof EastAsia,Europe,and eastern America,where aerosols are mostly from pollution sources.The clear-sky AOTs are generally lower than the all-sky AOTs,especially in January.The maximum absolute and relative differences over-0.3 and-30%,respectively,are found over eastern China in January.To clarify the reason for such maximal differences,the modeled and MODIS-retrieved cloud fraction are also compared.The MODIS cloud fraction is highest over eastern China in January(figure notshown for brevity), and this w illcause more highermodeled AOTs to be masked out for the climatology of clear-sky AOTs because the sulfate aerosol is mostly formed in clouds and the hygroscopic grow th is more effective in higher hum idity regions near the clouds(Takemura et al.,2000;Goto et al.,2011a).Meanwhile,we find there is a clear correlation between the simulated cloud fraction distributions and MODIS results,although the model tends to underestimate the cloud fraction over North America,Eurasia,and the western coasts of the main continents,as in many other models(Le Trent and Li, 1991).Detailed verification of the modeled cloud structures is beyond the scope of this study.Over the tropical and subtropicalocean regions,the clear-sky AOTs are generallyslightly higher(<0.05)than the all-sky ones,and this could induce some high relative differences where the AOTs are also small,such as over the tropical Pacific.The clear-sky AOTs are generally slightly lower(<-0.05)than the all-sky AOTs over the Southern Ocean near 60?S,where the cloud fraction and sea salt aerosol are generally higher.This indicates that the sea salt AOT enhancement by hygroscopic grow th is larger than the decrement caused by the wet deposition under high-cloud or high-humidity conditions,and the large AOT under high cloud fraction conditions may be masked out to calculate the climatology of clear-sky AOT.

    Fig.2.Modeled all-sky AOTs at 550 nm(left column),the corresponding MODIS-retrieved AOTs(m iddle column),and the differences between the modeled and MODIS-retrieved AOTs(right column)in January(top row),April(2nd row),July(3rd row),and October(bottom row)averaged over the 3-yearperiod from 2006 to 2008.

    Fig.3.Absolute(leftcolumn)and relative(rightcolumn)differences of the modeled all-sky and clear-sky AOTs in January(top row),April(2nd row),July(3rd row),and October(bottom row)averaged over the 3-yearperiod from 2006 to 2008.The absolute difference is defined as the clear-sky AOT m inus the all-sky AOT.The relative difference is defined as the ratio of the clear-sky AOT to the all-sky AOT.

    To evaluate the evolution of the modeled AOTs quantitatively,we compare the modeled AOTs over land and over ocean w ith MODIS retrievalsseparately.The global land area is divided into seven regions according to the aerosolsources and theirgeographical locations,sim ilar to Chin etal.(2009): North America(NAM),Europe(EUR),Asia(ASA),northern Africa and the M iddle East(NAF),South America(SAM), southern A frica(SAF),and Australia/New Zealand/tropical western Pacific countries(AUS)(Fig.4a).Figures 4b–ishow comparisons of the regional and global monthly mean modeled AOT over land under both clear-sky and all-sky conditions w ith the MODIS retrievals.The statistical parameters, including the correlation coefficient(R),bias,and modelskill are given in Table 2.The model skill depends on bothRand the standard deviations of the observed and modeled results:

    whereσfis the ratio of the standard deviation of the model tothatof the observation,andR0is the maximum attainableR, which is set to 1(Taylor,2001;Chin etal.,2009).Note that the regionalmonthly mean AOT under all-sky conditions is calculated using only the grid values where monthly mean MODIS AOTs are available.It is clear that the modeled all-sky and clear-sky AOTs can both reproduce the monthly AOT variability as observed by MODIS,except over NAM where the modeled AOT variability is too small compared to MODIS results.Although the model tends to underestimate the AOTs over all regions,and the clear-sky AOTs further enlarge the underestimations,the clear-sky AOTs are better correlated w ith the observed AOTs.This indicates that the aerosol variations are better simulated using the modeled clear-sky results,and this is further verified by the increments of the model skill using the clear-sky AOTs over all regions.The globalocean is also divided into seven regions, as shown in Fig.5a:northern Atlantic(NA),northern Pacific(NP),tropical northern Atlantic(TA),southern Pacific (SP),southern Atlantic(SA),Indian Ocean(IO),and Southern Ocean(SO).Sim ilar comparisons over the ocean as over land are shown in Figs.5b–i,and the statistical parameters are given in Table 3.The modelshowshigherskillin simulating the monthly AOT variations over the downw ind regions of the main land aerosolsources,such as the outflows of dust aerosol from the Sahara Desert(TA),m ixed aerosols from East Asia(NP),and biomass burning aerosols from South America(SA).The differences between clear-sky and all-sky AOTs are generally ignorable,except over the NA and SOregions.A lthough theRvalues of the clear-sky AOTs w ith observations are higher over the SO region,the increment of underestimation using clear-sky AOTs further induces the decrement of the model skill.On the basis of the global ocean,the clear-sky AOT is better correlated w ith the observation and slightly increases the modelskill.

    Table 2.Summary of the statisticalparameters for the comparisons shown in Fig.4.

    Fig.4.(a)Definition of the different land regions used in this study.The surrounding panels compare the variation ofmodeled monthly all-sky AOT(red line),clear-sky AOT(green line),and MODIS AOT(black line)over(b–h)the different regions and (i)the global land area.

    Table 3.Summary of the statisticalparameters for the comparisons shown in Fig.5.

    Fig.5.(a)Definition of the differentocean regions used in thisstudy.The surrounding panelsshow comparisonsof the variation of modeled monthly all-sky AOT(red line),clear-sky AOT(green line),and MODIS AOT(black line)over(b–h)the different regions and(i)the globalocean.

