• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    骨肉瘤直接抑制化療藥物療效的分子機制

    2015-04-13 11:13:21符策崗趙紅衛(wèi)劉揚陳海丹
    海南醫(yī)學 2015年1期
    關(guān)鍵詞:耐藥性生存率耐藥

    符策崗,趙紅衛(wèi),劉揚,陳海丹

    (三峽大學第一臨床醫(yī)學院宜昌市中心人民醫(yī)院脊柱外科,湖北宜昌443000)

    ·綜述·

    骨肉瘤直接抑制化療藥物療效的分子機制

    符策崗,趙紅衛(wèi),劉揚,陳海丹

    (三峽大學第一臨床醫(yī)學院宜昌市中心人民醫(yī)院脊柱外科,湖北宜昌443000)

    骨肉瘤(Osteosarcoma,OS)是一種發(fā)病率在兒童和青少年惡性腫瘤中居首位的腫瘤,目前臨床治療方式以外科手術(shù)聯(lián)合藥物化療為主。骨肉瘤對化療藥物的耐藥性是影響臨床骨肉瘤治療效果的重要原因之一,了解骨肉瘤細胞的耐藥機制,從而研發(fā)新的化療藥物對提高骨肉瘤的治療效果具有重要意義。OS可以通過直接抑制化療藥物或增強自身抗藥性等兩種方式達到耐藥的目的。本綜述側(cè)重介紹骨肉瘤直接影化療藥物療效的3種分子機制:骨肉瘤細胞阻滯化療藥物進入胞內(nèi)、骨肉瘤細胞排出胞內(nèi)的化療藥物以及促使化療藥物失活。

    骨肉瘤;耐藥性;分子機制

    骨肉瘤(Osteosarcoma,OS)好發(fā)于15~25歲的青少年,并以男性患者居多,其發(fā)病率在兒童和青少年惡性腫瘤中居首位。OS好發(fā)于長骨干骺端、股骨遠端和脛骨近端[1],具有很強的侵蝕性,多見肺部轉(zhuǎn)移[2]。視網(wǎng)膜細胞瘤和p53基因突變的患者更容易罹患OS,表明相關(guān)基因可能介入了OS的發(fā)病。OS主要是梭形細胞的惡性增殖,也存在軟骨母細胞和成纖維細胞等亞型,這些肉瘤細胞只要在骨組織內(nèi)被發(fā)現(xiàn)即可確診OS[3]。臨床方面,OS患者的主要臨床癥狀是疼痛和軟組織腫脹,并且高達20%~25%患者發(fā)現(xiàn)有肺部轉(zhuǎn)移灶,給予OS患者及時有效的治療能緩解病情的發(fā)展。OS患者僅行手術(shù)切除的存活率不足20%,但與化學治療聯(lián)用后,局部病變OS患者存活率增加了70%,這說明了化學治療的有效性和重要性[4]。目前國內(nèi)外以順鉑、多柔比星和甲氨蝶呤(Methotrexate, MTX)為基礎抗化療藥物治療OS。由于骨肉瘤對化療藥物的耐藥性存在,使得OS患者存活率在過去的30年里沒有發(fā)生變化[5]。探索骨肉瘤抗化學治療的分子機制并找到相應的克服方式,對提高OS患者的生存率具有重要價值。OS可以通過直接抑制化療藥物療效和增強自身耐藥性等兩種主要方式產(chǎn)生對化療藥物的耐藥性,本文將對OS如何直接抑制化療藥物的分子機制做一簡要綜述。

    1 阻滯化療藥物進入細胞內(nèi)

