• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigations of a tandem stator stage for a small turbo-shaft engine

    2015-04-10 11:53:55WeiWeiLiuBo
    關(guān)鍵詞:渦軸靜子高負(fù)荷

    Wei Wei,Liu Bo

    (1.High Speed Aerodynamics Institute of China Aerodynamics Research&Development Center,Mianyang 622661,China;

    2.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China)

    Numerical investigations of a tandem stator stage for a small turbo-shaft engine

    Wei Wei1,*,Liu Bo2

    (1.High Speed Aerodynamics Institute of China Aerodynamics Research&Development Center,Mianyang 622661,China;

    2.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China)

    The highly loaded small compressor is typically characterized by the large adverse pressure gradient,the complex endwall flow and the thick boundary layer,and the layout of the tandem blade is a good way to deal with high loading case according to large amounts of cascade experiments.However,dated design methods can’t meet the needs for the advanced tandem stator and the flow mechanism should to be understood profoundly in small engines.As a result,a redesigned tandem stator is simulated in a highly loaded transonic small compressor with the commercial solver EURANUS.Incidences,deviations and loading splits of tandem blades are inspected to find the three dimensional characteristics.Contrasts are made to capture the flow field benefits between the tandem stator and the original stator.It is found that both the front blade’s deviations and the rear blade’s incidences are not sensitive to the incidence variations,and the front blade undertakes the whole incidence variations nearly.It’s beneficial to distribute the loading uniformly for highly loading stators at the design point in the manner of tandem layout.

    tandem stator;tandem cascade;large flow turning;loading split;turbo-shaft engine

    0 Introduction

    The need for higher power-to-weight gas turbine engines has driven compression systems toward higher pressure ratio,higher efficiency,and less weight by reducing the count of stages and increasing the bladeloading.With the loading increasing,the flow leads to the supersonic or transonic flow in the front stage of compressors,and it will burden the design difficulties of the stators.As for small compressors,the trend weights heavily on the influence of tolerances,clearances,and endwall boundary layers.Some direct difficulties are that the stator has to achieve larger flow turning in smaller passages.

    These problems have brought a renewed interest in tandem airfoils where a new boundary layer forms on the rear blade,allowing for great overall loading without large flow separations[1].It originates from the flaps and slats on aircraft to improve lift during taking off and landing.In turbomachinery,tandem airfoils are frequently used as the stator of the final stage such as GE M9001E gas turbine engines[2]and J-79 core compressors[3].Early investigations of tandem configurations are mainly focused on the tandem parameters in the manner of linear cascades,such as the Railly’s lowspeed wind tunnel tests[4]by altering the axial overlap (AO),percent pitch(PP),and stagger angles,and Wu’s moderate speed wind tunnel tests[5]with 24 combinations of tandem parameters.With the aid of NASA,tandem airfoils have been used to design rotors and stators to inspect the potential in compressors and turbines[6-8].Roy and Saha[9-10]use the controlled diffusion airfoils to compare the tandem airfoils with the single airfoil in low-speed tunnel tests.In recent years,M.Hoeger,L.Müller,Li[11-13]had explored the characteristics of the high-turning tandem stator with supercritical(Ma= 0.89)and supersonic(Ma=1.25)inlet Mach numbers for highly loaded fans.Owing to the development of optimization methods[14-15],the optimal tandem cascades could be acquired in numerical optimization ways just considering aerodynamics.

    Large amounts of linear tandem cascade experiments show that the tandem airfoil is an effective way to achieve high pressure ratio and hold the low total pressure loss,which is crucial to the development of advanced gas turbine engine.But few studies,from the literature review,are focused on the applications within transonic stages especially for the small engines.Furthermore,the current design methods of tandem blades are still on the basis of rules and experience that are summarized from various linear cascade experiments and 2D numerical results.It is often to be that the middle span of blades works well,while the two endwall regions are worse.Within the small transonic stage,the large adverse pressure gradient,the more complex endwall flow and the thicker boundary layer will make the problem more serious.It is the issue that motivates the flow characteristic investigations of the tandem stator in a highly loaded small turbo-shaft engine.

    Fig.1 Geometry illustration of tandem airfoilr圖1 串列葉型幾何示意圖

    1 Tandem stator blading

    The basic tandem geometry and parameters are depicted in Fig.1.The airfoil geometry can be determined by the parameters of axial overlap(AO),pitch percent (PP)and chord ratio LRA/LFAbetween the front airfoil and the rear airfoil.Different parameters such as the camber ratio(CR),the front airfoil chord etc.can be used to insure the LX,and the CR and stagger angles are used to determine the blade loading split.All tandem configurations have equal chord ratio.

    The single airfoils are generated by the camber line and thickness distribution.The camber line is a double arc with the maximum camber point adjusting,so does the maximum thickness point of thickness profiles adjusting with standard cubic polynomial thickness distributions[16].Leading and trailing edges of each airfoil are refined by a circular arc which connects the suction side and pressure side based on the C2 continuity.In this way,the single blade airfoil can be determined and the tandem airfoil can be get by matching the front and rear airfoils reasonably.

    The object of the study is a small axial flow transonic compressor extracted from a turbo-shaft engine with a high design total pressure ratio 1.9.Due to the high percent work of shock in rotor tip region,too large exit flow angles of rotor tip profiles make the original stator difficult to fulfill the flow turning angles.Table 1 lists the stator geometrical parameters between the original stator and the tandem stator.Different tandem parametersare be specified for the varying flow conditions across the span such as pitch percent and camber ratio.But the axial overlap is fixed at 0.0 according to the abundant cascade experiments.The final camber ratio and percent pitch distributions are demonstrated in Fig.2 radially.

