• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Signatures of Stable Isotopes δ15N and δ13C in Anadromous and Non-Anadromous Coilia nasus Living in the Yangtze River, and the Adjacent Sea Waters

    2015-04-01 02:11:05WANGLeiTANGWenqiaoandDONGWenxia
    Journal of Ocean University of China 2015年6期

    WANG Lei, TANG Wenqiao, and DONG Wenxia

    ?

    The Signatures of Stable Isotopes15N and13C in Anadromous and Non-AnadromousLiving in the Yangtze River, and the Adjacent Sea Waters

    WANG Lei, TANG Wenqiao*, and DONG Wenxia

    ,,,201306,

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes (13C and15N) forfrom the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on.13C signatures ofsampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) (<0.05). By contrast,15N signatures ofin ZS, CM, and JJ groups were significantly lower than those in PYL group (<0.05). Basing on13C and15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromousranged from 2.90 to 3.04, whereas that of non-anadromouswas 4.38.occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively.in Poyang Lake were significantly more enriched in15N but depleted in13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply15N and13C to population assignment studies ofin the Yangtze River and its affiliated waters. Analysis of stable isotopes (15N and13C) is shown to be a useful tool for discriminating anadromous and non-anadromous.

    Japanese grenadier anchovy;13C;15N; Changjiang River; Poyang Lake

    1 Introduction

    , also known as the Japanese grenadier anchovy, is a small- to medium-sized fish of the Engraulidae family that is widely distributed in offshore waters and rivers in the northwest Pacific region of Asia, including China and Japan (Whitehead., 1988). In China,is chiefly distributed in the Yellow Sea and East China Sea, and may penetrate more than 1400km up the middle reaches of the Yangtze River and its affiliated waters, including Dongting Lake and Poyang Lake (Yuan., 1980). It is both anadromous and non- anadromous (Yuan, 1987; Cheng., 2005; Yang., 2006). Every spring, the anadromous adult fish migrate from the estuaries to spawn in affiliated freshwater lakes and in the lower and middle river reaches. After spawning, the adults migrate into the estuary and adjacent waters again (Yuan, 1987; Luo., 1992). By contrast, the non-anadromous anchovies always live in freshwaters, such as the lakes of Poyang, Taihu, and Chaohu(Yuan, 1987; Zhang., 2005; Xu., 2005).

    Analyses of stable isotopes, especially carbon (C) and nitrogen (N), are commonly used to investigate material circulation and energy flow within ecosystems (Peterson and Fry, 1987; Vander Zanden and Rasmussen, 2001). Measurement of stable isotopes has been used to define relationships between consumers and their food sources (Peterson and Fry, 1987; Cabana and Rasmussen, 1994), determine trophic position of consumers, and study foraging and migration (Carmichael., 2004; Best and Schell, 1996; Kline., 1998; Walker., 1999; Fuji., 2011; Lebreton., 2011). Recently, using stable isotopes to study the seasonal migration patterns of aquatic organism has attracted more attention. Walker(1999) discriminated between coastal and offshore bottlenose dolphin () populations using stable isotopes in dolphin teeth. Gu(2001) reported that Mexican sturgeon () do not feed significantly in freshwaters between the Gulf of Mexico and the coastal rivers of the southeast USA. Lebreton. (2011) demonstrated that mullets (and) feed mainly on primary consumers in salt marsh creeks in Aiguillon Bay along the French Atlantic coast during the spring migration. Bardonneta and Riera (2005) used13C signatures to report that glass eels () may use estuaries as simple migration routes and feeding habitats.

    To better elucidate the ecological characteristics ofin the Yangtze River estuary and its affiliated waters, we measured13C and15N signatures in anadromous and non-anadromous anchovies during the migratory period. This study attempted to clearly distinguish anadromous and non-anadromousthrough stable isotope analysis, evaluate their trophic positions in different ecosystems, and describe environmental influences on13C and15N signatures ofthis species.

    2 Materials and Methods

    2.1 Study Site and Sampling

    specimens were collected from four sites along the Yangtze River and the adjacent East China Sea from April to May 2013 (Fig.1). The sampling sites included: Zhoushan (ZS) in the East China Sea, which is an important anchovy foraging and wintering ground; Chongming (CM) in the Yangtze River estuary and Jingjiang (JJ) in the lower reach of the Yangtze River, which are important anchovy migration routes and fishing grounds; and Poyang Lake (PYL) in the middle reach of the Yangtze River, which is the largest freshwater lake in China and an important anchovy freshwater habitat and spawning ground (Yuan, 1987; Zhang., 2005). All specimens were sampled using gill nets (20mm to 40mm mesh size; 2m to 3m height; 150m to 200m length). To collect samples for the ZS, CM, and JJ groups, gill nets were placed before high tide and removed during the slack water period, with a time period of approximately 1.5h to 2h. To collect samples for the PYL group, gill nets were placed and then removed 1.5h to 2h later. All specimens were maintained at ?20℃ in aportable refrigerator and subsequently frozen at ?80℃ until further analysis.

    Fig.1 Location of the study sites of C. nasus in the Yangtze River, adjacent East China Sea, and Poyang Lake. A, Yangtze River and adjacent East China Sea. B, Poyang Lake. ZS, Zhoushan; CM, Chongming; JJ, Jingjiang; PYL, Poyang Lake.