    目前尚不清楚腫瘤細胞吸收化療藥物的分子機制。據(jù)了解,二氫葉酸還原酶抑制劑MTX常被用于治療OS,實驗發(fā)現(xiàn),MTX轉(zhuǎn)入細胞需要通過細胞膜上的還原型葉酸載體(Reduced folate carrier,RFC),減少細胞膜上RFC能抑制MTX轉(zhuǎn)運入細胞內(nèi),從而降低MTX在細胞內(nèi)的濃度,這一現(xiàn)象在OS細胞內(nèi)普遍存在(圖1)[6-7]。研究發(fā)現(xiàn),65%的OS病患RFC表達減少,并且RFC水平越低化療敏感性越差,這表明RFC的表達水平能直接影響化療藥物的作用[8]。也有研究表明,原發(fā)病灶RFC的表達水平比轉(zhuǎn)移病灶和復發(fā)病灶RFC的表達水平都要低,說明RFC水平與腫瘤病變程度有關(guān)。在此,值得一提的是,伴隨腫瘤好轉(zhuǎn)RFC表達隨之增加,反向驗證腫瘤病變程度與RFC表達水平的關(guān)系[9-10]。研究發(fā)現(xiàn),變異的RFC失去了或者在一定程度上降低了轉(zhuǎn)運MTX的能力,一種名為Leu291Pro的變異RFC蛋白失去了承載底物穿過細胞膜的能力,另外三種變異型Ser46Asn、Ser4Pro和Gly259Trp的轉(zhuǎn)運能力都有不同程度的下降,說明RFC變異會降低RFC的轉(zhuǎn)運能力,進而影響化療藥物的轉(zhuǎn)運,最終引起腫瘤對化療藥物耐藥[11]。此外,研究發(fā)現(xiàn),RFC基因復制在親本細胞系與MTX耐藥細胞系內(nèi)并無不同,表明RFC表達的減少并不是因為基因缺失而引起的[12]。

    圖1 OS抗化療機制

    為了克服RFC引起的耐藥,目前研發(fā)了一種新型的抗葉酸劑三甲曲沙,它最大的優(yōu)勢在于轉(zhuǎn)運人細胞內(nèi)不需要借助RFC。目前,三甲曲沙已經(jīng)被列入惡性或頑固性OS患者的Ⅱ期研究中,并取得了一定的成果。此外,目前正在嘗試聯(lián)用三甲曲沙與高劑量MTX治療復發(fā)性OS,這有望提高化療療效[13]。

    2 排出細胞內(nèi)的化療藥物

    細胞膜上的膜泵P糖蛋白(P-glycoprotein,P-GP)能非特異性的泵出腫瘤細胞內(nèi)的化療藥物從而降低細胞內(nèi)藥物濃度,從而抑制化療藥物的作用[14]。P-GP由人類多重抗藥(Multidrug-resistant,MDR)基因MDR1所編碼,它是一種70 kD的ATP結(jié)合(ATP-binding cassette,ABC)轉(zhuǎn)運蛋白,也是細胞排出藥物的外排泵(圖1)[15]。研究發(fā)現(xiàn),P-GP表達增多與OS細胞對化療藥物耐藥有著密不可分的關(guān)系[16-18]。此外,回顧性研究發(fā)現(xiàn),P-GP表達增多能促進腫瘤的發(fā)展和惡變[19-20]。

    相反的研究發(fā)現(xiàn),P-GP的表達水平與腫瘤的發(fā)展和生存率沒有內(nèi)在聯(lián)系[21-22]。類似的研究發(fā)現(xiàn),P-GP mRNA的表達水平并不能反映腫瘤的發(fā)展或惡變程度[23]。因此綜合分析,P-GP并不影響化療藥物在腫瘤細胞內(nèi)的作用[24]。也有研究發(fā)現(xiàn),不能用P-GP的表達水平作為指標去預測OS患者的化療效果或存活率[25]。此外,當MDR基因轉(zhuǎn)染進入OS細胞系內(nèi)后,在一種低侵蝕性表型內(nèi)可發(fā)現(xiàn)P-GP表達增多,這表明P-GP能抑制腫瘤轉(zhuǎn)移[26]。

    雖然目前對于P-GP的作用存在爭議,但為了克服P-GP引起耐藥的分子機制,目前正在開發(fā)一種新型的藥物傳遞載體,即具備生物溶性和脂溶性的納米顆粒。前期研究證實,這種納米顆粒能有效地把化療藥物送入已經(jīng)產(chǎn)生耐藥性的OS細胞內(nèi),這能提高化療藥物在細胞內(nèi)的濃度,甚至扭轉(zhuǎn)細胞內(nèi)藥物低濃度的局面[27-29]。