    Table 1 Stator geometrical parameters表1 靜子幾何參數(shù)

    Fig.2 Distributions of PP and CR圖2 周向偏距和彎度比徑向分布

    2 Numerical methods

    The Numeca software package is employed to simulate the steady flow of the compressor.Struts,which are behind the stator,are included in the grid model the same as the original turbo-shaft compressor and the detailed analysis is based on the front single stage.

    2.1 Grid generation

    The grid topologies are generated by IGG/Autogrid.The O4H type grid is adopted to generate the each row.Three levels of grid nodes are chosen to evaluate the effects of grid amount,i.e.0.44,0.55 and 0.65 million for the original stator(case 1-3)and 0.58,0.79,and 0.96 million grid nodes(case 4-6)are for the new tandem stator respectively.The specific grid nodes are shown in Table 2 in details.The distance between the first cell and the solid wall is set 2e-6 meters to meet the y+needs for the Spalart-Allmaras turbulence model[17].Tip clearances of rotor and stator are about 0.5%and 1%average span height respectively.The butterfly grid type with 17 spanwise nodes is employed to generate the spacing mesh.Fig.3 displays the three dimensional(3D)computational grid including the two types of the stator.

    Fig.3 3D computational grids of compressors圖3 壓氣機(jī)三維網(wǎng)格圖

    Table 2 Grid nodes for the validations表2 校驗(yàn)網(wǎng)格分布

    2.2 Numerical methods and grid validation

    The commercial flow solver EURANUS of Numeca software package is adopted to simulate the 3D viscous flow of the single stage compressor.The central difference scheme is employed to discrete the Reynolds averaged Navier-Stokes(N-S)equation in space,and the four orders explicit Runge-Kutta integration scheme is used for the temporal discretization.The Saplart-Allmaras turbulence model is adopted to compute the flow field.The conservative coupling by pitch-wise row model[18]is employed to provide the conservation of mass flow,momentum and energy through the rotor-stator interface.To accelerate the convergence,full multigrid technique,local time stepping and implicit residual smoothing are employed.

    Fig.4 reveals the outlet total pressure ratio distributions with six grid cases as the Table 2 presented.It can be found that the main difference of three profiles focuses on the region near the hub.The amplified picturetakes one more step to reveal the effects of grid nodes.No matter for the original compressor or the new redesign,the differences between case 2 and case 3 or the case 5 and case 6 are not too large,and the differences of the adiabatic efficiency are within the range of 0.01%.In view of the validating results and the 3D calculated amount,the grid nodes of case 2 and 5 are chosen for the 3D steady flow computation for the original and redesigned compressors.

    Fig.4 Total pressure ratio distributions after struts圖4 支板后總壓比徑向分布

    3 Results and discussions

    3.1 Overall performance

    The Fig.5 has shown the operating maps of the two single stage compressors at 100%design speed.The design point of the redesigned compressor is determined by the same exit static pressure as the original compressor.It can be seen in Fig.5 that the tandem stator improves the overall performance of the compressor no matter the operating lines or the operating range.The mass flow of the redesigned compressor increases a little by 0.9 percent on the choke conditions.The blockage of these conditions decreases and the temperature rise goes down leading to the isentropic efficiency up obviously.At the design point,the stage isentropic efficiency is about 86%which is nearly 3.5 percent higher than the original stage corresponding to a work coefficient of 0.528.Too large improvement makes us doubt whether or not there is large flow loss in the original stator.On the offdesign conditions close to the surge point,the redesigned compressor keeps good trends of high efficiency and pressure ratio,although the highest efficiency point moves forward.According to the stall margin(SM) equations(1),this margin is also two percents higher than the original.Obviously,the tandem stator shows its potential of higher pressure rise and lower loss in the small compressor.The more detailed understanding of it is in great need of revealing the flow field on all conditions.

    Fig.5 Performance curves of two stages圖5 原型級(jí)與改型級(jí)性能曲線

    3.2 Various conditions analysis of tandem stator

    As depicted in Fig.5,four conditions are focused on the analysis with signs“A”,“B”,“C”,“D”which represent the near stall condition,the near highest efficiency condition,the design condition and the choke condition respectively.Incidences,deviation angles and tangential loading splits are adopted to get the knowledge of the fluid mechanism.The mass-averaged inlet or exit angles are based on the surface data where locations are 5%chord of each blade away from leading or trailing edges in axial chord.

    Fig.6 and Fig.7 demonstrate the incidence angles and deviation angles of front blade across the span.On the design point C,the tandem stator is designed

    The same as the original stator with a little negative incidences across the span for the need of enough stability margin.With the conditions close to surge,the incidence profiles change a lot and the range reaches up to 25°at most.Too large incidences will burden the blade loading and induce the boundary layer separation.Especially for the hub on condition A,the severer clearance flow will induced the inlet flow to change the direction and make the incidence more positive.But the limited clearance size determines its influence scope of height.Even the other span is close to its loading limit,there is no stall occurring.Of note are the deviation angles below 0 in Fig.7 on condition A.It is the case that this section,where the flow field data is mass-averaged,just locating in the zone of separation edge.

