張建軍,張冰,巴毅,路紅濤,劉俊麗
(1河北大學(xué)附屬醫(yī)院,河北保定071000;2唐縣婦幼保健院;3里縣縣醫(yī)院)
鈣網(wǎng)蛋白是一種主要存在于細(xì)胞內(nèi)質(zhì)網(wǎng)(ER)中高度進(jìn)化保守的鈣結(jié)合蛋白,通過干預(yù)主要組織相容性抗原Ⅰ(MHC-Ⅰ)分子及裝配因子的加工折疊,影響抗原遞呈細(xì)胞毒性T淋巴細(xì)胞,促進(jìn)吞噬細(xì)胞對腫瘤細(xì)胞的攝取和吞噬,加速腫瘤細(xì)胞的凋亡[1,2]。機體殺死腫瘤細(xì)胞的關(guān)鍵環(huán)節(jié)是建立有效的抗腫瘤免疫反應(yīng),鈣網(wǎng)蛋白在抗腫瘤免疫中扮演重要角色。現(xiàn)就鈣網(wǎng)蛋白的抗腫瘤作用及機制進(jìn)行綜述。
1.1 腫瘤標(biāo)記物 腫瘤組織中鈣網(wǎng)蛋白突變及其裂解片段較正常組織增加,提示其可能成為一種新的腫瘤標(biāo)記物[3]。Yu等[4]研究發(fā)現(xiàn),米托蒽醌在產(chǎn)生強大的細(xì)胞毒性的同時可促進(jìn)鈣網(wǎng)蛋白在惡性黑色素瘤細(xì)胞表面表達(dá)。Lu等[5]報道,鈣網(wǎng)蛋白可作為泌尿系腫瘤的潛在生物學(xué)標(biāo)記物之一。Chi等[6]研究顯示,在骨髓組織增生性腫瘤中鈣網(wǎng)蛋白的突變率達(dá)70%,可能作為其診斷方法之一。Fu等[7]報道,鈣網(wǎng)蛋白突變在原發(fā)性血小板增多癥的診斷、預(yù)后分析及治療中具有重要意義。Sheng等[8]研究發(fā)現(xiàn),鈣網(wǎng)蛋白高表達(dá)的胰腺導(dǎo)管癌患者平均存活時間明顯延長,原因可能與鈣網(wǎng)蛋白調(diào)節(jié)免疫反應(yīng)有關(guān)。晚期卵巢癌患者化療后,腹膜腔滲出物中鈣網(wǎng)蛋白mRNA水平明顯高于原發(fā)灶及轉(zhuǎn)移灶,滲出物鈣網(wǎng)蛋白高表達(dá)與腫瘤細(xì)胞對化療的反應(yīng)狀態(tài)相關(guān)[9]。
1.2 腫瘤疫苗 腫瘤疫苗通過主動免疫發(fā)揮抗腫瘤作用,如腫瘤細(xì)胞、腫瘤抗原或腫瘤細(xì)胞裂解物等均可作為腫瘤疫苗,通過激活機體免疫系統(tǒng)來產(chǎn)生抗腫瘤效應(yīng)。Liu等[10]以兩位健康女性志愿者的外周血單核細(xì)胞為研究對象,培育出載有鈣網(wǎng)蛋白與黑色素瘤相關(guān)抗原3組成CALR/MAGE-A3復(fù)合物的樹突狀細(xì)胞(DCs),作為腫瘤疫苗作用于腫瘤細(xì)胞,結(jié)果發(fā)現(xiàn),CALR/MAGE-A3促進(jìn) CD80、CD83及 CD86等表達(dá),CALR/MAGE-A3復(fù)合物作用于DCs后,可促進(jìn)CD+8細(xì)胞毒性T淋巴細(xì)胞分泌INF-γ,提示鈣網(wǎng)蛋白疫苗復(fù)合物可誘導(dǎo)特異性抗腫瘤免疫應(yīng)答。
1.3 免疫佐劑 鈣網(wǎng)蛋白具有較強的免疫佐劑功能。采用光動力療法(PDT)聯(lián)合鈣網(wǎng)蛋白作用于小鼠腫瘤鱗狀癌細(xì)胞,發(fā)現(xiàn)鈣網(wǎng)蛋白在腫瘤細(xì)胞表面聚集增加,可促進(jìn)PDT對腫瘤細(xì)胞的抑制作用;如去除鈣網(wǎng)蛋白的正性免疫調(diào)節(jié)作用,腫瘤細(xì)胞快速繁殖;證實鈣網(wǎng)蛋白具有免疫佐劑功能[11,12]。
鈣網(wǎng)蛋白是由高度折疊的球狀結(jié)構(gòu)的N結(jié)構(gòu)域、富含脯氨酸的P結(jié)構(gòu)域以及與集鈣蛋白結(jié)構(gòu)相似的C結(jié)構(gòu)域組成。三個不同的結(jié)構(gòu)域參與機體的不同生理功能,N結(jié)構(gòu)域與新生蛋白的加工相關(guān);C結(jié)構(gòu)域是鈣結(jié)合位點,對維持細(xì)胞內(nèi)鈣穩(wěn)態(tài)發(fā)揮重要作用;P結(jié)構(gòu)域參與蛋白質(zhì)的折疊[2]。鈣網(wǎng)蛋白在生物體內(nèi)分布廣泛,在內(nèi)質(zhì)網(wǎng)、細(xì)胞核膜、細(xì)胞膜表面以及細(xì)胞外基質(zhì)均有廣泛分布。Obeid等[13]研究發(fā)現(xiàn),蒽醌類化療藥物誘導(dǎo)腫瘤細(xì)胞發(fā)生凋亡時,鈣網(wǎng)蛋白從腫瘤細(xì)胞內(nèi)轉(zhuǎn)位到細(xì)胞膜表面高表達(dá),募集樹突狀細(xì)胞和吞噬細(xì)胞等抗原提呈細(xì)胞,識別并吞噬腫瘤細(xì)胞,加工呈遞給CD+4及CD+8T淋巴細(xì)胞,從而激發(fā)機體的特異性抗腫瘤免疫反應(yīng)。鈣網(wǎng)蛋白的抗腫瘤作用機制是多方面的。