    3 促使化療藥物失活

    谷胱甘肽S-轉(zhuǎn)移酶P1(Glutathione S-transferase P1,GSTP1)是一種細胞質(zhì)谷胱甘肽S-轉(zhuǎn)移酶,它屬于Ⅱ期解毒酶系,參與滅活一系列外源性化學物質(zhì),其中包括誘變劑、抗癌劑以及它們的代謝物(圖1)[30]。研究表明,GSTP1表達增多與多種腫瘤抵抗化療藥物的作用有關(guān)[31]。進一步研究證實,GSTP1表達增多能明顯縮短藥物的半衰期和存在時間,這能很快降低藥物在體內(nèi)的濃度,進而抑制化療藥物對腫瘤細胞的殺傷作用[32]。類似的研究發(fā)現(xiàn),隨著GSTP1表達的增多,化療藥物對腫瘤細胞的殺傷作用隨之減弱[33]。研究發(fā)現(xiàn),化療藥物能刺激GSTP1表達增多,而GSTP1表達增多會促進腫瘤的發(fā)展[34]。針對性研究發(fā)現(xiàn),OS耐藥細胞系內(nèi)GSTP1表達增多,這表明GSTP1表達增多能促進OS細胞對化療藥物耐藥[35]。綜上所述,GSTP1在體內(nèi)能有效滅活化療藥物,這不利于化療藥物發(fā)揮藥效,從而促進腫瘤繼續(xù)發(fā)展。Windsor等[36]研究發(fā)現(xiàn)一種變異的GSTP1基因(c.313A>G p. lle(105)Val),它能促進OS細胞對化療藥物的耐藥性,這說明變異的GSTP1也能引起細胞產(chǎn)生化療耐藥性。Zhang等[37]研究發(fā)現(xiàn),GSTP1 Val基因型患者比GSTP1 IIe基因型患者生存率要低。但是Yang等[38]卻發(fā)現(xiàn),GSTP1 Val基因型患者對化療藥物更加敏感。GSTP1基因的多樣性是一種表觀遺傳學變化,目前對表觀遺傳學的研究還存在矛盾和不成熟,因此更深入的研究可能會為治療OS帶來新的視角。

    為了抑制GSTP1的解毒作用,并提高化療藥物對OS細胞的殺傷作用,近期正在體外測試一種高效的GSTP1抑制劑NBDHEX[6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol]。研究發(fā)現(xiàn),NBDHEX在化療藥物耐藥細胞系內(nèi)極度活躍[39]。進一步研究發(fā)現(xiàn),NBDHEX能誘導OS細胞凋亡并能抑制OS細胞轉(zhuǎn)移,這表明NBDHEX有助于治療OS[40]。蛋白組學研究結(jié)果顯示,NBDHEX能通過分解GSTP1腫瘤壞死因子受體相關(guān)因子(Tumor necrosis factor receptor-associated factor,TRAF)2復合體恢復TRAF2/ ASK1信號轉(zhuǎn)導,從而延長c-Jun氨基末端激酶(JNK)和P38的活性,進一步增強JNK促進細胞凋亡和P38引起P21增多而發(fā)揮抑癌作用,這最終能促進腫瘤細胞死亡[41]。這些研究表明,NBDHEX抑制GSTP1后能有助于治療OS,這可能是一種有效的新型療法,并值得進一步去發(fā)掘。

    4 結(jié)論

    雖然手術(shù)治療和化療藥物聯(lián)合治療OS已經(jīng)在很大程度上提高了OS患者的生存率。但從1980年至今,局部病變OS患者的生存率還停留在70%,伴隨轉(zhuǎn)移和復發(fā)的OS患者長期生存率依然不足20%[42]。了解骨肉瘤細胞的耐藥機制,并找到相應的處理方式,能在很大程度上提高骨肉瘤的治療效果,進而提高OS患者生存率。本綜述簡要介紹了OS直接抑制化療藥物的三種分子機制,以及相應的處理方式,但這些研究都尚處于初期。并且還存在其他機制能引起OS細胞的耐藥性,例如APE1或ERCC增強DNA修復,干擾mTOR或IGF-IR信號轉(zhuǎn)導通路,細胞凋亡和細胞自噬相關(guān)的抗化療機制,miRNA失調(diào)和OSC介導的抗化療作用等等。