    2.2 Stable Isotope Measurement

    The dorsal muscle tissues of each fish were dissected and represented on sample. These tissues were oven dried at 60℃ for 48h to constant weights and then were ground with an agate mortar and pestle to a fine powder. All samples were acidified to remove carbonates by adding 1 molL?1hydrochloric acid drop by drop until no CO2was released, following the method described by Jacob. (2005). The acidified samples were directly re-dried at 60℃ without rinsing to minimize the loss of dissolved organic matter. Then they were ground again, and retained in desiccators prior to stable isotope analysis. Finally, 2mg of powdered samples was weighed into a clean tin capsule to simultaneously measure carbon and nitrogen isotope ratios (C:N), which were also measured during stable isotope analysis.

    All samples were sent to the Instrumental Analysis Center of Shanghai Jiaotong University for signature analyses of13C and15N using the Elemental Analysis-Stable Isotope Ratio Mass Spectrometer (Vario EL III/Isoprime, Elementar Analysensysteme GmbH) (Hanau, Germany). Organic analytical standards (casein and wheat flour) were obtained from Elemental Microanalysis Ltd. (Devon, UK) and analyzed for every eight to ten unknown samples in each analytical sequence, allowing instrument drift to be corrected if required. Stable isotope ratios were expressed innotation as parts per thousand (‰) according to the following equation:

    whereis13C or15N andis the corresponding ratio of13C/12C or15N/14N ratio. The standard reference materials were the Pee Dee Belemnite standard for C and atmospheric N2for N. The analytical precision of these measurements was 0.2‰ for both13C and15N.

    2.3 Data Analysis

    A one-way ANOVA was performed to examine the differences in13C and15N values among the four Japanese grenadier anchovy groups. A hierarchical cluster analysis was also carried out on stable N and C isotope values to identify different populations (Le Loc’h and Hily, 2005; Grall., 2006). The site station map and figures were drawn using Arcview GIS 3.0 and OriginPro 8.0 software, respectively, and statistical analysis was conducted using SPSS 15.0.

    3 Results

    3.1 Morphological Characteristics

    Body length and weight,maxillary/head length (M/H), and sampling dates are presented in Table 1. The body lengths of the ZS, CM, and JJ groups were close and ranged from 30.30cm to 33.18cm, and the body weights of the three groups ranged from 100.70g to 131.66g. The body length and body weight of the PYL group were only 22.10cm and 38.15g, respectively. Based on otoliths, the fourgroups were 2 to 3 years old.

    The maxillary/head length (M/H) of the four groups ranged from 0.916 to 1.157. The ZS, CM, and JJ groups exhibited higher M/H ratios than the PYL group (<0.05), and no significant difference in M/H ratio (>0.05) was found among the three groups (Table 1). The four groups could be categorized into long maxillary group (M/H, 1.148–1.157) and short maxillary group (M/H, 0.916).

    Table 1 Body length, body weight,maxillary/head length (M/H), and sampling date of the C. nasus in the Yangtze River and East China Sea

    Notes: Values in the same column with different superscripts were significantly different (<0.05, mean±SD).

    3.213C and15N Signatures

    Dual isotope values (13C and15N) of the fourgroups are plotted in Fig.2. The13C and15N values of the four groups ranged from ?28.73‰ to ?18.19‰ and from 8.06‰ to 17.22‰, respectively. No significant difference in13C and15N values was found among the ZS, CM, and JJ groups (>0.05) (Table 2). The PYL group had more enriched15N and more depleted13C values than the ZS, CM, and JJ groups (<0.05).

    Fig.2 Dual isotope plots for δ13C and δ15N values of the four C. nasus groups sampled from the Yangtze River and adjacent East China Sea. ZS, Zhoushan; CM, Chongming; JJ, Jingjiang; PYL, Poyang Lake.

    Table 2 Stable isotope signatures and C:N ratios of the four C. nasus groups sampled from the Yangtze River and adjacent East China Sea. ZS, Zhoushan; CM, Chongming; JJ, Jingjiang; PYL, Poyang Lake; n, number of individuals.Values in the same column with different superscripts were significantly different (P<0.05)

    3.3 Hierarchical Cluster Analysis

    According to the hierarchical cluster analysisbased on15N and13C values of the fourgroups, indi-viduals were classified into two groups, namely, the ZS, CM, and JJ groups (squared Euclidean distance, 0.238) and the PYL group (squared Euclidean distance, 8.338– 8.804), which corresponded to the anadromous and non- anadromous groups, respectively (Fig.3).

    Fig.3 Bivariate plot of δ15N vs. δ13C values (mean ± SD) of the four C. nasus groups sampled from the Yangtze River and adjacent East China Sea.The groups of taxa (circled) were selected from the results of the hierarchical cluster analysis. ZS, Zhoushan; CM, Chongming; JJ, Jing- jiang; PYL, Poyang Lake.

    3.4 Linear Regression Analysis

    Linear regression analysis confirmed significant relationships between15N values and body weights for the anadromous group (=0.520,<0.005), but no significant linear relationships were observed between13C values and body weights for the anadromous group (= 0.128,=0.419; Figs.4a and c). No significant linear relationships were found in the non-anadromous group with regard to15N (=0.023,=0.931) and13C (=0.020,=0.941) values and body weights (Figs.4b and d).