    Fig.6 Front blade incidence angles圖6 前葉迎角徑向分布

    Fig.7 Front blade deviation angles圖7 前葉落后角徑向分布

    In contrast with Fig.6,large incidence variations have a little effect on the deviation angles except for the stall condition.On one hand,the insensitivity of deviation angles near 0°reveals the local fluid field is in relative steady condition with low loss.On the other hand,too large incidences break this relative steady condition and result in flow instability on the front blade near the stall condition.

    Fig.8 and Fig.9 represent the rear blade spanwise distributions of incidences and deviations.It can be seen in Fig.8 that the different inlet conditions have a small effect on the incidences of rear blade across the whole span.In contrast with Fig.6,it is not difficult to found that the front blade captured the nearly whole incidence variations.It is the pressure side geometry constraint of front blade that controls the inlet flow direction of rear blade in the absence of large separations.The gap,between the front blade and the rear one,accelerates the internal flow and prevents the passage low energy flow from moving to the rear blade suction side to avoid whole passage blockage.Seen in Fig.9,deviation profiles are in normal range below 80%span on conditions A,B and C.However,a deep“bucket”of the deviation profiles is encountered near the casing on all conditions.Obviously,it is a sign of separations.The main reason is that too large blade camber makes the tip blade section fulfill the overburdened flow turning hardly.The small separation of partial span near tip,the two blades’wakes diffusion and mixing are the main causes of deviation inconformity across span.

    Fig.8 Rear blade incidence angles圖8 后葉攻角徑向分布

    Fig.9 Rear blade deviation angles圖9 后葉落后角徑向分布

    Fig.10 illustrates the loading split(LS)of front blade to rear one on five sections.The loading split is defined by the ratio of tangential forces based on static pressure which provides a measure of“work-split”.

    From choke to stall,the loading splits and incidences of the tandem blade are increasing.Too fore(LS>1.0)or aft loading(LS<1.0)will make the design point close to stall or choke like condition A or D.On condition C,a 50/50 split is designed according to the best split in 2D tests[5,11,and13].The CR values are revised near the tip due to the effects of endwall boundary layer.Obviously,The CR profile in Fig.3 differs from the empirical 2D rule especially in the tip region,that a uniform split can be achieved with a CR value near 2.0 on the design point.The bulge of split profiles is a good example for the overburdened fore loading on condition A below 50%,which is an indirect reason for the upcomingstall shown in Fig.7.In other words,the front blade determines the whole stall margin to some extent.Furthermore,loading split is more sensitive to the condition variations among the low span than the tip region.The main causes should owe to the high upstream Ma from 0.96 to 0.83 on 5%span and the larger incidence range shown in Fig.6 from condition C to condition A.A more uniform loading design near the endwalls is in great need of the understanding of flow mechanism in details.

    Fig.10 loading split distributions圖10 載荷分配比徑向分布

    3.3 Performance of design point

    This part provides insight into the flow field of tandem stator in contrast with the original single stator on design point.Fig.11 displays the surface isentropic Mach number distributions of three typical sections.The isentropic Ma is inversely proportional to static pressure,so the envelope area can reveals the blade loading.As shown in Fig.11,the static pressure rise of the tandem blade is higher than the original stator because of the lower exit Ma without flow separation.

    At 5%span,the main improvement locates in the leading edge region where two sharp Ma peaks are on both sides over 1.0 in the original case.The tandem blade eliminates the passage weak shock and decreases the leading edge blockage by the absence of the Ma peak on pressure side.The flow field is compared in the manner of absolute Ma in Fig.12.

    Fig.11 Blade surface isentropic Mach number at design point圖11 設(shè)計(jì)點(diǎn)葉片表面等熵馬赫數(shù)分布

    Fig.12 Absolute Ma contours of two stators at 5%span圖12 靜子5%葉展絕對(duì)馬赫數(shù)云圖

    In general,the loading profiles with slant trends on the rear half of suction side indicate the increase of suction capacity,while flat distribution near the trailing edge shows signs of impending separation and stall.Obviously,there is not enough loading margin for the rear blade,and it is in good agreement with previous discussion that the stall will start firstly near the hub.

    At 50%and 95%span,the tandem blade eliminates the 70% and 40% separations of the original blade respectively.Both the blade loading and the exit static pressure rise are increased.On one hand,the separation of the middle span is the expansion of the tip region shown in Fig.13,and the tandem blade controlsthe separation source and improves the whole flow field of the stator.On the other hand,the convergent gap,between front blade and rear blade,makes the subsonic flow accelerate in it fully to form a local positive pressure gradient.It will protect the flow from separating on remaining suction side.In addition,it is also beneficial for the newly developing boundary layer according to the boundary layer theory[19].In the view of loading distributions,it’s beneficial for blades with a relative uniform profiles among the axial chord.Amounts of past 2D studies,which focus on the relative position AO and PP,are in fact mainly owed to the discussion of gap effects.In 3D flow,the gap geometry also will be a focus in the future numerical optimization.

    Fig.13 Absolute Ma contours of two stators on S1,S3 surfaces圖13 靜子S1、S3面絕對(duì)馬赫數(shù)云圖

    The absolute Mach number contours are shown in Fig.13 locating in the position 5% chord away from blade trailing edges.Additional attention is paid to dashed curves near casing where the flow field are displayed by blade-to-blade Ma contours with large inlet flow angles nearly-60°.It can be seen that the tandem stator reduces the low speed fluid remarkably.The separating vortex is eliminated and the leakage flow is suppressed to some extent.Due to the separation disappearing,large amount of high entropy flow mixing with the wake is also stopped from diffusing into the passage.In the picture of bottom right corner,gap flow mixes with the front blade wake and suppresses the development all the time until nearly 50%axial chord where it starts to diffuse clearly.But the front blade wake has little effect on the flow field radially shown in the left picture.