    Figure 6a shows the 3-year mean differences of the modeled daily AOTs and the MODIS retrievals over land as a function of MODIS cloud fraction.During the comparison, the modeled AOTs are sampled to the observations for the regionalmean.The differences are clearly dependent on the cloud fraction over all regions.The model tends to overestimate the AOTs over the AUS,SAF,SAM,and NAF regions under low cloud fraction conditions,whereas underestimations are found underhigh cloud fraction conditions.In these regions,aerosols are mostly from dust and biomass burning sources.The cloud only affects the wet deposition of these aerosols.Insufficient wet deposition under low cloud fraction conditions induces the overestimation of the AOT.The model underestimates the AOTs under all cloud conditions over the ASA,EUR,and NAM regions.In these regions, aerosols are dom inated by sulfate.The cloud affects both the formation and the wet deposition of sulfate.A lthough the wet deposition is smallwhen the cloud cover is low,the insufficient formation of sulfate could cause the underestimation of AOT.It is interesting that the AOT underestimation increases w ith the cloud fraction over all regions.As shown in Fig.6b,the MODIS AOT increases w ith the cloud fractionoverall regions,and such enhancementcan be wellexplained as the aerosolhygroscopic grow th in the humid environment surrounding clouds(Chand et al.,2012).As shown in Fig. 6c,the model can generally reproduce AOT enhancements w ith the cloud fraction except over the NAF region;however,the slopes of enhancements are much smaller than in the MODIS retrievals.This indicates that the modelmay underestimate the effectof aerosol hygroscopic grow th,while MODIS may overestimate the AOT underhigher cloud fraction caused by the unscreened cloud particles w ith AOT uncertainties of about 5%–15%(Remer et al.,2005).In our model,the consideration ofhydrophobic dustaerosolinduces the decrementof the AOT w ith cloud fraction over the NAF region.Sim ilar results are also found over the ocean regions, as shown in Figs.6d–f.

    Fig.6.Mean differences of the modeled and MODIS-retrieved daily AOTs over the 3-year period for varying cloud fraction over(a)land and(d)ocean,the mean MODIS-retrieved AOTs for varying cloud fraction over(b)land and(e) ocean,and the mean modeled AOTs w ith varying cloud fraction over(c)land and(f)ocean.

    3.3.Comparisons with AERONET observations

    AERONET simultaneously retrieves AOT,AE,and SSA (Dubovik and King,2000;Dubovik et al.,2000),and this makes more aerosol characteristics available to constrain modelperformances.The modeled monthly and 3-yearmean AOT and SSA at 550 nm and the AE based on AOTs at440 and 870 nm are compared w ith the AERONET retrievals. The monthly and 3-year mean AERONET-retrieved optical values are derived from the daily mean values.There are in total 148 AERONET sites thathave more than 120 daily mean retrievals during the period 2006 to 2008.The locations of these AERONET sites are shown in Fig.7a,and the AERONET sites are also further classified into seven world regions.The regional mean observed aerosol optical properties are calculated using the available observations at the AERONET sites located over each region,and the regional mean modeled results are calculated sim ilarly to the observed ones by interpolating the model results to the corresponding AREONET sites.

    Figures 7b–ishow inter-comparisons of the modeled allsky,clear-sky,and the retrieved monthly mean AOT variations on the basis of regionaland global means,and the statisticalparameters are given in Table 4.Sim ilar comparisons for the AE and SSA are shown in Figs.8 and 9,and the statistical parameters are summarized in Tables 5 and 6,respectively.Over the NAM and EUR regions,where aerosols are mostly from pollution sources,the observed AOTs show clear seasonal variation,which is reproduced better by using the clear-sky AOTs than the all-sky AOTs,although the clear-sky AOTs are more biased than the all-sky AOTs over the NAM region.Such an influence is not so obvious w ith respect to the comparisons of the AE and SSA values.The monthly variations of AE and SSA are not clear,except that the AEs are slightly lower during the spring season in the NAM region.The latter could be caused by the frequent occurrence of Asian dust transpacific transport in the spring season(Logan et al.,2010).Over the biomass burning regions of SAM and SAF,the observed monthly variations of AOTs and AEs w ith peaks during biomass burning periods are also slightly improved w ith higher model skill by usingclear-sky results.The retrieved SSAs w ith lower values during the biomass burning season over the SAF region are also better simulated by the clear-sky results,although the bias is slightly higher than based on the all-sky results.Over the NAF and AUS regions,where aerosols are mostly from dust sources,except those perturbed by biomass burning,the observed AOT,AE,and SSA variations are also better reproduced by the clear-sky results w ith higherR.In the ASA region,where the aerosol composition is more complicated, although the biases of AOT,AE and SSA are enlarged w ith the clear-sky results,the variations are better reproduced by the clear-sky results w ith higherRand model skill for both AOT and AE.

    Table 4.Summary of the statisticalparameters for the comparisons shown in Fig.7.

    Fig.7.(a)Locations of the AERONET sites used in this study and the seven regions these sites are furtherdivided into.the surrounding panels show inter-comparisons between the modeled all-sky(red line),clear-sky(green line)and AERONET-retrieved (black line)monthly mean AOT variations at550 nm on the basis of the(b–h)regionalmean and(i)globalmean.

    Fig.8.As in Fig.7 but for AEs(440/870 nm).

    Fig.9.As in Fig.7 but for SSA at550 nm.

    Table 5.Summary of the statisticalparameters for the comparisons shown in Fig.8.

    Table 6.Summary of the statisticalparameters for the comparisons as shown in Fig.9.

    Figure 10 shows an inter-comparison of the modeled allsky,clear-sky,and observed 3-year mean of AOT,AE and SSA over all the available AERONET sites.As shown in Figs.10a–c,on a global basis,the all-sky and clear-sky AOTs,AEs and SSAs are significantly correlated w ithRvalues of 0.963,0.985,and 0.950,respectively,indicating similar horizontal distributions of clear-sky and all-sky results.The 3-year mean all-sky AOT,AE,and SSA are 0.203, 0.895,and 0.916,respectively,which are 0.022,0.019,and 0.008 higher than the clear-sky values.The clear-sky AOT is generally lower than the all-sky AOT,except over the dustdom inant regions.The clear-sky AE is generally larger than the all-sky AE when the AE value is high(>1.1),whereas the clear-sky AE is lower than the all-sky AE when the AE value is low(<0.6).The high AE value indicates that the AOT is contributed to mostly by the sulfate and/or carbonaceous aerosols.These aerosol radiiare larger under cloudy conditions because of hygroscopic grow th,so the all-sky AE values are lower.In contrast,the low AEs indicate the aerosol composition is mostly dust.This hydrophobic aerosol is not influenced much by the cloud,but the extinction coefficients of hydrophilic aerosols in clear-sky conditions are lower than in all-sky conditions,and this induces the lower all-sky AEs.The clear-sky SSAs are mostly lower than the all-sky SSAs,especially over those regions dom inated by sulfate aerosol,further indicating the lesser contribution of the non-absorption sulfate aerosolunderclear-sky conditions. Figures 10d–i show comparisons between the modeled and AERONET-retrieved values,and the statistics that reveal the comparison between the model simulations and AERONET observations are summarized in a Taylor diagram(Taylor, 2001)(not shown for brevity).Comparing the modeled allsky AOTs w ith the AERONET retrievals,we find that they are generally in reasonable agreement w ithRranging from 0.419 in the EUR region to 0.921 in the AUS region,and the modeled standard deviations are generally lower than those of the retrievals.The latter could be induced by the coarse model resolution.The modeled value represents an average over a GCM grid box of about 220×220 km2,which is little affected by the local aerosol sources.The observations of AERONET may be influenced by the local aerosol sources,such as over the urban sites.This is further verifi ed by the general underestimation of high AOTs(>0.5).Using the clear-sky AOTs,theRand the root-mean-square error are generally improved,except over the ASA region.Comparing the modeled all-sky AEs w ith the AERONET retrievals, we find that the variations of the AE values are captured well w ithR>0.6 exceptover the NAF and AUS regions,while the model tends to underestimate the AE values over the NAM, EUR,and ASA regions.We consider two possible explanations for the AE underestimation here.One is that the removal processes of dust aerosols may be underestimated in our model,and this induces more suspended dust over the outflow regions.The lifetime or residence time of dust is 8.2 days in ourmodel,which is about tw ice thatof the AeroCom mean(4.2 days).The other possible explanation is thatour modelmay also have less scavenging for large dustparticles, and this induces an incorrect dust size distribution over the outflow regions.SPRINTARS uses a single-momentscheme to track only the dust mass in 10 bins,as compared to the two-momentdustmodel thatalso includes the size distribution(Adams and Seinfeld,2002;Peng etal.,2012).A lthough the underestimation of AE is further enlarged when using the clear-sky results,especially over the NAM and ASA regions,Ris generally improved.TheRvalues between modeled allsky SSAs and retrievals are generally low(<0.3)and the modeled standard deviations are generally lower than those of the retrievals.The clear-sky values can slightly improve the value ofR.