    目前已經(jīng)證實三甲曲沙轉(zhuǎn)運入細胞內(nèi)不需要借助RFC,但是抗腫瘤作用依然不夠理想。因此有必要對三甲曲沙進行改良,這可以從藥物的殺傷作用本身著手,也可以著手于化療藥物聯(lián)用方面,以提高療效。具備生物溶性和脂溶性的新型納米顆粒能有效提高藥物在腫瘤內(nèi)傳遞,有助于扭轉(zhuǎn)P-GP藥物外排[43]。在未來,更應該研究納米顆粒和外排泵抑制劑聯(lián)聯(lián)合治療OS的效果,這些藥物之間的相互作用機制值得進一步研究。GSTP1能引起化療藥物失活,NBDHEX能高效的抑制GSTP1,這表明NBDHEX有助于治療OS[40]。研究NBDHEX與其他化療藥物聯(lián)用對提高骨肉瘤的治療效果具有重要的意義。目前對這所有機制了解尚淺,進一步的探索骨肉瘤細胞的耐藥機制,從而研發(fā)新的化療藥物對提高骨肉瘤的治療效果具有重要意義。

    [1]Chou AJ,Gorlick R.Chemotherapy resistance in osteo-sarcoma: current challenges and future directions[J].Expert Rev Anticancer There,2006,6(7):1075-1085.

    [2]Longhi A,Errani C,De Paolis M,et al.Primary bone osteosarcoma in the pediatric age:state of the art[J].Cancer Treat Rev,2006,32 (6):423-436.

    [3]Chou AJ,Geller DS,Gorlick R.Therapy for osteosarcoma:where do we go from here?[J].Paediatr Drugs,2008,10(5):315-327.

    [4]Eilber FR,Rosen G.Adjuvant chemotherapy for osteo-sarcoma[J]. Semin Oncol,1989,16(4):312-322.

    [5]Sakamoto A,Iwamoto Y.Current status and perspectives regarding the treatment of osteo-sarcoma:chemotherapy[J].Rev Recent Clin Trials,2008,3(3):228-231.

    [6]Bertino JR.Karnofsky memorial lecture.Ode to methotrexate[J].J Clin Oncol,1993,11(1):5-14.

    [7]Hattinger CM,Reverter-Branchat G,Remondini D,et al.Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques[J].Eur J Cell Biol,2003,82(9):483-493.

    [8]Guo W,Healey JH,Meyers PA,et al.Mechanisms of methotrexate resistance in osteo-sarcoma[J].Clin Cancer Res,1999,5(3): 621-627.

    [9]Pati?o-García A,Zalacaín M,Marrodán L,et al.Methotrexate in pediatric osteosarcoma:response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression[J].J Pediatr,2009,154(5):688-693.

    [10]Ifergan I,Meller I,Issakov J,et al.Reduced folate carrier protein expression in osteosarcoma:implications for the prediction of tumor chemosensitivity[J].Cancer,2003,98(9):1958-1966.

    [11]Flintoff WF,Sadlish H,Gorlick R,et al.Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas[J].Biochim BiophysActa,2004,1690(2):110-117.

    [12]Serra M,Reverter-Branchat G,Maurici D,et al.Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells[J].Ann Oncol,2004, 15(1):151-160.

    [13]Trippett T,Meyers P,Gorlick R,et al.High dose trimetrexate with leucovorin protection in recurrent childhood malig-nancies:a phaseⅡtrial[J].J Clin Oncol(ASCO Annual Meeting Abstracts),1999, 9:889.

    [14]Weinstein RS,Kuszak JR,Kluskens LF,et al.P-glycoproteins in pathology:the multidrug resistance gene family in humans[J].Hum Pathol,1990,21(1):34-48.

    [15]Safa AR,Stern RK,Choi K,et al.Molecular basis of prefer-ential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185→Val-185 substitution in P-glycoprotein[J].ProcNatlAcad Sci USA,1990,87(18):7225-7229.

    [16]Bramwell VH.Osteosarcomas and other cancers of bone[J].Curr Opin Oncol,2000,12(4):330-336.