    The Mass-averaged flow turning Δβ is calculated on the basis of stator’s inlet and outlet spanwise data displayed in Fig.14.Combined with previous analysis,it’s not difficult to find that the Δβ benefits come from the separation disappearing.While,the profiles are nearly same blow 40%span.Therefore,it can be concluded that it’s the high loading capacity of tandem blades that can stop or delay the separation to achieve flow turning benefits.At a moderate loading level such as the region below 40%span,the tandem blade doesn’t show the capacity of larger flow turning.

    Fig.14 Flow turnings of two stators across the span圖14 串列靜子與原靜子氣流轉(zhuǎn)角沿葉展分布

    4 Conclusions

    A geometrical redesign is performed on a high turning single stator with tandem blades in the front stage of a small turbo-shaft compressor.Numerical flow characteristic investigations of the tandem stator have been conducted on different conditions and compared to the original stator at the design point.The main conclusions are summarized as follows.

    (1)The front blade undertakes the nearly whole incidence variations,and both the deviation angles of the front blade and the incidence angles of the rear blade are not sensitive to the incidence variations.However,it is just the condition that the front blade starts to stall firstly near hub due to the too large loading with high inlet Mach number.

    (2)The tandem stator eliminates the original large separations especially for the tip region with more uniform loading distributions.It should be careful of the design of high loading blades with fore loading due to the sharp adverse pressure increasing.The effects of the gap can robust the development of the rear blade’s boundary layer and contribute to the flow field improvement.

    (3)The benefits of tandem blades,like flow turnings,will be profound at high loading levels such as the high span region in this paper.It can be concluded that there is a loading critical point where the tandem blade starts to show its advantage with low loss and the wide operating range.

    References:

    [1] McGlumphy J.Numerical investigation of subsonic axial-flow tandem airfoils for a core compressor rotor[D].Virginia polytechnic institute and state university,2008.

    [2] Cyrus V,Rehak K,Polansky J.Unsteady flow in the last stator rows of axial compressor of gas turbine working in coal gasification combined cycle[C]//ASME Turbo Expo 2006,Barcelona,ASME GT2006-90202,2006.

    [3] Gostelow J P.Cascade aerodynamics[M].Oxford:Pergamon Press,1984:196-199.

    [4] Railly J W,EI-Sarha M F.An investigation of the flow through tandem cascades[J].Proceedings of the Institution of Mechanical Engineers,1965,180(10):66-73.

    [5] Guochuan W,Biaonan Z,Bingheng G.Experimental investigation of tandem blade cascades with double circle arc profiles[J].International Journal of Turbo and Jet Engines,1988,5:163-170.

    [6] Brent J A,Cheatham J G,Nilsen A W.Single-stage experimental evaluation of tandem airfoil rotor and stator blading for compressors,Part I analysis and design of stages A,B and C[R].NASA CR-120803,1972.

    [7] Wood J R,Owen A K,Schumann L F.Performance of a tandem rotor/tandem stator conical flow compressor designed for a pressure ratio of 3.0[R].NASA TP-2034,1982.

    [8] Bettner J L.Experimental investigation in an annular cascade sector of highly loaded turbine stator blading,VolumeⅢ.Performance of tandem blade[R].NASA CR-1341,1969.

    [9] Roy B,Saha U K.High diffusion cascades for axial flow compressor applications[C]//Proceedings of 15th Canadian Congress of Applied Mechanics,Victoria:University of Victoria,1995:356-363.

    [10]Saha U K,Roy B.Compressor cascade performance at low speeds[J].Experimental Thermal and Fluid Science,1997,14:263-276.

    [11]Hoeger M,Baier R D.High turning compressor tandem cascade for high subsonic flow,part 1:aerodynamic design[C]//Joint Propulsion conference&Exhibit,San Diego:AIAA 2011-5611.

    [13]Qiushi L,Hong W,Sheng Z.Application of tandem cascade to design of fan stator with supersonic inflow[J].Chinese Journal of Aeronautics,2010,23:9-14.

    [14]Ju Y,Chinua Z.Multi-objective optimization design method for tandem compressor cascade at design and off design conditions[C]// ASME Turbo Expo 2010,Glasgow,ASME GT2010-22655,2010.

    [15] Xiaojia L,F(xiàn)angfei N.Numerical optimization of aerodynamics of some 3D tandem stators[J].Journal of Aerospace Power,2010,25 (3):577-581.

    [16]Forst G R,Hearsey R M,Wennerstrom A J.A computer program for the specification of axial compressor airfoils[R].Ohio:Aerospace Research Laboratories,Wright-Patterson AFB,ARL72-0171,AD756879,1972.

    [17]Spalart P R,Allmaras S R.A one-equation turbulence model for aerodynamic flows[C]//30thAerospace Science Meeting&Exhibit,Reno,AIAA-92-0439,1992.

    [18]NUMECA.User mannual fine turbo release 8.9[M].Belgium: NUMECA.inc.2011:112-118.

    [19] Smith A M O.High-lift aerodynamics[J].Journal of Aircraft.1975,12(6):501-530.