    4.Conclusion

    The globalspatialand temporaldistributionsof the major aerosoloptical properties,i.e.,AOT,AE,and SSA,are simulated using a new aerosol-coupled non-hydrostatic icosahedral atmospheric model from 2006 to 2008.The 3-year global mean AOT,AE and SSA at 550 nm are estimated at 0.123,0.657 and 0.944,respectively,w ith soil dust having the largestAOT(0.035),followed by sulfate aerosol(0.032), carbonaceousaerosol(0.030),and sea salt(0.026).Forall the aerosol species,the mean AOTs are w ithin the ranges of the AeroCom results.

    Fig.10.Inter-comparison of the modeled all-sky,clear-sky and AERONET-retrieved 3-year mean AOTs at 550 nm(left column),AEs(440/870 nm)(middle column),and SSAs at 550 nm(right column)at all the available AERONET sites in this study.Each point represents the site-specific 3-yearmean results,and points are colored according to the seven world regions.

    To include the effectof cloud on the aerosolmodelevaluation,the model results are separated to all-sky and clear-sky results.The simulated spatial distribution of all-sky AOTs can generally reproduce the MODIS retrievals.The transpacific transport of the aerosol plume and the seasonal variation of AOTs are in reasonable agreementw ith the retrievals. Although the clear-sky results show larger bias to the observations,they are in better agreement w ith the retrievals w ith higherRand model skill.The differences between the modeled AOTs and observations are larger under the higher cloud fraction conditions.Compared w ith the ground-based AERONET observations,the modeled clear-sky AOT,AE, and SSA are generally in better agreementw ith observations than the all-sky results,based onR.The clear-sky AOTs and SSAs are generally lower than the all-sky results,especially over those regions where aerosols are mostly from pollution sources,because the non-absorbing sulfate is mostly formed in cloud and the hygroscopic grow th is more effective in higher hum idity regions near the cloud.The modeled clear-sky AEs could be either larger or smaller than the all-sky AEs,depending on the aerosolchemicalcomposition. Although largerdifferencesbetween all-sky and clear-sky results are found over the pollution regions,the differences are smaller than the aerosolseasonaland spatialvariations.

    The modeled AEs are exclusively lower than the AERONET retrievals in the NAM,EUR,and ASA regions,highlighting the uncertainties of the aerosol processes in our model.An investigation of the model’s uncertainties using updated em ission inventories and observations(Levy et al.,2013)w ill provide multi-dimensional diagnostics of the model’s shortcomings,as well as possible remedies.Recently,the aerosol assimilation system of NICAM+SPRINTARS has been developed to overcome some of the uncertainties involved in the aerosol processes (Dai et al.,2013;Dai et al.,2014b),helping to improve thesimulation ofaerosolopticalproperties over EastAsia.

    Acknow ledgements.SHIGuangyu and DAITie are supported by projects from National Natural Science Funds of China(Grant Nos.41130104,and 41475031),Open Research Program of Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration from Nanjing University of Information Science and Technology(Grant No.KDW 1302),the Public Meteorology Special Foundation of MOST(Grant No.GYHY201406023),the National Key Basic Research and Development Program(973 Program,2011CB403401),and Teruyuki NAKAJIMA is supported by projects from JAXA/EarthCARE,MEXT/VL for Climate System Diagnostics,the MOE/Global EnvironmentResearch Fund A-1101, NIES/GOSAT,NIES/CGER,MEXT/RECCA/SALSA,and the S-12 of the MOE.

    Open Access.This article is distributed under the terms of the Creative Commons Attribution License which perm its any use,distribution,and reproduction in any medium,provided the original author(s)and the source are credited.

    REFERENCES

    Acker,J.G.,and G.Leptoukh,2007:Online analysis enhances use of NASA Earth science data.Eos,Trans.Amer.Geophys. Union,88(2),14–17.

    Ackerman,S.A.,K.I.Strabala,W.P.Menzel,R.A.Frey,C. C.Moeller,and L.E.Gum ley,1998:Discrim inating clear sky from clouds w ith MODIS.J.Geophys.Res.,103(D24), 32141–32157.

    Adams,P.J.,and J.H.Seinfeld,2002:Predicting global aerosol size distributions in general circulation models.J.Geophys. Res.:Atmos.,107(D19),AAC 4-1–AAC 4-23.

    Arakawa,A.,and W.H.Schubert,1974:Interaction of a cumulus cloud ensemble w ith the Large-Scale environment,Part I.J. Atmos.Sci.,31(3),674–701.

    Barnes,W.L.,T.S.Pagano,and V.V.Salomonson,1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer(MODIS)on EOS-AM 1.IEEE Trans. Geosci.Remote Sens.,36(4),1088–1100.