    [17]Park YB,Kim HS,Oh JH,et al.The co-expression of p53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma[J].Int Orthop,2001,24(6):307-310.

    [18]Gomes CM,van Paassen H,Romeo S,et al.Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines:mRNA analysis and functional radiotracer studies[J].Nucl Med Biol, 2006,33(7):831-840.

    [19]Serra M,Pasello M,Manara MC,et al.May P-glycoprotein status be used to stratify high-grade osteosarcoma patients?Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol[J]. Int J Oncol,2006,29(6):1459-1468.

    [20]Baldini N,Scotlandi K,Serra M,et al.P-glycoprotein expression in osteosarcoma:a basis for risk-adapted adjuvant chemotherapy[J].J Orthop Res,1999,17(5):629-632.

    [21]Kusuzaki K,Hirata M,Takeshita H,et al.Relationship between P-glycoprotein positivity,doxorubicin binding ability and histologic response to chemotherapy in osteosarcomas[J].Cancer Lett,1999, 138(1-2):203-208.

    [22]Trammell RA,Johnson CB,Barker JR,et al.Multidrug resistance-1 gene expression does not increase during tumor progression in the MGH-OGS murine osteosarcoma tumor model[J].J Orthop Res, 2000,18(3):449-455.

    [23]Wunder JS,Bull SB,Aneliunas V,et al.MDR1 gene expression and outcome in osteosarcoma:a prospective,multicenter study[J].J Clin Oncol,2000,18(14):2685-2694.

    [24]Pakos EE,Ioannidis JP.The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma.Ameta-analysis[J].Cancer,2003,98(3):581-589.

    [25]Sorensen FB,Jensen K,Vaeth M,et al.Immunohistochemical estimates of angiogenesis,proliferative activity,p53 expression,and multiple drug resistance have no prognostic impact in osteosarcoma:A comparative clinicopathological investigation[J].Sarcoma, 2008,2008:874075.

    [26]Takeshita H,Kusuzaki K,Murata H,et al.Osteoblastic differ-entiation and P-glycoprotein multidrug resistance in a murine osteosarcoma model[J].Br J Cancer,2000,82(7):1327-1331.

    [27]Susa M,Iyer AK,Ryu K,et al.Inhibition of ABCB1(MDR1)expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma[J].PLoS One,2010,5(5):e10764.

    [28]Susa M,Iyer AK,Ryu K,et al.Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma[J].BMC Cancer,2009,9:399.

    [29]Kobayashi E,Iyer AK,Hornicek FJ,et al.Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer:a pilot study[J].Clin Orthop Relat Res,2013,471(3):915-925.

    [30]Townsend DM,Tew KD.The role of glutathione-S-transferase in anti-cancer drug resistance[J].Oncogene,2003,22(47):7369-7375.

    [31]Tew KD.Glutathione-associated enzymes in anticancer drug resistance[J].Cancer Res,1994,54(16):4313-4320.

    [32]Shoieb A,Hahn K.Detection and significance of gluta-thione-S-transferase pi in osteogenic tumors of dogs[J].Int J Oncol, 1997,10(3):635-639.

    [33]Uozaki H,Horiuchi H,Ishida T,et al.Overexpression of resistance-related proteins(metallothioneins,glutathione-S-transferase pi,heat shock protein 27,and lung resistance-related protein)in osteosarcoma.Relationship with poor prognosis[J].Cancer,1997,79 (12):2336-2344.

    [34]Wei L,Song XR,Wang XW,et al.Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance[J].Zhonghua Zhong Liu Za Zhi,2006,28 (6):445-448.

    [35]Bruheim S,Bruland OS,Breistol K,et al.Human osteosarcoma xenografts and their sensitivity to chemotherapy[J].Pathol Oncol Res,2004,10(3):133-141.

    [36]Windsor RE,Strauss SJ,Kallis C,et al.Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma:a pilot study[J].Cancer,2012,118(7):1856-1867.

    [37]Zhang SL,Mao NF,Sun JY,et al.Predictive potential of glutathione S-transferase polymorphisms for prognosis of osteosarcoma patients on chemotherapy[J].Asian Pac J Cancer Prev,2012,13(6): 2705-2709.