    V235.1

    Adoi:10.7638/kqdlxxb-2013.0105

    0258-1825(2015)04-0493-08

    小型渦軸發(fā)動(dòng)機(jī)串列靜子數(shù)值研究

    魏 巍1,*,劉 波2
    (1.中國(guó)空氣動(dòng)力研究與發(fā)展中心高速空氣動(dòng)力研究所,四川綿陽(yáng) 622661; 2.西北工業(yè)大學(xué)動(dòng)力與能源學(xué)院,陜西西安 710072)

    高逆壓梯度、復(fù)雜端壁流動(dòng)及厚邊界層是高負(fù)荷小型壓氣機(jī)的典型特征,大量葉柵試驗(yàn)表明采用葉片串列的布局形式可以很好地解決葉片高負(fù)荷的問題。但過時(shí)的設(shè)計(jì)方法不再能滿足高負(fù)荷串列靜子的設(shè)計(jì)需求,小型發(fā)動(dòng)機(jī)中串列葉片的流動(dòng)機(jī)制需要進(jìn)一步研究。本文采用EURANUS對(duì)一高負(fù)荷跨聲速小型壓氣機(jī)進(jìn)行了數(shù)值模擬,對(duì)原始靜子進(jìn)行了改型設(shè)計(jì)。分析串列靜子的迎角、落后角、載荷分配比來發(fā)現(xiàn)流動(dòng)的三維特征,對(duì)比流場(chǎng)來甄別串列靜子的性能收益。發(fā)現(xiàn)前葉的落后角和后葉的氣流迎角對(duì)靜子來流的迎角變化并不敏感,前葉承擔(dān)了幾乎全部來流迎角變化所引起的負(fù)荷變化;設(shè)計(jì)點(diǎn)時(shí)以串列的方式更為均勻地分配前后葉的載荷,對(duì)級(jí)整體性能的提升有益。

    串列靜子;串列葉柵;大氣流轉(zhuǎn)角;載荷分配比;渦軸發(fā)動(dòng)機(jī)

    2013-11-04;

    2014-03-28

    魏巍*(1987-),男,重慶萬州人,碩士,助理工程師,主要研究方向:葉輪機(jī)械氣體動(dòng)力學(xué).E-mail:nwtu@163.com

    魏巍,劉波.小型渦軸發(fā)動(dòng)機(jī)串列靜子數(shù)值研究(英文)[J].空氣動(dòng)力學(xué)學(xué)報(bào),2015,33(4):493-500.

    10.7638/kqdlxxb-2013.0105. Wei W,Liu B.Numerical investigations of a tandem stator stage for a small turbo-shaft engine[J].Acta Aerodynamica Sinica,2015,33(4):493-500.

