• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Signatures of Stable Isotopes δ15N and δ13C in Anadromous and Non-Anadromous Coilia nasus Living in the Yangtze River, and the Adjacent Sea Waters

    2015-04-01 02:11:05WANGLeiTANGWenqiaoandDONGWenxia
    Journal of Ocean University of China 2015年6期

    WANG Lei, TANG Wenqiao, and DONG Wenxia

    ?

    The Signatures of Stable Isotopes15N and13C in Anadromous and Non-AnadromousLiving in the Yangtze River, and the Adjacent Sea Waters

    WANG Lei, TANG Wenqiao*, and DONG Wenxia

    ,,,201306,

    Stable isotopes are increasingly used to investigate seasonal migrations of aquatic organisms. This study employed stable isotopes (13C and15N) forfrom the lower Yangtze River and the adjacent East China Sea to distinguish different ecotypic groups, ascertain trophic nutrition positions, and reflect environmental influences on.13C signatures ofsampled from Zhoushan (ZS), Chongming (CM), and Jingjiang (JJ) waters were significantly higher than those from the Poyang Lake (PYL) (<0.05). By contrast,15N signatures ofin ZS, CM, and JJ groups were significantly lower than those in PYL group (<0.05). Basing on13C and15N signatures, we could distinguish anadromous (ZS, CM, and JJ) and non-anadromous (PYL) groups. The trophic level (TL) of anadromousranged from 2.90 to 3.04, whereas that of non-anadromouswas 4.38.occupied the middle and top nutrition positions in the marine and Poyang Lake food webs, respectively.in Poyang Lake were significantly more enriched in15N but depleted in13C, suggesting that anthropogenic nutrient inputs and terrigenous organic carbon are important to the Poyang Lake food web. This study is the first to apply15N and13C to population assignment studies ofin the Yangtze River and its affiliated waters. Analysis of stable isotopes (15N and13C) is shown to be a useful tool for discriminating anadromous and non-anadromous.

    Japanese grenadier anchovy;13C;15N; Changjiang River; Poyang Lake

    1 Introduction

    , also known as the Japanese grenadier anchovy, is a small- to medium-sized fish of the Engraulidae family that is widely distributed in offshore waters and rivers in the northwest Pacific region of Asia, including China and Japan (Whitehead., 1988). In China,is chiefly distributed in the Yellow Sea and East China Sea, and may penetrate more than 1400km up the middle reaches of the Yangtze River and its affiliated waters, including Dongting Lake and Poyang Lake (Yuan., 1980). It is both anadromous and non- anadromous (Yuan, 1987; Cheng., 2005; Yang., 2006). Every spring, the anadromous adult fish migrate from the estuaries to spawn in affiliated freshwater lakes and in the lower and middle river reaches. After spawning, the adults migrate into the estuary and adjacent waters again (Yuan, 1987; Luo., 1992). By contrast, the non-anadromous anchovies always live in freshwaters, such as the lakes of Poyang, Taihu, and Chaohu(Yuan, 1987; Zhang., 2005; Xu., 2005).

    Analyses of stable isotopes, especially carbon (C) and nitrogen (N), are commonly used to investigate material circulation and energy flow within ecosystems (Peterson and Fry, 1987; Vander Zanden and Rasmussen, 2001). Measurement of stable isotopes has been used to define relationships between consumers and their food sources (Peterson and Fry, 1987; Cabana and Rasmussen, 1994), determine trophic position of consumers, and study foraging and migration (Carmichael., 2004; Best and Schell, 1996; Kline., 1998; Walker., 1999; Fuji., 2011; Lebreton., 2011). Recently, using stable isotopes to study the seasonal migration patterns of aquatic organism has attracted more attention. Walker(1999) discriminated between coastal and offshore bottlenose dolphin () populations using stable isotopes in dolphin teeth. Gu(2001) reported that Mexican sturgeon () do not feed significantly in freshwaters between the Gulf of Mexico and the coastal rivers of the southeast USA. Lebreton. (2011) demonstrated that mullets (and) feed mainly on primary consumers in salt marsh creeks in Aiguillon Bay along the French Atlantic coast during the spring migration. Bardonneta and Riera (2005) used13C signatures to report that glass eels () may use estuaries as simple migration routes and feeding habitats.