    [38]Yang LM,Li XH and Bao CF.Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors[J].Asian Pac J Cancer Prev,2012,13(11): 5883-5886.

    [39]Pasello M,Michelacci F,Scionti I,et al.Overcoming glutathione S-transferase P1-related cisplatin resistance in osteo-sarcoma[J]. Cancer Res,2008,68(16):6661-6668.

    [40]Pasello M,Manara MC,Michelacci F,et al.Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas:a promising therapeutic strategy[J].Anal Cell Pathol(Amst),2011,34(3):131-145.

    [41]Sau A,Filomeni G,Pezzola S,et al.Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and-resistant human osteosarcoma cell lines[J].Mol Biosyst,2012,8(4): 994-1006.

    [42]Chou AJ,Merola PR,Wexler LH,et al.Treatment of osteosarcoma at first recurrence after contemporary therapy:the Memorial Sloan-Kettering Cancer Center experience[J].Cancer,2005,104 (10):2214-2221.

    [43]Alberts DS,Muggia FM,Carmichael J,et al.Efficacy and safety of liposomal anthracyclines in phaseⅠ/Ⅱclinical trials[J].Semin Oncol 31,2004,(Suppl 13):S53-S90.

    Molecular mechanisms of osteosarcoma inhibiting chemotherapeutical efficacy directly.

    FU Ce-gang,ZHAO Hong-wei,LIU Yang,CHEN Hai-dan.Department of Spinal Surgery,the First College of Clinical Medical Sciences, China Three Gorges University,Yichang 443000,Hubei,CHINA

    Osteosarcoma(OS)is the most common malignant primary bone tumor in children and adolescents.Currently,the combination of surgical resection and chemotherapy is the chief method for treating OS.OS resistance to the anti-OS drugs plays an important role in decreasing the chemotherapeutical efficacy.Therefore,elucidation of the mechanisms of chemoresistance and implementation of strategies to overcome chemoresistance will definitely play a pivotal role in developing novel chemotherapeutics and improving the survival rate of OS patients.There are two major mechanisms contribute to drug resistance of OS:osteosarcoma inhibiting chemotherapeutical efficacy directly and improving the cell ability to resistance chemotherapeutics.This article reviewed three methods of osteosarcoma inhibiting chemotherapeutical efficacy directly:inhibiting chemotherapeutics transport into cell,removal of chemotherapeutics from tumor cells and promoting chemotherapeutics inactivation.

    Osteosarcoma;Chemoresistance;Molecular mechanisms

    R738.1

    A

    1003—6350(2015)01—0070—04

    10.3969/j.issn.1003-6350.2015.01.0022

    2014-08-06)

    國家自然科學基金(編號:81302346)

    陳海丹。E-mail:wenquanchd@sina.com

    猜你喜歡
    耐藥性生存率耐藥
    如何判斷靶向治療耐藥
    miR-181a在卵巢癌細胞中對順鉑的耐藥作用
    長絲鱸潰爛癥病原分離鑒定和耐藥性分析
    “五年生存率”不等于只能活五年
    人工智能助力卵巢癌生存率預測
    嬰幼兒感染中的耐藥菌分布及耐藥性分析
    WHO:HIV耐藥性危機升級,普及耐藥性檢測意義重大
    “五年生存率”≠只能活五年
    HER2 表達強度對三陰性乳腺癌無病生存率的影響
    癌癥進展(2016年12期)2016-03-20 13:16:14
    PDCA循環(huán)法在多重耐藥菌感染監(jiān)控中的應用
    栾川县| 达尔| 兰坪| 明星| 德令哈市| 仪征市| 中山市| 台山市| 通城县| 闽侯县| 华阴市| 新昌县| 大竹县| 大庆市| 梅州市| 罗源县| 镇远县| 西藏| 屯留县| 金乡县| 门头沟区| 滁州市| 洪雅县| 达州市| 乌什县| 神木县| 黄梅县| 余姚市| 连城县| 育儿| 磴口县| 成都市| 潢川县| 沐川县| 蓝山县| 赤水市| 称多县| 齐齐哈尔市| 舒兰市| 广河县| 岳阳市|