    Bi,J.R.,J.P.Huang,Q.Fu,X.Wang,J.S.Shi,W.Zhang,H. W.Huang,and B.D.Zhang,2011:Toward characterization of the aerosolopticalproperties over Loess Plateau of Northwestern China.Journal of Quantitative Spectroscopy and Radiative Transfer,112(2),346–360.

    Chand,D.,and Coauthors,2012:Aerosol optical depth increase in partly cloudy conditions.J.Geophys.Res.:Atmos., 117(D17),D17207,doi:10.1029/2012JD017894.

    Chin,M.,and Coauthors,2002:Tropospheric aerosol optical thickness from the GOCART model and comparisons w ith satellite and sun photometer measurements.J.Atmos.Sci., 59(3),461–483.

    Chin,M.,T.Diehl,O.Dubovik,T.F.Eck,B.N.Holben,A. Sinyuk,and D.G.Streets.2009:Light absorption by pollution,dust,and biomass burning aerosols:A global model study and evaluation w ith AERONET measurements.Ann. Geophys.,27,3439–3464.

    Chin,M.,and Coauthors,2014:Multi-decadal aerosol variations from 1980 to 2009:A perspective from observations and a global model.Atmospheric Chemistry and Physics,14(7), 3657–3690.

    Chung,C.E.,V.Ramanathan,and D.Decremer,2012:Observationally constrained estimates of carbonaceous aerosol radiative forcing.Proceedings ofthe NationalAcademy ofSciences of the United States of America,109(29),11624–11629.

    Colarco,P.,A.da Silva,M.Chin,and T.Diehl,2010:Online simulations ofglobalaerosoldistributions in the NASA GEOS-4 modeland comparisons to satellite and ground-based aerosol optical depth.J.Geophy.Res.:Atmos.,115(D14),D14207, doi:10.1029/2009JD012820.

    Cooke,W.F.,and J.J.N.Wilson,1996:A global black carbon aerosolmodel.J.Geophys.Res.,101(D14),19 395–19 409.

    Dai,T.,N.A.J.Schutgens,and T.Nakajima,2013:Applying a local Ensemble transform Kalman fi lter assim ilation system to the NICAM-SPRINTARS model.AIP Conference Proceedings,1531(1),744–747.

    Dai,T.,D.Goto,N.A.J.Schutgens,X.Dong,G.Shi,and T. Nakajima,2014a:Simulated aerosol key optical properties over global scale using an aerosol transport model coupled w ith a new type of dynam ic core.Atmos.Enviro.,82,71–82.

    Dai,T.,N.A.J.Schutgens,D.Goto,G.Shi,and T.Nakajima, 2014b:Improvement of aerosol optical properties modeling over Eastern Asia w ith MODIS AOD assim ilation in a global non-hydrostatic icosahedralaerosol transportmodel.Environmental Pollution,195,319–329.

    Diehl,T.,A.Heil,M.Chin,X.Pan,D.Streets,M.Schultz,and S. Kinne,2012:Anthropogenic,biomass burning,and volcanic em issions of black carbon,organic carbon,and SO2from 1980 to 2010 for hindcast model experiments.Atmospheric Chemistry and Physics Discussions,12(9),24 895–24 954.

    Dubovik,O.,and M.D.King,2000:A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements.J.Geophys.Res.,105(D16), 20 673–20 696.

    Dubovik,O.,A.Sm irnov,B.N.Holben,M.D.King,Y.J.Kaufman,T.F.Eck,and I.Slutsker,2000:Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network(AERONET)Sun and sky radiance measurements. J.Geophys.Res.,105(D8),9791–9806.

    Geleyn,J.F.,and A.Hollingsworth,1979:An econom icalanalytical method for the computation of the interaction between scattering and line absorption of radiation.Beitr.Phys.Atmos.,52,1–16.

    Goto,D.,T.Nakajima,T.Takemura,and K.Sudo,2011a:A study of uncertainties in the sulfate distribution and its radiative forcing associated w ith sulfur chem istry in a global aerosol model.Atmos.Chem.Phys.,11(21),10 889–10 910.

    Goto,D.,N.A.J.Schutgens,T.Nakajima,and T.Takemura, 2011b:Sensitivity of aerosol to assumed optical properties over Asia using a global aerosolmodel and AERONET. Geophys.Res.Lett.,38(17),L17810,doi:10.1029/2011GL 048675.

    Goto,D.,S.Kanazawa,T.Nakajima,and T.Takemura,2012: Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation.Atmos.Environ.,49,294–301.

    Holben,B.,and Coauthors,1998:AERONET—A federated instrument network and data archive for aerosol characterization.Remote Sens.Environ.,66(1),1–16.

    Kampa,M.,and E.Castanas,2008:Human health effects of air pollution.Environmental Pollution,151(2),362–367.

    Kaufman,Y.J.,D.Tanr′e L.A.Remer,E.F.Vermote,A.Chu, and B.N.Holben,1997:Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer.J.Geophys.Res.:Atmos.,102 (D14),17 051–17 067.

    King,M.D.,Y.J.Kaufman,W.P.Menzel,and D.Tanre,1992: Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer (MODIS).IEEE Trans.Geosci.Remote Sens.,30(1),2–27.

    King,M.D.,and Coauthors,2003:Cloud and aerosol properties, precipitable water,and profi les of temperature and water vapor from MODIS.IEEE Trans.Geosci.Remote Sens.,41(2), 442–458.

    Kinne,S.,and Coauthors,2003:Monthly averagesofaerosolproperties:A globalcomparison among models,satellite data,and AERONET ground data.J.Geophys.Res.:Atmos.,108(D20), 4634,doi:10.1029/2001JD001253.

    Kinne,S.,and Coauthors,2006:An AeroCom initialassessment–optical properties in aerosol component modules of global models.Atmos.Chem.Phys.,6(7),1815–1834.

    Le Trent,H.,and Z.-X.Li,1991:Sensitivity of an atmospheric general circulation model to prescribed SST changes:Feedback effects associated w ith the simulation of cloud optical properties.Climate Dyn.,5(3),175–187.

    Lee,L.A.,K.J.Pringle,C.L.Reddington,G.W.Mann,P.Stier, D.V.Spracklen,J.R.Pierce,and K.S.Carslaw,2013:The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei.Atmospheric Chemistry and Physics,13(17),8879–8914.

    Lee,Y.H.,and P.J.Adams,2010:Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics modelw ith remote sensing observations.Atmospheric Chemistry and Physics,10(5),2129–2214.