2.1 參與MHC-Ⅰ類分子的折疊及裝配 腫瘤細(xì)胞表面的MHC-Ⅰ類分子主要呈遞細(xì)胞內(nèi)的抗原,是細(xì)胞毒T淋巴細(xì)胞發(fā)揮免疫保護(hù)功能的基礎(chǔ)。鈣網(wǎng)蛋白參與MHC-Ⅰ類分子高質(zhì)量的折疊及裝配,主要通過不同路徑進(jìn)行[2]。首先,肽結(jié)合復(fù)合物(PLC)在MHC-Ⅰ類分子介導(dǎo)的細(xì)胞內(nèi)裝配過程發(fā)揮關(guān)鍵作用,鈣網(wǎng)蛋白可維護(hù)PLC的穩(wěn)定性,促進(jìn)其發(fā)揮功能;其次,分子伴侶tapasin具有橋聯(lián)抗原處理相關(guān)轉(zhuǎn)運蛋白和MHC-Ⅰ類分子的作用,鈣網(wǎng)蛋白參與tapasin的折疊及穩(wěn)定作用,在MHC-Ⅰ類分子裝配中發(fā)揮重要功能;再次,鈣網(wǎng)蛋白可促進(jìn)MHC-Ⅰ類分子片段的聚集。
2.2 參與細(xì)胞間信號傳導(dǎo) 腫瘤的免疫原性細(xì)胞死亡是程序化細(xì)胞凋亡的一種,該過程受到細(xì)胞間通訊和細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)的嚴(yán)格調(diào)控。細(xì)胞間通訊和細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)機制十分精細(xì)和復(fù)雜,危險分子相關(guān)模式能夠介導(dǎo)腫瘤細(xì)胞免疫原性細(xì)胞死亡[14,15]。鈣網(wǎng)蛋白在細(xì)胞表面高表達(dá)是腫瘤細(xì)胞被吞噬細(xì)胞攝取及吞噬的關(guān)鍵,鈣網(wǎng)蛋白能夠?qū)ν淌杉?xì)胞釋放“吃我”和“不吃我”的信號[2]。通過鈣網(wǎng)蛋白的作用,T淋巴細(xì)胞、NK細(xì)胞和抗原遞呈細(xì)胞發(fā)揮特異性抗腫瘤免疫作用[16]。
2.3 參與補體系統(tǒng)對腫瘤細(xì)胞的作用 補體系統(tǒng)被激活后形成膜攻擊單位,作用于腫瘤細(xì)胞膜上,導(dǎo)致靶細(xì)胞的溶解,是機體抗腫瘤免疫的重要防御機制。補體因子1q(C1q)能夠識別凋亡細(xì)胞、促進(jìn)及調(diào)節(jié)吞噬細(xì)胞釋放細(xì)胞因子,鈣網(wǎng)蛋白作為C1q的感受器,與其共同參與免疫應(yīng)答,促進(jìn)凋亡細(xì)胞被巨噬細(xì)胞吞噬[17]。
2.4 參與巨噬細(xì)胞對腫瘤細(xì)胞的作用 在巨噬細(xì)胞對腫瘤細(xì)胞的識別和吞噬過程中,鈣網(wǎng)蛋白是一個關(guān)鍵的效應(yīng)器,可促進(jìn)腫瘤細(xì)胞的清除[18];另外,鈣網(wǎng)蛋白能誘導(dǎo)巨噬細(xì)胞活化,促進(jìn)TNF-α和IL-6釋放[19]。鈣網(wǎng)蛋白暴露和腫瘤細(xì)胞免疫原性死亡所介導(dǎo)的TNF釋放可導(dǎo)致腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL)產(chǎn)生。TRAIL是TNF家族中的一員,是重要的免疫效應(yīng)分子,與其受體結(jié)合引導(dǎo)細(xì)胞的免疫原性死亡,參與自然殺傷細(xì)胞、T淋巴細(xì)胞等在各種免疫反應(yīng)中的作用[20,21]。此外,鈣網(wǎng)蛋白可與TNF家族成員FasL結(jié)合形成FasL/鈣網(wǎng)蛋白復(fù)合體,介導(dǎo)細(xì)胞凋亡[22]。
總之,CRT翻轉(zhuǎn)至腫瘤細(xì)胞表面在腫瘤細(xì)胞的ICD進(jìn)程中發(fā)揮關(guān)鍵作用,為腫瘤的診斷及免疫治療開辟了新方向,提供了新途徑。
[1]de Bruyn M,Wiersma VR,Helfrich W,et al.The ever-expanding immunomodulatory role of calreticulin in cancer immunity[J].Front Oncol,2015,(5):35.