    4 Discussion

    4.1 Anadromous and Non-Anadromous Groups

    According to13C and15N values, allcould be classified into two groups (Fig.3), namely, the de-pleted13C/enriched15N group (PYL group) and the enriched13C/depleted15N group (including ZS, CM, and JJ groups). No significant difference was found among the CM, JJ, and ZS groups, suggesting that the isotope composition ofhasn’t been changed, and the anadromous Yangtze River groups (CM and JJ groups) have the same marine carbon and nitrogen pool as the ZS group. Consequently, in this study these three groups were classified as anadromous group. The PYL group was markedly different from the anadromous group with regard to13C and15N values, and was considered as non- anadromous.

    Fig.4 Relationships between δ13C and δ15N values and body weights of anadromous(a, c) and non-anadromous (b, d) C. nasus sampled from the Yangtze River and adjacent East China Sea.

    The ratio of maxillary/head length (M/H) is the key to discriminate differentecotypes (Chen and Tang, 2011; Wang., 2012). The M/H values in this study were partitioned into long and short maxillary groups, and the obtained data agreed with those results reported in previous papers (Xu., 2009; Chen and Tang, 2011; Wang., 2012). The data also confirmed that the anadromous group had a higher M/H ratio than the non-ana- dromous group in Poyang Lake. The M/H ratios were consistent with our cluster results of stable isotope signatures of. Therefore, the stable isotope method could be used to determinehabitat utilization and discriminate amongliving in different ecotypes.

    4.2 Trophic Position

    The signatures of15N were particularly useful in assessing the trophic position of consumers, as demonstrated by the following equation:

    whereis the trophic level andis the trophic enrichment factor. When the baseline was the producer, the value ofwas 1, whereas when the baseline was the primary consumer, the value ofwas 2 (Post, 2002). Theis generally considered to be 3.4‰ in marine food webs (Minagawa and Wada, 1984; Vander Zanden and Rasmussen, 1999; Post, 2002; Le Loc’h and Hily, 2005). The15N values of(6.05‰) (Cai., 2005) were applied to the baseline for marine-food source groups (ZS, CM, and JJ groups), and the15N values of suspended particulate organic matter (5.7‰) were applied to the baseline for the Poyang Lake group (Wang., 2009). The TLs of the ZS, CM, and JJ groups were 2.90, 3.26, and 3.04, respectively, and theof the PYL group was 4.38.

    For thein the marine food web, our obtained data agreed with those of previous reports, and the15N value andwere 11.35‰ and 3.13, respectively (Cai., 2005). Isotope results were consistent with previous stomach content analysis, indicating that anchovies fed on both zooplankton and small planktivorous fish, such as mysid shrimp,cladocerans, copepods, shrimp, and even small fish (Zhuang., 2012). In the coastal food web, theof consumers ranged from 1.43 to 4.30 (Cai., 2005), andwas an intermediate carnivorous fish, occupying the middle nutrition position in the marine food web. For thein freshwater Poyang Lake, theofwas 4.38. This finding supports previous reports (Wang., 2009) that theofin Poyang Lake ranged from 4.0 to 4.2. Theof consumers in Poyang Lake ranged from 1.5 to 4.2, andoccupied the top nutrition position in the Poyang Lake food web.

    4.3 Anthropogenic Nutrients

    The natural abundance of stable nitrogen isotopes is frequently used to trace anthropogenic nutrients (Mc- Clelland., 1997; Cabana and Rasmussen, 1996; Lake., 2001). Anthropogenic nutrient inputs increase15N values in food webs (Lake., 2001; Vizzini and Mazzola, 2006; Castro., 2007; Karube., 2010; Fertig., 2013). The15N values forin Poyang Lake were higher than those previously reported (range: 14.8‰ to 15.4‰) (Wang., 2009).Despite various watershed protection efforts, our data suggested that high levels of terrestrially derived nutrients still entered Poyang Lake. The samples obtained from the Poyang Lake showed enriched15N values (17.20‰) compared with those from the coastal food resource groups (ZS, CM, and JJ ranged from 9.11‰ to 10.36‰). Approximately 7.2 million people live around Poyang Lake, which is the largest freshwater lake in China. Therefore, the terrestrial nutrient input from the surrounding cities may cause the enriched15N values in the Poyang Lake food web. Other studies (Nixon., 2007; Bannon and Roman, 2008) reported similar conclusions, suggesting that human wastewater discharge causes elevated15N values in local food webs.

    Acknowledgements

    The authors thank Dr. Li Zhang of the Instrumental Analysis Center of Shanghai Jiaotong University for performing the isotope analysis. We also acknowledge Dr. Weimin Quan ofthe East China Sea Fishery Research Institute for his helpful comments on the manuscript; Drs. Weijing Chen and Linhong Shen of the Administration of Fishery of Jingjiang for sample collection; and Drs. YingyingLi, GuoliZhu, CongWang, and Tianyi Xu for sample treatment. This study was financially supported by the Special Fund for Agro-scientific Research in the Public-Interest (Grant No. 201203065), the National Natural Science Foundation of China (Nos. 31172407, 1472280), and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20123104110006).