    Levy,R.C.,S.Mattoo,L.A.Munchak,L.A.Remer,A.M.Sayer, F.Patadia,and N.C.Hsu,2013:The Collection 6 MODIS aerosolproducts over land and ocean.Atmospheric MeasurementTechniques,6(11),2989–3034.

    Logan,T.,B.Xi,X.Dong,R.Obrecht,Z.Li,and M.Cribb,2010: A study of Asian dustplumes using satellite,surface,and aircraftmeasurements during the INTEX-B field experiment.J. Geophys.Res.,115,D00K25,doi:10.1029/2010JD014134.

    Logan,T.,B.Xi,X.Dong,Z.Li,and M.Cribb,2013:Classification and investigation of Asian aerosolabsorptive properties. Atmospheric Chemistry and Physics,13(4),2253–2265.

    Lohmann,U.,and Coauthors,2010:Totalaerosoleffect:radiative forcing or radiative flux perturbation?Atmospheric Chemistry and Physics,10(7),3235–3246.

    Mann,G.W.,and Coauthors,2014:Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity.Atmospheric Chemistry and Physics,14(9),4679–4713.

    Martins,J.V.,D.Tanr′e L.Remer,Y.Kaufman,S.Mattoo,and R. Levy,2002:MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability.Geophys.Res. Lett.,29(12),MOD4-1–MOD4-4.

    Mellor,G.L.,and T.Yamada,1974:A hierarchy of turbulence closure models for planetary boundary layers.J.Atmos.Sci., 31(7),1791–1806.

    M iura,H.,M.Satoh,T.Nasuno,A.T.Noda,and K.Oouchi,2007: A Madden-Julian oscillation event realistically simulated by a global Cloud-Resolving model.Science,318(5857),1763–1765.

    Nakajima,T.,M.Tsukamoto,Y.Tsushima,A.Numaguti,and T. Kimura,2000:Modeling of the radiative process in an atmospheric general circulation model.Appl.Opt.,39(27),4869–4878.

    Niwa,Y.,and Coauthors,2011a:Three-dimensional variations of atmospheric CO2:aircraftmeasurements and multi-transport model simulations.Atmospheric Chemistry and Physics, 11(24),13359–13375.

    Niwa,Y.,H.Tom ita,M.Satoh,and R.Imasu,2011b:A threedimensional icosahedral grid advection scheme preserving monotonicity and consistency w ith continuity foratmospheric tracer transport.J.Meteor.Soc.Japan,89(3),255–268.

    Peng,Y.,K.von Salzen,and J.Li,2012:Simulation of mineral dust aerosol w ith Piecew ise Log-normal Approximation(PLA)in CanAM 4-PAM.Atmospheric Chemistry and Physics,12(15),6891–6914.

    Prados,A.I.,S.Kondragunta,P.Ciren,and K.R.Knapp, 2007:GOES Aerosol/Smoke Product(GASP)over North America:Comparisons to AERONET and MODIS observations.J.Geophys.Res.:Atmos.,112(D15),D15201,doi: 10.1029/2006JD007968.

    Remer,L.A.,and Y.J.Kaufman,2006:Aerosol direct radiative effectat the top of the atmosphere over cloud free ocean derived from fouryears of MODIS data.Atmospheric Chemistry and Physics,6(1),237–253.

    Remer,L.A.,and Coauthors,2005:The MODIS aerosol algorithm,products,and validation.J.Atmos.Sci.,62(4),947–973.

    Ridley,D.A.,C.L.Heald,and B.Ford,2012:North A frican dustexportand deposition:A satellite and modelperspective. J.Geophys.Res.,117(D2),D02202,doi:10.1029/2011JD 016794.

    Salomonson,V.V.,W.L.Barnes,P.W.Maymon,H.E.Montgomery,and H.Ostrow,1989:MODIS:Advanced facility instrument for studies of the Earth as a system.IEEE Trans. Geosci.Remote Sens.,27(2),145–153.

    Satoh,M.,T.Matsuno,H.Tomita,H.M iura,T.Nasuno,and S. Iga,2008:Nonhydrostatic icosahedral atmospheric model (NICAM)for global cloud resolving simulations.J.Comput. Phys.,227(7),3486–3514.

    Seiki,T.,and T.Nakajima,2014:Aerosoleffects of the condensation process on a convective cloud simulation.J.Atmos.Sci., 71(2),833–853.

    Seiki,T.,M.Satoh,H.Tom ita,and T.Nakajima,2014:Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud opticalproperties using hydrometeorvideo sonde and radiometer sonde in situ observations.J.Geophys.Res.: Atmos.,119(11),6681–6701.

    Sekiguchi,M.,and T.Nakajima,2008:A k-distribution-based radiation code and its computational optim ization for an atmospheric general circulation model.Journal of Quantitative Spectroscopy and Radiative Transfer,109(17–18),2779–2793.

    Su,L.,and O.B.Toon,2011:Saharan and Asian dust:Similarities and differences determ ined by CALIPSO,AERONET,and a coupled climate-aerosolm icrophysicalmodel.Atmos.Chem. Phys.,11(7),3263–3280.

    Sudo,K.,M.Takahashi,J.-i.Kurokawa,and H.Akimoto,2002: CHASER:A global chem ical model of the troposphere 1. Model description.J.Geophys.Res.,107(D17),ACH 7-1–ACH 7-20.

    Suzuki,K.,T.Nakajima,M.Satoh,H.Tom ita,T.Takemura,T.Y.Nakajima,and G.L.Stephens,2008:Global cloud-systemresolving simulation of aerosoleffect on warm clouds.Geophys.Res.Lett.,35(19),L19817,doi:10.1029/2008GL 035449.

    Takata,K.,S.Emori,and T.Watanabe,2003:Development of the m inimal advanced treatments of surface interaction and runoff.Globaland Planetary Change,38(1–2),209–222.

    Takemura,T.,H.Okamoto,Y.Maruyama,A.Numaguti,A.Higurashi,and T.Nakajima,2000:Global three-dimensional simulation of aerosoloptical thickness distribution of various origins.J.Geophys.Res.,105(D14),17 853–17 873.

    Takemura,T.,T.Nakajima,O.Dubovik,B.N.Holben,and S. Kinne,2002a:Single-scattering albedo and radiative forcing of various aerosol species w ith a global Three-Dimensional model.J.Climate,15(4),333–352.

    Takemura,T.,I.Uno,T.Nakajima,A.Higurashi,and I.Sano, 2002b:Modeling study of long-range transportof Asian dust and anthropogenic aerosols from East Asia.Geophys.Res. Lett.,29(24),11-1–11-4.