[2]Raghavan M,Wijeyesakere SJ,Peters LR,et al.Calreticulin in the immune system:ins and outs[J].Trends Immunol,2013,34(1):13-21.
[3]Chi J,Manoloukos M,Pierides C,et al.Calreticulin mutations in myeloproliferative neoplasms and new methodology for their detection and monitoring[J].Ann Hematol,2015,94(3):399-408.
[4]Yu X,Du L,Zhu L,et al.Melanoma therapy with transdermal mitoxantrone cubic phases[J].Drug Deliv,2015,(2):1-6.
[5]Lu CM,Lin JJ,Huang HH,et al.A panel of tumor markers,calreticulin,annexin A2,and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis[J].BMC Cancer,2014,(14):363.
[6]Chi J,Manoloukos M,Pierides C,et al.Calreticulin mutations in myeloproliferative neoplasms and new methodology for their detection and monitoring[J].Ann Hematol,2015,94(3):399-408.
[7]Fu R,Xuan M,Zhou Y,et al.Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia:clinical implications indiagnosis,prognosis and treatment[J].Leukemia,2014,28(9):1912-1914.
[8]Sheng WW,Dong M,Zhou JP,et al.Clinicopathological significance of the expression of calreticulin in human pancreatic cancer[J].Zhonghua Wai Ke Za Zhi,2013,51(1):58-61.
[9]Vaksman O,Davidson B,Tropé C,et al.Calreticulin expression is reduced in high-grade ovarian serous carcinoma effusions compared with primary tumors and solid metastases[J].Hum Pathol,2013,44(12):2677-2683.
[10]Liu X,Song N,Liu Y,et al.Efficient induction of anti-tumor immune response in esophageal squamous cell carcinoma via dendritic cells expressing MAGE-A3 and CALR antigens[J].Cell Immunol,2015,295(2):77-82.
[11] Korbelik M,Banáth J,Saw KM,et al.Calreticulin as cancer treatment adjuvant:combination with photodynamic therapy and photodynamic therapy-generated vaccines[J].Front Oncol,2015,(5):15.
[12]Venkateswaran K,Verma A,Bhatt AN,et al.Modifications of cell signalling and redox balance by targeting protein acetylation using natural and engineered molecules:implications in cancer therapy[J].Curr Top Med Chem,2014,14(22):2495-2507.
[13]Obeid M,Tesniere A,Ghiringhelli F,et al.Calreticulin exposure dictates the immunogenicity of cancer cell death[J].Nat Med,2007,13(1):54-61.
[14]Krysko O,Lve Aaes T,Bachert C,er al.Many faces of DAMPs in cancer therapy[J].Cell Death Dis,2013,(4):e631.
[15] Krysko DV,Garg AD,Kaczmarek A,et al.Immunogenic cell death and DAMPs in cancer therapy[J].Nat Rev Cancer,2012,12(12):860-875.
[16]Panzarini E,Inguscio V,F(xiàn)imia GM,et al.Rose bengal acetate photodynamic Therapy(RBAc-PDT)induces exposure and release of damage-associated molecular patterns(DAMPs)in human HeLa cells[J].PLoS One,2014,9(8):e105778.
[17]Verneret M,Tacnet-Delorme P,Osman R,et al.Relative contribution of c1q and apoptotic cell-surface calreticulin to macrophage phagocytosis[J].J Innate Immun,2014,6(4):426-434.
[18]Feng M,Chen JY,Weissman-Tsukamoto R,et al.Macrophages eat cancer cells using their own calreticulin as a guide:Roles of TLR and Btk[J].Proc Natl Acad Sci U S A,2015,112(7):2145-2150.
[19]Duo CC,Gong FY,He XY,et al.Soluble calreticulin induces tumor necrosis factor-α (TNF-α)and interleukin(IL)-6 production by macrophages through mitogen-activated protein kinase(MAPK)and NFκB signaling pathways[J].Int J Mol Sci,2014,15(2):2916-2928.
[20]Kobayashi E,Kishi H,Ozawa T,et al.A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells[J].Biochem Biophys Res Commun,2014,453(4):798-803.
[21]Bremer E.Targeting of the tumor necrosis factor receptor superfamilyforcancerimmunotherapy [J]. ISRN Oncol, 2013,(2013):371854.
[22]de Bruyn M,Wiersma VR,Helfrich W,et al.The ever-expanding immunomodulatory role of calreticulin in cancer immunity[J].Front Oncol,2015,(5):35.