    Bannon, R. O., and Roman, C. T., 2008. Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries., 18 (1): 22-30.

    Bardonneta, A., and Riera, P., 2005. Feeding of glass eels () in the course of their estuarine migration: New insights from stable isotope analysis.,63(1): 201-209.

    Best, P. B., and Schell, D. M., 1996. Stable isotopes in southern right whale () baleen as indicators of seasonal movements, feeding and growth., 124 (4): 483-494.

    Cabana, G., and Rasmussen, J. B., 1994. Modeling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes., 372 (6503): 255-257.

    Cai, D. L., Li, H. Y, Tang, Q. S., and Sun, Y., 2005. Establishing trophic chart of ecosystem in the Yellow Sea and East Sea based on the stable isotope results., 35 (2): 123-130.

    Carmichael, R. H., Rutecki, D., Annett, B., Gaines, E., and Valiela I., 2004. Position of horseshoe crabs in estuarine food webs: N and C stable isotopic study of foraging ranges and diet composition., 299 (2): 231-253.

    Castro, P., Valiela, I., and Freitas, H., 2007. Eutrophication in Portuguese estuaries evidenced by15N of macrophytes., 351: 43-51.

    Cheng, Q. Q., Lu, D. R., and Ma, L., 2005. Morphological differences between close populations discernible by multivariate analysis: A case study of genus(Teleostei: Clupeiforms)., 18 (2): 187-192.

    Cheng., W. X., and Tang, W. Q., 2011. Some phenotypic varieties between different ecotypes ofin the Yangtze River., 46 (5): 33-40.

    Fertig, B., O’Neil, J. M., Beckert, K. A., Cain, C. J., Needham, D. M., Carruthers, T. J. B., and Dennison, W. C., 2013. Elucidating terrestrial nutrient sources to a coastal lagoon, Chincoteague Bay, Maryland, USA., 116: 1-10.

    Fuji, T., Kasai, A., Suzuki, K. W., Ueno, M., and Yamashita, Y., 2011. Migration ecology of juvenile temperate seabass Lateolabrax japonicus: A carbon stable isotope approach., 78 (7): 2010-2025.

    Grall, I., Le, Loc’h, F., Guyonnet, B., and Riera, P., 2006. Community structure and food web based on stable isotopes (15N and13C) analysis of a North Eastern Atlantic maerl bed., 338 (1): 1- 15.

    Gu, B., Schell, D. M., Frazer, T., Hoyer, M., andChapman, F. A., 2001.Stable carbon isotope evidence for reduced feeding of Gulf of Mexico sturgeon during their prolonged river residence period., 53 (3): 275-280.

    Jacob, U., Mintenbeck, K., Brey, T., Knust, R., and Beyer, K., 2005. Stable isotope food web studies: A case for standardized sample treatment., 287: 251- 253.

    Karube, Z., Sakai, Y., Takeyama, T., Okuda, N., Kohzu, A., Yoshimizu, C., Nagata, T., and Tayasu, I., 2010. Carbon and nitrogen stable isotope ratios of macroinvertebrates in the littoral zone of Lake Biwa as indicators of anthropogenic activities in the watershed., 25 (4): 847-855.

    Kline, T. C., Wilson, W. J., and Goering, J. J., 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska., 55 (6): 1494-1502.

    Lake, J. L., McKinney, R. A., Osterman, F. A, Pruell, R. J, Kiddon, J., Ryba, S. A., and Libby, A. D., 2001. Stable nitrogen isotopes as indicatiors of anthropogenic activities in small freshwater systems., 58 (5): 870-878.

    Lebreton, B., Richard, P., Parlier, E. P., Guillou, G., and Blanchard, G. F., 2011. Trophic ecology of mullets during their spring migration in a European saltmarsh: A stable isotope study.,91 (4): 502-510.

    Le Loc’h, F., and Hily, C., 2005. Stable carbon and nitrogen isotope analysis of Nephrops norvegicus/Merluccius merluccius fishing grounds in the Bay of Biscay (NE Atlantic)., 62 (1): 123- 132.

    Luo, B. Z, Xue, P., Lu, J. W., and Huang, S. F., 1992.Impact of the Three Gorges Project on the fishery of the Changjiang estuary and adjacent waters., 33: 341-351.

    McClelland, J. W., Valiela, I., and Michener, R. H., 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds.,42 (5): 930-937.

    Minagawa, M., and Wada, E., 1984. Stepwise enrichment of15N along food chains: further evidence and the relation between15N and animal age.,48 (5): 1135-1140.

    Nixon, S. W., Buckley, B. A., Granger, S., L., Entsua-Mensah, M., Ansa-Asare, O., White, M. J., Mckinney, R. A., and Mensah, E., 2007.Anthropogenic enrichment and nutrients in some tropical lagoons of Ghana, West Africa., 17 (sp5): S144-S164.

    Peterson, B. J., and Fry, B., 1987. Stable isotopes in ecosystem studies., 18: 291- 320.

    Post, D. M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions., 83(3): 703-718.

    Sackett, W. M., and Thompson, R. R., 1963. Isotopic organic carbon composition of recent continental derived clastic sediments of eastern Gulf Coast, Gulf of Mexico., 47 (3): 525-531.