    To better elucidate the ecological characteristics ofin the Yangtze River estuary and its affiliated waters, we measured13C and15N signatures in anadromous and non-anadromous anchovies during the migratory period. This study attempted to clearly distinguish anadromous and non-anadromousthrough stable isotope analysis, evaluate their trophic positions in different ecosystems, and describe environmental influences on13C and15N signatures ofthis species.

    2 Materials and Methods

    2.1 Study Site and Sampling

    specimens were collected from four sites along the Yangtze River and the adjacent East China Sea from April to May 2013 (Fig.1). The sampling sites included: Zhoushan (ZS) in the East China Sea, which is an important anchovy foraging and wintering ground; Chongming (CM) in the Yangtze River estuary and Jingjiang (JJ) in the lower reach of the Yangtze River, which are important anchovy migration routes and fishing grounds; and Poyang Lake (PYL) in the middle reach of the Yangtze River, which is the largest freshwater lake in China and an important anchovy freshwater habitat and spawning ground (Yuan, 1987; Zhang., 2005). All specimens were sampled using gill nets (20mm to 40mm mesh size; 2m to 3m height; 150m to 200m length). To collect samples for the ZS, CM, and JJ groups, gill nets were placed before high tide and removed during the slack water period, with a time period of approximately 1.5h to 2h. To collect samples for the PYL group, gill nets were placed and then removed 1.5h to 2h later. All specimens were maintained at ?20℃ in aportable refrigerator and subsequently frozen at ?80℃ until further analysis.

    Fig.1 Location of the study sites of C. nasus in the Yangtze River, adjacent East China Sea, and Poyang Lake. A, Yangtze River and adjacent East China Sea. B, Poyang Lake. ZS, Zhoushan; CM, Chongming; JJ, Jingjiang; PYL, Poyang Lake.

    2.2 Stable Isotope Measurement

    The dorsal muscle tissues of each fish were dissected and represented on sample. These tissues were oven dried at 60℃ for 48h to constant weights and then were ground with an agate mortar and pestle to a fine powder. All samples were acidified to remove carbonates by adding 1 molL?1hydrochloric acid drop by drop until no CO2was released, following the method described by Jacob. (2005). The acidified samples were directly re-dried at 60℃ without rinsing to minimize the loss of dissolved organic matter. Then they were ground again, and retained in desiccators prior to stable isotope analysis. Finally, 2mg of powdered samples was weighed into a clean tin capsule to simultaneously measure carbon and nitrogen isotope ratios (C:N), which were also measured during stable isotope analysis.

    All samples were sent to the Instrumental Analysis Center of Shanghai Jiaotong University for signature analyses of13C and15N using the Elemental Analysis-Stable Isotope Ratio Mass Spectrometer (Vario EL III/Isoprime, Elementar Analysensysteme GmbH) (Hanau, Germany). Organic analytical standards (casein and wheat flour) were obtained from Elemental Microanalysis Ltd. (Devon, UK) and analyzed for every eight to ten unknown samples in each analytical sequence, allowing instrument drift to be corrected if required. Stable isotope ratios were expressed innotation as parts per thousand (‰) according to the following equation:

    whereis13C or15N andis the corresponding ratio of13C/12C or15N/14N ratio. The standard reference materials were the Pee Dee Belemnite standard for C and atmospheric N2for N. The analytical precision of these measurements was 0.2‰ for both13C and15N.