    Takemura,T.,M.Egashira,K.Matsuzawa,H.Ichijo,R.O’Ishi, and A.Abe-Ouchi,2009:A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last GlacialMaximum.Atmospheric Chemistry and Physics,9(9), 3061–3073.

    Tanr′e,D.,Y.J.Kaufman,M.Herman,and S.Mattoo,1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances.J.Geophys.Res.,102(D14), 16 971–16 988.

    Taylor,K.E.,2001:Summarizing multiple aspects of model performance in a single diagram.J.Geophys.Res.,106(D7), 7183–7192.

    Textor,C.,and Coauthors,2006:Analysis and quantification of the diversities of aerosol life cycles w ithin AeroCom.Atmos. Chem.Phys.,6(7),1777–1813.

    Textor,C.,and Coauthors,2007:The effect of harmonized em issions on aerosolproperties in globalmodels-an AeroCom experiment.Atmospheric Chemistry and Physics,7(17),4489–4501.

    Tomita,H.,2008:New microphysical schemes w ith five and six categories by diagnostic generation of cloud ice.J.Meteor. Soc.Japan Ser.II,86A,121–142.

    Twomey,S.,1974:Pollution and the planetary albedo.Atmos.Environ.,8(12),1251–1256.

    Wang,X.,J.Huang,M.Ji,and K.Higuchi,2008:Variability of EastAsia dustevents and their long-term trend.Atmos.Environ.,42(13),3156–3165.

    Yang,Y.Q.,Q.Hou,C.H.Zhou,H.L.Liu,Y.Q.Wang,and T.Niu,2008:Sand/dust storm processes in Northeast Asia and associated large-scale circulations.Atmospheric Chemistry and Physics,8(1),25–33.

    Zhang,H.,and Coauthors,2012a:Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system.Climate Dyn.,38(7–8),1675–1693.

    Zhang,K.,and Coauthors,2012b:The global aerosol-climate model ECHAM-HAM,version 2:Sensitivity to improvements in process representations.Atmospheric Chemistry and Physics,12(19),8911–8949.

    :Dai,T.,G.Y.Shi,and T.Nakajima,2015:Analysis and evaluation of the globalaerosoloptical properties simulated by an online aerosol-coupled non-hydrostatic icosahedralatmospheric model.Adv.Atmos.Sci.,32(6),743–758,

    10.1007/s00376-014-4098-z.

    (Received 25 August2014;revised 22 October 2014;accepted 15 November2014)