    Vander Zanden, M. J., and Rasmussen, J. B., 2001. Variation in15N and13C trophic fractionation: implications for aquatic food web studies., 46 (8): 2061- 2066.

    Vizzini, S., and Mazzola, A., 2006. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area., 368 (2): 723-731.

    Walker, J. L., Potter, C. W., and Macko, S. A., 1999. The diets of modern and historic bottlenose dolphin populations reflected through stable isotopes., 15 (2): 335- 350.

    Wang, D. T., Yang, J., Jiang, T., Liu, H. B., and Shen, X. Q., 2012. A comparative study of the morphology of different geographical populations of., 36 (1): 79-90.

    Wang, Y. Y., Yu, X. B., Zhang, L., and Xu, J., 2009. Food web structure of Poyang Lake during the dry season by stable carbon and nitrogen isotopes analysis., 29 (3): 1181-1188.

    Whitehead, P., Nelson, G., and Wongratana, T., 1988. FAO species catalogue. Clupeoid fishes of the world (Suborder Clupeoidei). Part 2. Engraulididae., 125 (7): 460-475.

    Xu, J., Xie, P., Zhang, M., and Yang, H., 2005. Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake., 541 (1): 215-220.

    Xu, Z. Q., Ge, J. C., Huang, C., Dou, H. X., Pan, J. L., and Xia, A. J., 2009. Taxonomy of short jaw tapertail anchovyby jaw length and mitochondrial Cytochrome b gene analysis., 24 (3): 243-246.

    Yang, J., Arai T., Liu, H., Miyazaki, N., and Tsukamoto, K., 2006. Reconstructing habitat use ofandof the Yangtze River estuary, and ofof Taihu Lake, based on otolith strontium and calcium., 69 (4): 1120-1135.

    Yuan, C. M., Qin A. L., Liu, R. H., and Lin J. B., 1980. On the classification of the anchovies,from the lower Yangtze River and the southeast coast of China., 3: 67-82.

    Yuan, C. M., 1987. Spawning migration of Chinese anchovy., 12: 1-3.

    Zhang, M. Y., Xu, D. P., Liu, K., and Shi, W. G., 2005. Studies on biological characteristics and change of resource ofSchlegel in the lower reaches of the Yangtze River., 14 (6): 694- 698.

    Zhuang, P., Luo, G., Zhang, T., Zhang, L. Z., Liu, J. Y., Feng, G. P., and Hou, J. L., 2010. Food comparison among juvenileand other six economic fishes in the Yangtze estuary., 30 (20): 5544-5554.

    (Edited by Qiu Yantao)

    DOI 10.1007/s11802-015-2611-3

    ISSN 1672-5182, 2015 14 (6): 1053-1058

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    (March 3, 2014; revised April 21, 2014; accepted August 25, 2015)