    猜你喜歡
    渦軸靜子高負(fù)荷
    軍用渦軸發(fā)動(dòng)機(jī)材料技術(shù)及發(fā)展趨勢(shì)
    基于視情維修的渦軸發(fā)動(dòng)機(jī)維修保障輔助決策體系研究
    面向感知的短時(shí)高負(fù)荷定位研究與應(yīng)用
    江蘇通信(2020年5期)2020-11-13 15:22:06
    基于感知高負(fù)荷小區(qū)的快速響應(yīng)策略研究
    壓氣機(jī)緊湊S形過渡段內(nèi)周向彎靜子性能數(shù)值計(jì)算
    何必喧囂慰寂寥
    堅(jiān)持了十年的書信
    山鄉(xiāng)一瞥
    高負(fù)荷小流量渦輪氣動(dòng)性能分析
    基于飛參信息的某型渦軸發(fā)動(dòng)機(jī)性能退化研究
    99久久精品热视频| 嫩草影视91久久| ponron亚洲| 深夜精品福利| 两性夫妻黄色片| 精品久久久久久成人av| 日韩精品中文字幕看吧| 天天躁狠狠躁夜夜躁狠狠躁| 九九热线精品视视频播放| a级毛片在线看网站| 婷婷丁香在线五月| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| 1024香蕉在线观看| 制服诱惑二区| 99热这里只有是精品50| 三级国产精品欧美在线观看 | 欧美黄色片欧美黄色片| 成年人黄色毛片网站| 国产人伦9x9x在线观看| 婷婷精品国产亚洲av| 啦啦啦免费观看视频1| a级毛片a级免费在线| 最近在线观看免费完整版| 久久热在线av| 我的老师免费观看完整版| 久久中文看片网| 一个人观看的视频www高清免费观看 | 黄片大片在线免费观看| 国产探花在线观看一区二区| 两个人的视频大全免费| 国产黄a三级三级三级人| 91国产中文字幕| 精品久久久久久久久久久久久| 久久久久国产精品人妻aⅴ院| 亚洲乱码一区二区免费版| 久久久久久大精品| 无人区码免费观看不卡| 午夜日韩欧美国产| 亚洲美女黄片视频| 两个人视频免费观看高清| 最新在线观看一区二区三区| 日本熟妇午夜| 欧美黑人精品巨大| 日韩大码丰满熟妇| 看免费av毛片| 亚洲av成人不卡在线观看播放网| 国产精品av久久久久免费| 久久久久九九精品影院| 免费在线观看日本一区| 午夜福利在线在线| 黄频高清免费视频| 日本三级黄在线观看| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 精品久久久久久久末码| 黄色a级毛片大全视频| 亚洲熟女毛片儿| 国产精品久久久久久精品电影| 人成视频在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 国产精品久久久av美女十八| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 国产亚洲av高清不卡| 国产精品免费一区二区三区在线| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 国产精品影院久久| 国产成人精品久久二区二区91| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| 欧美在线黄色| 一本久久中文字幕| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 欧美一区二区国产精品久久精品 | 日韩中文字幕欧美一区二区| 久久香蕉国产精品| 免费看日本二区| 老司机深夜福利视频在线观看| 日韩欧美精品v在线| 日本a在线网址| 色av中文字幕| 在线观看www视频免费| 88av欧美| 免费在线观看成人毛片| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| 最近最新免费中文字幕在线| 午夜精品一区二区三区免费看| 午夜视频精品福利| 亚洲无线在线观看| 色综合欧美亚洲国产小说| 久久久久国产精品人妻aⅴ院| 欧美黑人精品巨大| 1024手机看黄色片| 观看免费一级毛片| 成人高潮视频无遮挡免费网站| 露出奶头的视频| 久久久精品欧美日韩精品| 女生性感内裤真人,穿戴方法视频| 51午夜福利影视在线观看| 亚洲国产欧美一区二区综合| 精品无人区乱码1区二区| 午夜激情福利司机影院| 国产精华一区二区三区| 欧美久久黑人一区二区| 国产成人精品久久二区二区免费| 又黄又粗又硬又大视频| 精品福利观看| 老熟妇乱子伦视频在线观看| 色在线成人网| 他把我摸到了高潮在线观看| 少妇裸体淫交视频免费看高清 | 欧美丝袜亚洲另类 | aaaaa片日本免费| 热99re8久久精品国产| 啦啦啦韩国在线观看视频| 黄色成人免费大全| ponron亚洲| 国产一区二区在线观看日韩 | 免费在线观看成人毛片| 亚洲人成网站高清观看| 男男h啪啪无遮挡| 精品电影一区二区在线| 久久香蕉国产精品| 久久久久九九精品影院| 免费在线观看成人毛片| 日韩大尺度精品在线看网址| 欧美激情久久久久久爽电影| www日本黄色视频网| 国产亚洲欧美在线一区二区| 国产av又大| 91大片在线观看| 亚洲国产欧美网| 99国产精品一区二区三区| 此物有八面人人有两片| 久久中文看片网| videosex国产| 九九热线精品视视频播放| 国产乱人伦免费视频| 日韩中文字幕欧美一区二区| www.999成人在线观看| 91成年电影在线观看| 亚洲五月天丁香| 国产真实乱freesex| 18禁裸乳无遮挡免费网站照片| 人妻夜夜爽99麻豆av| 人妻夜夜爽99麻豆av| 日韩欧美三级三区| 日日干狠狠操夜夜爽| 午夜免费激情av| 午夜精品久久久久久毛片777| 国产单亲对白刺激| 99国产精品99久久久久| 老司机靠b影院| 免费电影在线观看免费观看| 久久久久久久精品吃奶| 女人被狂操c到高潮| 欧美日本视频| 不卡一级毛片| 最近最新中文字幕大全免费视频| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免费看| 国产成人av教育| 亚洲最大成人中文| 欧美日韩中文字幕国产精品一区二区三区| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 欧美黑人巨大hd| 黄色丝袜av网址大全| 午夜福利高清视频| 99久久无色码亚洲精品果冻| 欧美高清成人免费视频www| 国产成人系列免费观看| 香蕉丝袜av| 中国美女看黄片| 国内揄拍国产精品人妻在线| 亚洲狠狠婷婷综合久久图片| 最近最新免费中文字幕在线| 久久久久性生活片| 国产精品 欧美亚洲| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 一二三四社区在线视频社区8| 十八禁人妻一区二区| 