    ?Corresponding author:DAITie

    Email:daitie@mail.iap.ac.cn

    ?The Authors 2015

    天堂中文最新版在线下载| 欧美一级毛片孕妇| 亚洲国产欧美网| 欧美精品亚洲一区二区| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看| 视频在线观看一区二区三区| 黑人猛操日本美女一级片| 又黄又粗又硬又大视频| 久久久国产欧美日韩av| 国内毛片毛片毛片毛片毛片| 香蕉国产在线看| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 国产在线观看jvid| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 久久青草综合色| 丰满饥渴人妻一区二区三| 欧美黑人精品巨大| 日韩大码丰满熟妇| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久久毛片 | 国产熟女午夜一区二区三区| 窝窝影院91人妻| 久久久精品区二区三区| 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 国产精品欧美亚洲77777| 岛国在线观看网站| 国产免费av片在线观看野外av| 久久久久久久精品吃奶| 伦理电影免费视频| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影视91久久| 一区二区日韩欧美中文字幕| 99精品欧美一区二区三区四区| 99精国产麻豆久久婷婷| 精品久久久久久,| 精品国产一区二区三区久久久樱花| 国产精品美女特级片免费视频播放器 | 中文字幕另类日韩欧美亚洲嫩草| 90打野战视频偷拍视频| 成人手机av| 正在播放国产对白刺激| 丰满饥渴人妻一区二区三| 久久中文看片网| 国产黄色免费在线视频| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一区二区三区不卡视频| 欧美精品亚洲一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品粉嫩美女一区| 淫妇啪啪啪对白视频| 亚洲中文日韩欧美视频| 亚洲精品成人av观看孕妇| 午夜福利欧美成人| 精品国产乱码久久久久久男人| 在线观看日韩欧美| 国内久久婷婷六月综合欲色啪| 国产亚洲精品一区二区www | 免费女性裸体啪啪无遮挡网站| 男人操女人黄网站| 校园春色视频在线观看| 精品第一国产精品| 精品高清国产在线一区| 精品国内亚洲2022精品成人 | 精品人妻熟女毛片av久久网站| 中文字幕另类日韩欧美亚洲嫩草| 制服诱惑二区| 亚洲情色 制服丝袜| 黄色成人免费大全| 婷婷精品国产亚洲av在线 | 热re99久久国产66热| 不卡一级毛片| 国产真人三级小视频在线观看| 午夜福利免费观看在线| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 日韩免费高清中文字幕av| 亚洲精品中文字幕在线视频| 80岁老熟妇乱子伦牲交| 久久久久久久午夜电影 | 欧美在线一区亚洲| 国产熟女午夜一区二区三区| 久久久国产一区二区| 亚洲欧洲精品一区二区精品久久久| 正在播放国产对白刺激| 又黄又粗又硬又大视频| 伊人久久大香线蕉亚洲五| 一进一出好大好爽视频| 午夜福利,免费看| 亚洲七黄色美女视频| 精品久久久久久电影网| 久久99一区二区三区| 日本黄色日本黄色录像| 在线天堂中文资源库| 亚洲性夜色夜夜综合| 狠狠狠狠99中文字幕| 国产精华一区二区三区| 亚洲精品乱久久久久久| av国产精品久久久久影院| 99国产精品一区二区三区| 少妇 在线观看| 妹子高潮喷水视频| 亚洲av成人不卡在线观看播放网| 国产主播在线观看一区二区| 亚洲人成77777在线视频| 1024视频免费在线观看| 亚洲人成电影免费在线| 日韩欧美在线二视频 | 狠狠婷婷综合久久久久久88av| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美日韩另类电影网站| 下体分泌物呈黄色| 国产精品国产高清国产av | 免费在线观看黄色视频的| 老司机福利观看| 我的亚洲天堂| 老司机深夜福利视频在线观看| 在线十欧美十亚洲十日本专区| 亚洲国产精品合色在线| 飞空精品影院首页| 18禁国产床啪视频网站| 亚洲国产欧美一区二区综合| 国产麻豆69| 亚洲成人手机| 亚洲av成人不卡在线观看播放网| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 精品一区二区三区四区五区乱码| 成人国语在线视频| xxx96com| 国产亚洲精品一区二区www | 色精品久久人妻99蜜桃| 少妇的丰满在线观看| 国产人伦9x9x在线观看| 午夜91福利影院| 超碰97精品在线观看| av视频免费观看在线观看| 亚洲国产精品一区二区三区在线| 午夜精品久久久久久毛片777| 一级片'在线观看视频| 看黄色毛片网站| 欧美日韩亚洲高清精品| 在线免费观看的www视频| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| videos熟女内射| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 国产精品 国内视频| 我的亚洲天堂| 久久狼人影院| 18禁黄网站禁片午夜丰满| av不卡在线播放| 黄片小视频在线播放| 99热国产这里只有精品6| av电影中文网址| 在线观看免费视频网站a站| 久久性视频一级片| 久久久久国产精品人妻aⅴ院 | 久久国产亚洲av麻豆专区| 日本欧美视频一区| 一级作爱视频免费观看| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 大码成人一级视频| ponron亚洲| 亚洲av日韩在线播放| 久久ye,这里只有精品| 午夜精品国产一区二区电影| 满18在线观看网站| 成人精品一区二区免费| 宅男免费午夜| 中出人妻视频一区二区| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 亚洲成人手机| 深夜精品福利| av网站在线播放免费| 久久久精品区二区三区| 69av精品久久久久久| 国产成人av激情在线播放| 91成人精品电影| 亚洲精品自拍成人| 国产成+人综合+亚洲专区| 亚洲视频免费观看视频| 91麻豆av在线| 99久久人妻综合| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 午夜影院日韩av| 十八禁人妻一区二区| 色综合婷婷激情| 一区二区日韩欧美中文字幕| 久久这里只有精品19| av免费在线观看网站| 日韩熟女老妇一区二区性免费视频| 久久久久国产一级毛片高清牌| 久久久精品区二区三区| 久久亚洲真实| 中文字幕精品免费在线观看视频| 岛国毛片在线播放| 久久ye,这里只有精品| 婷婷精品国产亚洲av在线 | www.自偷自拍.com| 久久午夜亚洲精品久久| 精品福利观看| 香蕉丝袜av| xxx96com| 久久精品熟女亚洲av麻豆精品| 久久午夜亚洲精品久久| 久久国产精品影院| 国产伦人伦偷精品视频| 色综合婷婷激情| 久久天堂一区二区三区四区| 大码成人一级视频| av天堂在线播放| 一边摸一边抽搐一进一小说 | 亚洲国产欧美一区二区综合| 在线国产一区二区在线| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 欧美亚洲日本最大视频资源| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 亚洲av美国av| 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠躁躁| 久久九九热精品免费| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 国产精品影院久久| 国产精品偷伦视频观看了| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久av网站| 777米奇影视久久| 成人av一区二区三区在线看| a在线观看视频网站| 老司机深夜福利视频在线观看| 天堂√8在线中文| 色播在线永久视频| 亚洲视频免费观看视频| 国产精品免费大片| 在线视频色国产色| 国产精品秋霞免费鲁丝片| 麻豆成人av在线观看| 欧美日韩乱码在线| 色综合婷婷激情| 一本一本久久a久久精品综合妖精| 亚洲免费av在线视频| 不卡一级毛片| 超色免费av| 久久精品亚洲精品国产色婷小说| 午夜福利免费观看在线| 丁香六月欧美| 天堂√8在线中文| 男女高潮啪啪啪动态图| 亚洲片人在线观看| 成人国语在线视频| 男人舔女人的私密视频| 18在线观看网站| 国产精品乱码一区二三区的特点 | 国产91精品成人一区二区三区| 国产成人欧美在线观看 | 婷婷丁香在线五月| 精品久久久久久,| 69精品国产乱码久久久| 国产一区二区三区视频了| 夜夜爽天天搞| 欧美日韩av久久| 日韩视频一区二区在线观看| 精品久久久久久久久久免费视频 | 欧美日本中文国产一区发布| 精品第一国产精品| 在线观看免费视频网站a站| 国产成人免费观看mmmm| 精品人妻1区二区| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 亚洲五月天丁香| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 两个人看的免费小视频| 国产欧美日韩一区二区三| 中出人妻视频一区二区| 国产成人系列免费观看| 成人国语在线视频| 村上凉子中文字幕在线| 操美女的视频在线观看| 国产精品亚洲一级av第二区| www.999成人在线观看| 国产国语露脸激情在线看| 国产亚洲精品一区二区www | 欧美日韩视频精品一区| 99热只有精品国产| 国产精品成人在线| 亚洲成人手机| 一级a爱片免费观看的视频| 91av网站免费观看| 亚洲第一欧美日韩一区二区三区| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 