    2.3 Data Analysis

    A one-way ANOVA was performed to examine the differences in13C and15N values among the four Japanese grenadier anchovy groups. A hierarchical cluster analysis was also carried out on stable N and C isotope values to identify different populations (Le Loc’h and Hily, 2005; Grall., 2006). The site station map and figures were drawn using Arcview GIS 3.0 and OriginPro 8.0 software, respectively, and statistical analysis was conducted using SPSS 15.0.

    3 Results

    3.1 Morphological Characteristics

    Body length and weight,maxillary/head length (M/H), and sampling dates are presented in Table 1. The body lengths of the ZS, CM, and JJ groups were close and ranged from 30.30cm to 33.18cm, and the body weights of the three groups ranged from 100.70g to 131.66g. The body length and body weight of the PYL group were only 22.10cm and 38.15g, respectively. Based on otoliths, the fourgroups were 2 to 3 years old.

    The maxillary/head length (M/H) of the four groups ranged from 0.916 to 1.157. The ZS, CM, and JJ groups exhibited higher M/H ratios than the PYL group (<0.05), and no significant difference in M/H ratio (>0.05) was found among the three groups (Table 1). The four groups could be categorized into long maxillary group (M/H, 1.148–1.157) and short maxillary group (M/H, 0.916).

    Table 1 Body length, body weight,maxillary/head length (M/H), and sampling date of the C. nasus in the Yangtze River and East China Sea

    Notes: Values in the same column with different superscripts were significantly different (<0.05, mean±SD).

    3.213C and15N Signatures

    Dual isotope values (13C and15N) of the fourgroups are plotted in Fig.2. The13C and15N values of the four groups ranged from ?28.73‰ to ?18.19‰ and from 8.06‰ to 17.22‰, respectively. No significant difference in13C and15N values was found among the ZS, CM, and JJ groups (>0.05) (Table 2). The PYL group had more enriched15N and more depleted13C values than the ZS, CM, and JJ groups (<0.05).

    Fig.2 Dual isotope plots for δ13C and δ15N values of the four C. nasus groups sampled from the Yangtze River and adjacent East China Sea. ZS, Zhoushan; CM, Chongming; JJ, Jingjiang; PYL, Poyang Lake.

    Table 2 Stable isotope signatures and C:N ratios of the four C. nasus groups sampled from the Yangtze River and adjacent East China Sea. ZS, Zhoushan; CM, Chongming; JJ, Jingjiang; PYL, Poyang Lake; n, number of individuals.Values in the same column with different superscripts were significantly different (P<0.05)

    3.3 Hierarchical Cluster Analysis

    According to the hierarchical cluster analysisbased on15N and13C values of the fourgroups, indi-viduals were classified into two groups, namely, the ZS, CM, and JJ groups (squared Euclidean distance, 0.238) and the PYL group (squared Euclidean distance, 8.338– 8.804), which corresponded to the anadromous and non- anadromous groups, respectively (Fig.3).

    Fig.3 Bivariate plot of δ15N vs. δ13C values (mean ± SD) of the four C. nasus groups sampled from the Yangtze River and adjacent East China Sea.The groups of taxa (circled) were selected from the results of the hierarchical cluster analysis. ZS, Zhoushan; CM, Chongming; JJ, Jing- jiang; PYL, Poyang Lake.

    3.4 Linear Regression Analysis

    Linear regression analysis confirmed significant relationships between15N values and body weights for the anadromous group (=0.520,<0.005), but no significant linear relationships were observed between13C values and body weights for the anadromous group (= 0.128,=0.419; Figs.4a and c). No significant linear relationships were found in the non-anadromous group with regard to15N (=0.023,=0.931) and13C (=0.020,=0.941) values and body weights (Figs.4b and d).