高清在线国产一区| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三| a在线观看视频网站| 国产久久久一区二区三区| 悠悠久久av| 亚洲欧美一区二区三区黑人| 淫妇啪啪啪对白视频| 在线观看www视频免费| 黄色视频不卡| 99热6这里只有精品| 欧美成狂野欧美在线观看| 桃红色精品国产亚洲av| 国产成年人精品一区二区| 国产一区二区三区在线臀色熟女| 精品日产1卡2卡| 女人被狂操c到高潮| 色综合婷婷激情| 我的老师免费观看完整版| 亚洲中文av在线| 国产av又大| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| netflix在线观看网站| 日韩欧美国产一区二区入口| 久久精品影院6| 国产精品美女特级片免费视频播放器 | 九九热线精品视视频播放| 亚洲欧美激情综合另类| 脱女人内裤的视频| 三级男女做爰猛烈吃奶摸视频| 精品乱码久久久久久99久播| 亚洲国产精品999在线| 少妇裸体淫交视频免费看高清 | 欧美日韩黄片免| 变态另类丝袜制服| 老司机午夜十八禁免费视频| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| cao死你这个sao货| 99久久精品国产亚洲精品| 国产99久久九九免费精品| 免费在线观看影片大全网站| 女生性感内裤真人,穿戴方法视频| 女警被强在线播放| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 欧美成人一区二区免费高清观看 | 特大巨黑吊av在线直播| 国内精品久久久久久久电影| 国产激情偷乱视频一区二区| 国产精品久久久久久久电影 | 一区二区三区国产精品乱码| 亚洲精品在线观看二区| 舔av片在线| 久久久久性生活片| 国产午夜精品论理片| 色在线成人网| 久久久久久久精品吃奶| 一本精品99久久精品77| 三级国产精品欧美在线观看 | 国产精品日韩av在线免费观看| 国产精品 欧美亚洲| 欧美日本亚洲视频在线播放| 亚洲欧美日韩高清专用| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 伦理电影免费视频| 草草在线视频免费看| 国产成人av教育| 亚洲中文字幕日韩| 一级片免费观看大全| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 国产激情久久老熟女| 男人舔奶头视频| 成人手机av| 午夜激情av网站| av在线天堂中文字幕| 亚洲欧美日韩高清在线视频| 成人三级黄色视频| 欧美成人一区二区免费高清观看 | 国产精品影院久久| 天堂动漫精品| 成人手机av| 久久久久久久久免费视频了| 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 国产av又大| 亚洲成av人片在线播放无| 国产精品久久久av美女十八| 中亚洲国语对白在线视频| 两个人看的免费小视频| 日本黄色视频三级网站网址| 午夜福利免费观看在线| 最新在线观看一区二区三区| 久久久久久人人人人人| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 日韩av在线大香蕉| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 国产在线精品亚洲第一网站| 国产免费av片在线观看野外av| 国产单亲对白刺激| 99国产极品粉嫩在线观看| 国产熟女午夜一区二区三区| 国产精品久久久久久久电影 | 听说在线观看完整版免费高清| 观看免费一级毛片| 丰满人妻一区二区三区视频av | 叶爱在线成人免费视频播放| 级片在线观看| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 国产激情欧美一区二区| 国内揄拍国产精品人妻在线| 在线看三级毛片| 又紧又爽又黄一区二区| 亚洲精品国产精品久久久不卡| 老司机福利观看| 妹子高潮喷水视频| 国产伦人伦偷精品视频| 国产在线精品亚洲第一网站| 日韩精品青青久久久久久| av视频在线观看入口| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 在线观看午夜福利视频| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片| 日本一区二区免费在线视频| 又黄又粗又硬又大视频| 91麻豆精品激情在线观看国产| 国产成人aa在线观看| www日本在线高清视频| 88av欧美| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 日韩欧美免费精品| 亚洲第一电影网av| 亚洲美女视频黄频| 国内久久婷婷六月综合欲色啪| 国产一区二区在线观看日韩 | 91av网站免费观看| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av| 国产乱人伦免费视频| 国产成人精品无人区| 在线观看舔阴道视频| 国产精品一区二区三区四区久久| 99久久综合精品五月天人人| 欧美另类亚洲清纯唯美| 欧洲精品卡2卡3卡4卡5卡区| 白带黄色成豆腐渣| 久久中文看片网| 欧美中文日本在线观看视频| 熟女电影av网| 国产精品精品国产色婷婷| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清| 日韩成人在线观看一区二区三区| 国产成人影院久久av| 亚洲国产欧美网| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 黄色 视频免费看| 制服诱惑二区| 精品电影一区二区在线| 在线看三级毛片| 亚洲精品在线观看二区| 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 日韩 欧美 亚洲 中文字幕| 欧美成人免费av一区二区三区| 国产精品久久久av美女十八| 亚洲男人的天堂狠狠| 国内揄拍国产精品人妻在线| 亚洲欧洲精品一区二区精品久久久| 丰满的人妻完整版| 91大片在线观看| 亚洲av美国av| 国产精品乱码一区二三区的特点| 国产精品永久免费网站| 国产爱豆传媒在线观看 | 欧美久久黑人一区二区| 美女大奶头视频| 精品欧美国产一区二区三| 91在线观看av| 亚洲男人天堂网一区| 欧美中文日本在线观看视频| 国产亚洲av高清不卡| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 日本五十路高清| 岛国在线免费视频观看| 国产成人av激情在线播放| 国产成人系列免费观看| 最近在线观看免费完整版| 午夜激情av网站| 丝袜美腿诱惑在线| 国产探花在线观看一区二区| 男女做爰动态图高潮gif福利片| 欧美色欧美亚洲另类二区| 