高潮久久久久久久久久久不卡| 久久精品熟女亚洲av麻豆精品| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产精品麻豆| 欧美精品av麻豆av| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av高清一级| 欧美精品av麻豆av| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 国产日韩一区二区三区精品不卡| 极品少妇高潮喷水抽搐| 男人的好看免费观看在线视频 | 国产麻豆69| 曰老女人黄片| 欧美黑人欧美精品刺激| 操出白浆在线播放| 精品久久久精品久久久| 午夜福利乱码中文字幕| 男女下面插进去视频免费观看| av网站在线播放免费| 97人妻天天添夜夜摸| 他把我摸到了高潮在线观看| 又大又爽又粗| 国产1区2区3区精品| 国产真人三级小视频在线观看| 国产色视频综合| 成人永久免费在线观看视频| 黄片小视频在线播放| 99热网站在线观看| 一边摸一边做爽爽视频免费| 久久国产精品大桥未久av| 美女 人体艺术 gogo| 久久精品亚洲av国产电影网| 国产精品秋霞免费鲁丝片| 麻豆成人av在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩精品亚洲av| 老司机福利观看| 一进一出抽搐gif免费好疼 | 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 国产亚洲精品久久久久5区| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 免费看十八禁软件| 女性被躁到高潮视频| 久久香蕉国产精品| 欧美久久黑人一区二区| 在线观看一区二区三区激情| 成人手机av| 欧美精品啪啪一区二区三区| 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| 99久久人妻综合| 国产精品成人在线| 99国产精品一区二区三区| 日韩三级视频一区二区三区| 国产精品久久电影中文字幕 | 国产男女超爽视频在线观看| 欧美大码av| 国产深夜福利视频在线观看| 91国产中文字幕| 超碰成人久久| 日韩欧美一区二区三区在线观看 | 美女国产高潮福利片在线看| 国产一区二区三区在线臀色熟女 | 黄色毛片三级朝国网站| a级片在线免费高清观看视频| 老司机福利观看| 亚洲全国av大片| 久久午夜亚洲精品久久| 国产精品亚洲一级av第二区| 国产亚洲精品久久久久5区| 精品久久久久久久久久免费视频 | 亚洲三区欧美一区| 久久中文字幕人妻熟女| 国产淫语在线视频| 亚洲人成电影观看| 国产精品久久久久成人av| 高清视频免费观看一区二区| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 性少妇av在线| 日韩免费av在线播放| 午夜精品在线福利| 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 老司机亚洲免费影院| 亚洲人成77777在线视频| 久久 成人 亚洲| 丰满的人妻完整版| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 中文字幕人妻熟女乱码| 亚洲成人免费电影在线观看| a级毛片在线看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 激情视频va一区二区三区| 久久精品91无色码中文字幕| 亚洲专区字幕在线| 亚洲精品粉嫩美女一区| 午夜免费鲁丝| 欧美黑人欧美精品刺激| 99久久综合精品五月天人人| 精品人妻1区二区| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 交换朋友夫妻互换小说| 91九色精品人成在线观看| 大香蕉久久网| 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月 | 久久久国产欧美日韩av| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲欧美一区二区三区久久| 大香蕉久久网| 日日夜夜操网爽| 国产精品二区激情视频| 91大片在线观看| 午夜福利欧美成人| 国产亚洲欧美98| 美女视频免费永久观看网站| 老鸭窝网址在线观看| 不卡av一区二区三区| 久久久久精品人妻al黑| 色尼玛亚洲综合影院| 日本五十路高清| 国产精品成人在线| 97人妻天天添夜夜摸| 男女免费视频国产| 欧美日韩国产mv在线观看视频| 国产精品 国内视频| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 中文字幕制服av| 午夜精品久久久久久毛片777| 久热爱精品视频在线9| 久久人妻熟女aⅴ| 好看av亚洲va欧美ⅴa在| 久久国产精品大桥未久av| 精品高清国产在线一区| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区 | 成人黄色视频免费在线看| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 老司机深夜福利视频在线观看| 极品教师在线免费播放| 丝袜美足系列| 国产亚洲欧美在线一区二区| 国产成人免费无遮挡视频| 天堂动漫精品| 国产成人av激情在线播放| 久久精品国产清高在天天线| 午夜成年电影在线免费观看| 亚洲片人在线观看| 精品久久蜜臀av无| 色在线成人网| av片东京热男人的天堂| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 欧美成人午夜精品| 欧美精品人与动牲交sv欧美| 国产精品国产高清国产av | 国产精品国产高清国产av | 国产精品1区2区在线观看. | 最新美女视频免费是黄的| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看 | 熟女少妇亚洲综合色aaa.| 亚洲欧美色中文字幕在线| 精品欧美一区二区三区在线| 精品亚洲成国产av| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| e午夜精品久久久久久久| 人人妻,人人澡人人爽秒播| 日本vs欧美在线观看视频| 国产男靠女视频免费网站| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 视频在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 母亲3免费完整高清在线观看| 手机成人av网站| 亚洲av欧美aⅴ国产| 亚洲专区国产一区二区| 午夜福利在线观看吧| 精品福利观看| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 最新的欧美精品一区二区| 亚洲三区欧美一区| 国产成人影院久久av| 精品少妇一区二区三区视频日本电影| 在线观看午夜福利视频| 国产精品乱码一区二三区的特点 | 伊人久久大香线蕉亚洲五| 很黄的视频免费| videos熟女内射| 首页视频小说图片口味搜索| 午夜福利视频在线观看免费| 久久久久视频综合| 国产成人系列免费观看| 国产精品亚洲av一区麻豆| 一级a爱片免费观看的视频| 成人三级做爰电影| 国产淫语在线视频| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av香蕉五月 | 欧美黄色片欧美黄色片| 国产99久久九九免费精品| 国产亚洲欧美在线一区二区| 在线国产一区二区在线| 99精国产麻豆久久婷婷| 国产在视频线精品| 天堂中文最新版在线下载| 欧美日韩av久久| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 国产99白浆流出| 欧美色视频一区免费| 天天躁夜夜躁狠狠躁躁| 老司机午夜十八禁免费视频| 国产日韩欧美亚洲二区| 久久精品国产99精品国产亚洲性色 | 午夜福利免费观看在线| 天天躁日日躁夜夜躁夜夜| 欧美日韩乱码在线| 下体分泌物呈黄色| 18在线观看网站| 欧美 日韩 精品 国产| 精品国产一区二区久久| 午夜免费成人在线视频| 中出人妻视频一区二区| 日韩欧美一区视频在线观看| xxx96com| 女人久久www免费人成看片| 91在线观看av| 亚洲av第一区精品v没综合| a级毛片黄视频| 欧美日韩成人在线一区二区| 女人被躁到高潮嗷嗷叫费观| 亚洲成a人片在线一区二区| 亚洲第一av免费看| 国产人伦9x9x在线观看| 91精品三级在线观看| 99国产精品99久久久久| 99re6热这里在线精品视频| av天堂久久9| 十八禁网站免费在线| 窝窝影院91人妻| 国产亚洲欧美在线一区二区| 一本综合久久免费| 老司机影院毛片| 岛国在线观看网站| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| 美女 人体艺术 gogo| 欧美精品高潮呻吟av久久| 多毛熟女@视频| 国产欧美日韩精品亚洲av| 午夜91福利影院| 精品福利永久在线观看| 国产亚洲一区二区精品| x7x7x7水蜜桃| 日本欧美视频一区| 亚洲欧洲精品一区二区精品久久久| 日韩三级视频一区二区三区| 超碰成人久久| 又大又爽又粗| 中文字幕制服av| 久久久国产成人精品二区 | 国产欧美日韩精品亚洲av| 91在线观看av| 久久久久久久精品吃奶| 侵犯人妻中文字幕一二三四区| 99香蕉大伊视频| 搡老岳熟女国产| 欧美大码av| 91成年电影在线观看| 在线十欧美十亚洲十日本专区| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 狂野欧美激情性xxxx| 日韩精品免费视频一区二区三区| 久久影院123| 久久精品人人爽人人爽视色| 欧美日韩瑟瑟在线播放| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区蜜桃| 一级片'在线观看视频| 国产精品二区激情视频| 免费在线观看视频国产中文字幕亚洲|