    * Corresponding author. E-mail: wqtang@shou.edu.cn

    欧美bdsm另类| 美女黄网站色视频| 久久韩国三级中文字幕| 久久久久精品久久久久真实原创| 免费一级毛片在线播放高清视频| 啦啦啦啦在线视频资源| 性插视频无遮挡在线免费观看| 精品欧美国产一区二区三| 91精品国产九色| 国产精品麻豆人妻色哟哟久久 | av专区在线播放| av福利片在线观看| 亚洲怡红院男人天堂| 免费大片18禁| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| av天堂中文字幕网| 看非洲黑人一级黄片| 一级毛片电影观看 | 午夜视频国产福利| kizo精华| a级一级毛片免费在线观看| 亚洲av免费高清在线观看| 毛片女人毛片| 春色校园在线视频观看| 99热这里只有是精品在线观看| 久久婷婷人人爽人人干人人爱| 青青草视频在线视频观看| 亚洲人与动物交配视频| 国产精品1区2区在线观看.| 99热全是精品| 我的女老师完整版在线观看| 国产精品99久久久久久久久| 狂野欧美白嫩少妇大欣赏| 国产成年人精品一区二区| 三级男女做爰猛烈吃奶摸视频| av女优亚洲男人天堂| 精品久久久久久久久av| 日本免费一区二区三区高清不卡| 亚洲在线观看片| 久久99热这里只有精品18| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久 | 赤兔流量卡办理| 99热全是精品| 九色成人免费人妻av| 波野结衣二区三区在线| 亚洲av不卡在线观看| 日本猛色少妇xxxxx猛交久久| 国产爱豆传媒在线观看| 小蜜桃在线观看免费完整版高清| 麻豆成人午夜福利视频| 激情 狠狠 欧美| 久久久亚洲精品成人影院| 秋霞伦理黄片| 最近的中文字幕免费完整| 久久人人爽人人爽人人片va| 大话2 男鬼变身卡| 久久久久久久久中文| 三级毛片av免费| 一个人免费在线观看电影| 国产三级在线视频| 午夜免费男女啪啪视频观看| 女的被弄到高潮叫床怎么办| 毛片女人毛片| 综合色丁香网| 亚洲伊人久久精品综合 | 国产亚洲精品av在线| 女的被弄到高潮叫床怎么办| 免费电影在线观看免费观看| 亚洲成人av在线免费| 天堂影院成人在线观看| 2021少妇久久久久久久久久久| 国产一区二区在线av高清观看| 在线a可以看的网站| 99久国产av精品| 好男人视频免费观看在线| 欧美日韩精品成人综合77777| 国产成人一区二区在线| 老司机福利观看| 亚洲欧美日韩卡通动漫| 精品国产三级普通话版| 国产熟女欧美一区二区| 亚洲国产精品国产精品| 亚洲欧美清纯卡通| 国产成人91sexporn| 三级经典国产精品| 午夜久久久久精精品| 日韩 亚洲 欧美在线| 国产一区二区亚洲精品在线观看| 国产精品一区二区性色av| 免费av观看视频| 国产精品蜜桃在线观看| 一二三四中文在线观看免费高清| 久久精品国产自在天天线| 色综合色国产| 国产色爽女视频免费观看| 久久精品久久久久久久性| 综合色丁香网| 成人漫画全彩无遮挡| 成人特级av手机在线观看| АⅤ资源中文在线天堂| 男女国产视频网站| 男女国产视频网站| 久久久久久久午夜电影| 亚洲18禁久久av| 亚洲av福利一区| 国产亚洲午夜精品一区二区久久 | 国产精品一及| 婷婷色综合大香蕉| 99久久精品热视频| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线观看免费完整高清在| 欧美极品一区二区三区四区| 久久久国产成人精品二区| 亚洲精品久久久久久婷婷小说 | 搡老妇女老女人老熟妇| 亚洲精品乱码久久久久久按摩| 免费av观看视频| 欧美成人午夜免费资源| 狂野欧美白嫩少妇大欣赏| 午夜爱爱视频在线播放| 亚洲精品一区蜜桃| 亚洲国产日韩欧美精品在线观看| 黄色一级大片看看| 1000部很黄的大片| 欧美日韩精品成人综合77777| 精品午夜福利在线看| 91精品伊人久久大香线蕉| 麻豆av噜噜一区二区三区| 中文在线观看免费www的网站| 国产精品永久免费网站| 麻豆一二三区av精品| 欧美+日韩+精品| 三级国产精品欧美在线观看| 国产成人91sexporn| 亚洲av熟女| 成年av动漫网址| www.av在线官网国产| 人人妻人人澡欧美一区二区| 床上黄色一级片| 国内精品宾馆在线| 真实男女啪啪啪动态图| 在线天堂最新版资源| 美女国产视频在线观看| 一边摸一边抽搐一进一小说| 国产乱人偷精品视频| 久久久久免费精品人妻一区二区| 大话2 男鬼变身卡| 国产精品综合久久久久久久免费| 男人舔奶头视频| 国产成人免费观看mmmm| 听说在线观看完整版免费高清| 午夜福利在线观看吧| 成人无遮挡网站| 如何舔出高潮| 久久亚洲国产成人精品v| 日韩人妻高清精品专区| 国产精品久久久久久精品电影| 久久午夜福利片| 欧美高清性xxxxhd video| 亚洲最大成人中文| 国产av在哪里看| 国产一区亚洲一区在线观看| 91在线精品国自产拍蜜月| 久久精品国产亚洲网站| 国产色爽女视频免费观看| 免费无遮挡裸体视频| 日本与韩国留学比较| 成人国产麻豆网| 男女国产视频网站| 午夜老司机福利剧场| 免费看av在线观看网站| 午夜精品一区二区三区免费看| 亚洲色图av天堂| 日日啪夜夜撸| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 嫩草影院精品99| 六月丁香七月| 麻豆av噜噜一区二区三区| 日韩视频在线欧美| 99久久九九国产精品国产免费| 久久精品人妻少妇| 国产精品av视频在线免费观看| or卡值多少钱| 精品欧美国产一区二区三| 日本黄色片子视频| 国产成人精品一,二区| 国产精品99久久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 久久99蜜桃精品久久| 国产成人精品婷婷| 69av精品久久久久久| 国产淫片久久久久久久久| 99久国产av精品| 天堂av国产一区二区熟女人妻| 国产老妇女一区| 中文欧美无线码| a级毛片免费高清观看在线播放| 亚洲五月天丁香| 久热久热在线精品观看| 人人妻人人看人人澡| 国内精品一区二区在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲va在线va天堂va国产| 