久久久久久免费高清国产稀缺| 91国产中文字幕| 身体一侧抽搐| 国产精品美女特级片免费视频播放器 | 欧美一区二区精品小视频在线| 国产成人aa在线观看| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 国产蜜桃级精品一区二区三区| 国产aⅴ精品一区二区三区波| 国产精品免费一区二区三区在线| 久久久精品大字幕| 九九热线精品视视频播放| 久久久久免费精品人妻一区二区| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 老司机福利观看| 两个人免费观看高清视频| 伦理电影免费视频| 亚洲熟妇熟女久久| 一本综合久久免费| 啪啪无遮挡十八禁网站| 欧美三级亚洲精品| 国产精品美女特级片免费视频播放器 | 国产一区二区在线观看日韩 | 午夜精品在线福利| 999久久久国产精品视频| aaaaa片日本免费| 亚洲成人中文字幕在线播放| 天堂影院成人在线观看| 久久久水蜜桃国产精品网| 色综合婷婷激情| 欧美日韩乱码在线| 一级黄色大片毛片| 亚洲色图 男人天堂 中文字幕| 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| av国产免费在线观看| 亚洲欧美激情综合另类| 日日夜夜操网爽| 欧美乱码精品一区二区三区| 国产主播在线观看一区二区| 亚洲成a人片在线一区二区| 久久久久久九九精品二区国产 | 久久 成人 亚洲| 欧美一级a爱片免费观看看 | bbb黄色大片| 色哟哟哟哟哟哟| 又大又爽又粗| 日韩精品中文字幕看吧| 我要搜黄色片| 亚洲成av人片在线播放无| 久久久久久大精品| 成人国产综合亚洲| 亚洲色图 男人天堂 中文字幕| 此物有八面人人有两片| 美女扒开内裤让男人捅视频| 十八禁网站免费在线| 日韩欧美在线乱码| 亚洲黑人精品在线| 我的老师免费观看完整版| 日本撒尿小便嘘嘘汇集6| 国产不卡一卡二| 久久国产精品人妻蜜桃| 国产三级黄色录像| 757午夜福利合集在线观看| 十八禁人妻一区二区| 18禁观看日本| 可以免费在线观看a视频的电影网站| 国产免费av片在线观看野外av| 人妻丰满熟妇av一区二区三区| 成在线人永久免费视频| 白带黄色成豆腐渣| 一级作爱视频免费观看| 亚洲成人中文字幕在线播放| 两个人看的免费小视频| av在线天堂中文字幕| 国产黄片美女视频| 久久香蕉激情| www日本黄色视频网| 欧美久久黑人一区二区| av在线天堂中文字幕| 国产精品1区2区在线观看.| 1024手机看黄色片| 97人妻精品一区二区三区麻豆| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费观看网址| 久久久久久久久中文| 欧美在线一区亚洲| 成人av一区二区三区在线看| 久久久久国产一级毛片高清牌| 免费电影在线观看免费观看| 亚洲av成人一区二区三| 欧美黑人巨大hd| 99久久久亚洲精品蜜臀av| 狂野欧美激情性xxxx| 精品国产美女av久久久久小说| 亚洲av中文字字幕乱码综合| 色播亚洲综合网| 少妇粗大呻吟视频| 欧美极品一区二区三区四区| 亚洲精品美女久久av网站| 亚洲国产日韩欧美精品在线观看 | 51午夜福利影视在线观看| 亚洲熟女毛片儿| 很黄的视频免费| 两个人免费观看高清视频| 国产精品野战在线观看| 国产成人精品无人区| 我的老师免费观看完整版| 久久精品国产99精品国产亚洲性色| 免费电影在线观看免费观看| 久久精品国产综合久久久| 久久亚洲真实| 成人国产一区最新在线观看| 蜜桃久久精品国产亚洲av| 麻豆国产97在线/欧美 | 免费观看人在逋| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| 18禁国产床啪视频网站| 好看av亚洲va欧美ⅴa在| a在线观看视频网站| 99国产极品粉嫩在线观看| 国产av一区在线观看免费| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| 日韩成人在线观看一区二区三区| 国产一区二区在线观看日韩 | 不卡av一区二区三区| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 在线观看美女被高潮喷水网站 | 国产黄片美女视频| 天天添夜夜摸| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 国产精品香港三级国产av潘金莲| 久久 成人 亚洲| 一级片免费观看大全| www.自偷自拍.com| 正在播放国产对白刺激| 99国产综合亚洲精品| 亚洲国产高清在线一区二区三| 欧美3d第一页| www.999成人在线观看| 欧美日韩瑟瑟在线播放| 可以在线观看的亚洲视频| 欧美黑人精品巨大| 日韩欧美在线乱码| 午夜亚洲福利在线播放| 国产免费男女视频| 一进一出抽搐gif免费好疼| 性色av乱码一区二区三区2| 好看av亚洲va欧美ⅴa在| 国内毛片毛片毛片毛片毛片| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯| 亚洲色图av天堂| www.www免费av| 12—13女人毛片做爰片一| 午夜激情福利司机影院| 在线视频色国产色| 午夜成年电影在线免费观看| 亚洲成人国产一区在线观看| 窝窝影院91人妻| 亚洲av第一区精品v没综合| 麻豆成人av在线观看| 欧美黑人巨大hd| 国产视频一区二区在线看| 久久性视频一级片| 全区人妻精品视频| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 成人av在线播放网站| 午夜福利在线在线| 欧美一级毛片孕妇| 国产精品av视频在线免费观看| 两个人看的免费小视频| 亚洲中文av在线| 一本大道久久a久久精品| 一个人观看的视频www高清免费观看 | 99热这里只有精品一区 | 欧美日韩乱码在线| 一进一出抽搐gif免费好疼| 日本在线视频免费播放| 亚洲九九香蕉| 成人av一区二区三区在线看| 丰满人妻熟妇乱又伦精品不卡| 丝袜美腿诱惑在线| 12—13女人毛片做爰片一| www.熟女人妻精品国产| 一个人免费在线观看电影 | 淫秽高清视频在线观看| 亚洲国产高清在线一区二区三| 精品日产1卡2卡| 91成年电影在线观看| 欧美三级亚洲精品| 亚洲av电影不卡..在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲中文字幕一区二区三区有码在线看 | 精品第一国产精品| 大型av网站在线播放| 久久久久亚洲av毛片大全| 黄色a级毛片大全视频| 久久亚洲真实| 亚洲自拍偷在线| 一级毛片精品| a在线观看视频网站| 日韩 欧美 亚洲 中文字幕| 亚洲av片天天在线观看| 亚洲色图 男人天堂 中文字幕| 婷婷六月久久综合丁香| 亚洲成av人片在线播放无|