    4 Discussion

    4.1 Anadromous and Non-Anadromous Groups

    According to13C and15N values, allcould be classified into two groups (Fig.3), namely, the de-pleted13C/enriched15N group (PYL group) and the enriched13C/depleted15N group (including ZS, CM, and JJ groups). No significant difference was found among the CM, JJ, and ZS groups, suggesting that the isotope composition ofhasn’t been changed, and the anadromous Yangtze River groups (CM and JJ groups) have the same marine carbon and nitrogen pool as the ZS group. Consequently, in this study these three groups were classified as anadromous group. The PYL group was markedly different from the anadromous group with regard to13C and15N values, and was considered as non- anadromous.

    Fig.4 Relationships between δ13C and δ15N values and body weights of anadromous(a, c) and non-anadromous (b, d) C. nasus sampled from the Yangtze River and adjacent East China Sea.

    The ratio of maxillary/head length (M/H) is the key to discriminate differentecotypes (Chen and Tang, 2011; Wang., 2012). The M/H values in this study were partitioned into long and short maxillary groups, and the obtained data agreed with those results reported in previous papers (Xu., 2009; Chen and Tang, 2011; Wang., 2012). The data also confirmed that the anadromous group had a higher M/H ratio than the non-ana- dromous group in Poyang Lake. The M/H ratios were consistent with our cluster results of stable isotope signatures of. Therefore, the stable isotope method could be used to determinehabitat utilization and discriminate amongliving in different ecotypes.

    4.2 Trophic Position

    The signatures of15N were particularly useful in assessing the trophic position of consumers, as demonstrated by the following equation:

    whereis the trophic level andis the trophic enrichment factor. When the baseline was the producer, the value ofwas 1, whereas when the baseline was the primary consumer, the value ofwas 2 (Post, 2002). Theis generally considered to be 3.4‰ in marine food webs (Minagawa and Wada, 1984; Vander Zanden and Rasmussen, 1999; Post, 2002; Le Loc’h and Hily, 2005). The15N values of(6.05‰) (Cai., 2005) were applied to the baseline for marine-food source groups (ZS, CM, and JJ groups), and the15N values of suspended particulate organic matter (5.7‰) were applied to the baseline for the Poyang Lake group (Wang., 2009). The TLs of the ZS, CM, and JJ groups were 2.90, 3.26, and 3.04, respectively, and theof the PYL group was 4.38.

    For thein the marine food web, our obtained data agreed with those of previous reports, and the15N value andwere 11.35‰ and 3.13, respectively (Cai., 2005). Isotope results were consistent with previous stomach content analysis, indicating that anchovies fed on both zooplankton and small planktivorous fish, such as mysid shrimp,cladocerans, copepods, shrimp, and even small fish (Zhuang., 2012). In the coastal food web, theof consumers ranged from 1.43 to 4.30 (Cai., 2005), andwas an intermediate carnivorous fish, occupying the middle nutrition position in the marine food web. For thein freshwater Poyang Lake, theofwas 4.38. This finding supports previous reports (Wang., 2009) that theofin Poyang Lake ranged from 4.0 to 4.2. Theof consumers in Poyang Lake ranged from 1.5 to 4.2, andoccupied the top nutrition position in the Poyang Lake food web.

    4.3 Anthropogenic Nutrients

    The natural abundance of stable nitrogen isotopes is frequently used to trace anthropogenic nutrients (Mc- Clelland., 1997; Cabana and Rasmussen, 1996; Lake., 2001). Anthropogenic nutrient inputs increase15N values in food webs (Lake., 2001; Vizzini and Mazzola, 2006; Castro., 2007; Karube., 2010; Fertig., 2013). The15N values forin Poyang Lake were higher than those previously reported (range: 14.8‰ to 15.4‰) (Wang., 2009).Despite various watershed protection efforts, our data suggested that high levels of terrestrially derived nutrients still entered Poyang Lake. The samples obtained from the Poyang Lake showed enriched15N values (17.20‰) compared with those from the coastal food resource groups (ZS, CM, and JJ ranged from 9.11‰ to 10.36‰). Approximately 7.2 million people live around Poyang Lake, which is the largest freshwater lake in China. Therefore, the terrestrial nutrient input from the surrounding cities may cause the enriched15N values in the Poyang Lake food web. Other studies (Nixon., 2007; Bannon and Roman, 2008) reported similar conclusions, suggesting that human wastewater discharge causes elevated15N values in local food webs.