国产精品久久久久久久久免| 欧美一级a爱片免费观看看| 九九在线视频观看精品| 美女大奶头视频| 久久久精品欧美日韩精品| 久久精品夜色国产| 免费人成在线观看视频色| 少妇高潮的动态图| 免费看a级黄色片| 男女边吃奶边做爰视频| 精品一区二区三区视频在线| 亚洲在线观看片| 午夜福利高清视频| 精品午夜福利在线看| 日韩高清综合在线| 精品久久久久久成人av| 欧美激情久久久久久爽电影| av免费观看日本| 亚洲欧洲日产国产| 如何舔出高潮| 国产色婷婷99| 少妇高潮的动态图| 欧美bdsm另类| 九色成人免费人妻av| 超碰av人人做人人爽久久| 国产精品一区www在线观看| 国语对白做爰xxxⅹ性视频网站| 女人被狂操c到高潮| 夫妻性生交免费视频一级片| 国产亚洲91精品色在线| 日韩欧美精品免费久久| 欧美成人午夜免费资源| 伊人久久精品亚洲午夜| 国产精品福利在线免费观看| 亚洲内射少妇av| 最后的刺客免费高清国语| 成人亚洲精品av一区二区| 欧美最新免费一区二区三区| 久久亚洲精品不卡| 最近中文字幕高清免费大全6| 国产精品国产三级国产专区5o | 午夜福利网站1000一区二区三区| 色综合站精品国产| 久久精品夜色国产| 久久这里有精品视频免费| 一区二区三区高清视频在线| 91aial.com中文字幕在线观看| 久久99热这里只有精品18| 日本爱情动作片www.在线观看| 国产精品国产三级国产专区5o | 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 99热网站在线观看| 性色avwww在线观看| av黄色大香蕉| 99视频精品全部免费 在线| av免费在线看不卡| 69人妻影院| 超碰97精品在线观看| 黄色日韩在线| 七月丁香在线播放| 天天躁日日操中文字幕| 高清在线视频一区二区三区 | 精品人妻视频免费看| 久久99热这里只频精品6学生 | 又黄又爽又刺激的免费视频.| 国产伦理片在线播放av一区| 只有这里有精品99| 一个人免费在线观看电影| 国产精品蜜桃在线观看| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 国产亚洲av片在线观看秒播厂 | 波多野结衣巨乳人妻| 2021天堂中文幕一二区在线观| 一级毛片电影观看 | 一个人看视频在线观看www免费| 亚洲自拍偷在线| 国产黄色小视频在线观看| 欧美成人免费av一区二区三区| 久久久久久久久久久免费av| 亚洲综合色惰| 亚洲五月天丁香| 国产成人精品一,二区| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 女人被狂操c到高潮| 岛国毛片在线播放| 我的女老师完整版在线观看| 精品一区二区三区视频在线| 97超碰精品成人国产| 91av网一区二区| 色播亚洲综合网| 真实男女啪啪啪动态图| 九九在线视频观看精品| 国产男人的电影天堂91| 少妇熟女欧美另类| a级一级毛片免费在线观看| 欧美又色又爽又黄视频| 激情 狠狠 欧美| 韩国高清视频一区二区三区| 日韩国内少妇激情av| 亚洲伊人久久精品综合 | 真实男女啪啪啪动态图| 中文天堂在线官网| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 久久久成人免费电影| 亚洲四区av| 国产又色又爽无遮挡免| 精华霜和精华液先用哪个| 97热精品久久久久久| 国产精品电影一区二区三区| 纵有疾风起免费观看全集完整版 | 亚洲精品久久久久久婷婷小说 | 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 五月玫瑰六月丁香| 午夜激情福利司机影院| 亚洲无线观看免费| 看非洲黑人一级黄片| 国产精华一区二区三区| a级一级毛片免费在线观看| 成人三级黄色视频| 久久午夜福利片| 高清毛片免费看| 国产免费一级a男人的天堂| 国产亚洲最大av| 热99re8久久精品国产| 亚洲最大成人中文| 我的女老师完整版在线观看| 国产麻豆成人av免费视频| 国产精品不卡视频一区二区| 日本wwww免费看| 简卡轻食公司| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 性色avwww在线观看| 亚洲av日韩在线播放| 男女啪啪激烈高潮av片| 日韩成人av中文字幕在线观看| 日韩欧美国产在线观看| 久久久亚洲精品成人影院| 国产成人福利小说| 一级毛片久久久久久久久女| 禁无遮挡网站| a级一级毛片免费在线观看| av免费观看日本| 男女国产视频网站| 国产精品久久久久久精品电影小说 | 三级男女做爰猛烈吃奶摸视频| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区 | 精品欧美国产一区二区三| 高清视频免费观看一区二区 | www日本黄色视频网| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| 三级经典国产精品| 精品一区二区免费观看| 午夜免费激情av| 国产成人精品一,二区| 中文字幕av成人在线电影| 男女国产视频网站| 免费黄网站久久成人精品| av.在线天堂| 欧美一区二区国产精品久久精品| 少妇熟女欧美另类| 日韩成人伦理影院| 中文欧美无线码| 我要搜黄色片| 嘟嘟电影网在线观看| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验| av免费观看日本| av国产久精品久网站免费入址| 国产亚洲av片在线观看秒播厂 | 国产精品一二三区在线看| 少妇高潮的动态图| 亚洲综合色惰| 国产人妻一区二区三区在| 国产伦理片在线播放av一区| 日韩中字成人| 日日摸夜夜添夜夜爱| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 色综合站精品国产| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆 | 免费黄网站久久成人精品| av天堂中文字幕网| 久久精品影院6| 女人被狂操c到高潮| 波野结衣二区三区在线| 久久久精品94久久精品| 欧美成人免费av一区二区三区| 成人亚洲欧美一区二区av| 偷拍熟女少妇极品色| 国产日韩欧美在线精品| 日本与韩国留学比较| 亚洲精品国产av成人精品| 日本熟妇午夜| 免费av毛片视频| 一区二区三区乱码不卡18| 欧美潮喷喷水| 少妇丰满av| 午夜福利视频1000在线观看| 成人一区二区视频在线观看| 亚洲美女视频黄频| 青春草国产在线视频| 日本黄大片高清| 国产黄片视频在线免费观看| 久久精品熟女亚洲av麻豆精品 | 不卡视频在线观看欧美| 亚洲国产欧美在线一区| 亚洲欧美精品综合久久99| 日产精品乱码卡一卡2卡三| 69av精品久久久久久| 国产色婷婷99| 免费观看a级毛片全部| 简卡轻食公司| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 欧美97在线视频| 最新中文字幕久久久久| 桃色一区二区三区在线观看| 1000部很黄的大片| 亚洲五月天丁香| 不卡视频在线观看欧美| 一级毛片电影观看 | 永久网站在线| 亚洲精品影视一区二区三区av| 中文字幕av在线有码专区| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 熟女电影av网| av在线播放精品| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区久久| 成人亚洲精品av一区二区| 22中文网久久字幕| 丰满少妇做爰视频| 久久久久久久久久成人| 欧美一区二区国产精品久久精品| 国产色爽女视频免费观看| 久久久久精品久久久久真实原创| 欧美丝袜亚洲另类| 国产伦一二天堂av在线观看| 国产男人的电影天堂91| 久久精品夜色国产| 欧美高清性xxxxhd video| 老司机影院毛片| 成人午夜高清在线视频| 午夜视频国产福利| 美女黄网站色视频| 亚洲av不卡在线观看| 成人毛片60女人毛片免费| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看 | 大香蕉久久网| 亚洲内射少妇av| av线在线观看网站| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 精品少妇黑人巨大在线播放 | 国产淫语在线视频| 男女下面进入的视频免费午夜| 午夜激情福利司机影院| 1000部很黄的大片| 亚洲国产精品成人综合色| 91狼人影院| 99在线人妻在线中文字幕| 18禁动态无遮挡网站| 欧美日本亚洲视频在线播放| 国产黄色视频一区二区在线观看 | 18禁裸乳无遮挡免费网站照片| 日韩成人伦理影院| 国产视频首页在线观看| 国产伦精品一区二区三区四那| 国产高清视频在线观看网站| 国产色爽女视频免费观看| 热99在线观看视频| 亚洲一区高清亚洲精品| 亚洲av中文av极速乱| 亚洲国产色片| av在线蜜桃| 男人和女人高潮做爰伦理| 国产老妇女一区| 成人无遮挡网站| 白带黄色成豆腐渣| 岛国在线免费视频观看| 久久精品国产亚洲av涩爱| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区久久| 十八禁国产超污无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄 | 日本熟妇午夜| 亚洲av一区综合| 久久亚洲国产成人精品v| 日韩强制内射视频| 成人午夜精彩视频在线观看| 亚洲内射少妇av| 欧美97在线视频| 亚洲18禁久久av| 色尼玛亚洲综合影院| 成人国产麻豆网| 中文字幕免费在线视频6| 欧美bdsm另类| 99久国产av精品| 成人三级黄色视频| 日韩一区二区三区影片| 国产高潮美女av| 亚洲欧美清纯卡通| 国产精品1区2区在线观看.| 久久99热这里只频精品6学生 | 村上凉子中文字幕在线| 青春草国产在线视频| 午夜福利高清视频| 亚洲成人久久爱视频| ponron亚洲| 国产精品美女特级片免费视频播放器| 国产一级毛片七仙女欲春2| 在现免费观看毛片| 欧美激情久久久久久爽电影| av视频在线观看入口| 亚洲色图av天堂| 国产免费视频播放在线视频 | 久久久久久久久中文| 国产欧美另类精品又又久久亚洲欧美| av在线老鸭窝| 免费av毛片视频| 亚洲精品一区蜜桃| 久久这里只有精品中国| 久久精品国产亚洲av天美| 婷婷六月久久综合丁香| 蜜桃久久精品国产亚洲av| 国产精品av视频在线免费观看| 午夜精品国产一区二区电影 | 水蜜桃什么品种好| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 日韩精品青青久久久久久| 精品无人区乱码1区二区| 国产亚洲5aaaaa淫片| 成人性生交大片免费视频hd| 国产免费福利视频在线观看| 国产黄色视频一区二区在线观看 | 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 亚洲精品自拍成人| 国产视频内射| 欧美日本亚洲视频在线播放| 女的被弄到高潮叫床怎么办| 免费播放大片免费观看视频在线观看 | 精品人妻熟女av久视频| 日日啪夜夜撸| 色视频www国产| 亚洲精品成人久久久久久| 高清毛片免费看| 日韩大片免费观看网站 | 国产熟女欧美一区二区| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 欧美成人a在线观看| 插逼视频在线观看| 成人无遮挡网站| 亚洲电影在线观看av| 亚洲国产精品成人久久小说| 午夜日本视频在线| 国产69精品久久久久777片| 日韩中字成人| 国产精品永久免费网站| 丰满人妻一区二区三区视频av| 观看免费一级毛片| 亚洲国产欧美在线一区| av专区在线播放| 久久久成人免费电影| 亚洲一区高清亚洲精品| eeuss影院久久| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 精品久久国产蜜桃| 天天一区二区日本电影三级| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 99热网站在线观看| 成人欧美大片| 中文字幕熟女人妻在线| 国产成人午夜福利电影在线观看| 亚洲av一区综合| 99久久九九国产精品国产免费| 欧美成人a在线观看| 大话2 男鬼变身卡|