    Acknowledgements

    The authors thank Dr. Li Zhang of the Instrumental Analysis Center of Shanghai Jiaotong University for performing the isotope analysis. We also acknowledge Dr. Weimin Quan ofthe East China Sea Fishery Research Institute for his helpful comments on the manuscript; Drs. Weijing Chen and Linhong Shen of the Administration of Fishery of Jingjiang for sample collection; and Drs. YingyingLi, GuoliZhu, CongWang, and Tianyi Xu for sample treatment. This study was financially supported by the Special Fund for Agro-scientific Research in the Public-Interest (Grant No. 201203065), the National Natural Science Foundation of China (Nos. 31172407, 1472280), and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20123104110006).

    Bannon, R. O., and Roman, C. T., 2008. Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries., 18 (1): 22-30.

    Bardonneta, A., and Riera, P., 2005. Feeding of glass eels () in the course of their estuarine migration: New insights from stable isotope analysis.,63(1): 201-209.

    Best, P. B., and Schell, D. M., 1996. Stable isotopes in southern right whale () baleen as indicators of seasonal movements, feeding and growth., 124 (4): 483-494.

    Cabana, G., and Rasmussen, J. B., 1994. Modeling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes., 372 (6503): 255-257.

    Cai, D. L., Li, H. Y, Tang, Q. S., and Sun, Y., 2005. Establishing trophic chart of ecosystem in the Yellow Sea and East Sea based on the stable isotope results., 35 (2): 123-130.

    Carmichael, R. H., Rutecki, D., Annett, B., Gaines, E., and Valiela I., 2004. Position of horseshoe crabs in estuarine food webs: N and C stable isotopic study of foraging ranges and diet composition., 299 (2): 231-253.

    Castro, P., Valiela, I., and Freitas, H., 2007. Eutrophication in Portuguese estuaries evidenced by15N of macrophytes., 351: 43-51.

    Cheng, Q. Q., Lu, D. R., and Ma, L., 2005. Morphological differences between close populations discernible by multivariate analysis: A case study of genus(Teleostei: Clupeiforms)., 18 (2): 187-192.

    Cheng., W. X., and Tang, W. Q., 2011. Some phenotypic varieties between different ecotypes ofin the Yangtze River., 46 (5): 33-40.

    Fertig, B., O’Neil, J. M., Beckert, K. A., Cain, C. J., Needham, D. M., Carruthers, T. J. B., and Dennison, W. C., 2013. Elucidating terrestrial nutrient sources to a coastal lagoon, Chincoteague Bay, Maryland, USA., 116: 1-10.

    Fuji, T., Kasai, A., Suzuki, K. W., Ueno, M., and Yamashita, Y., 2011. Migration ecology of juvenile temperate seabass Lateolabrax japonicus: A carbon stable isotope approach., 78 (7): 2010-2025.

    Grall, I., Le, Loc’h, F., Guyonnet, B., and Riera, P., 2006. Community structure and food web based on stable isotopes (15N and13C) analysis of a North Eastern Atlantic maerl bed., 338 (1): 1- 15.

    Gu, B., Schell, D. M., Frazer, T., Hoyer, M., andChapman, F. A., 2001.Stable carbon isotope evidence for reduced feeding of Gulf of Mexico sturgeon during their prolonged river residence period., 53 (3): 275-280.

    Jacob, U., Mintenbeck, K., Brey, T., Knust, R., and Beyer, K., 2005. Stable isotope food web studies: A case for standardized sample treatment., 287: 251- 253.

    Karube, Z., Sakai, Y., Takeyama, T., Okuda, N., Kohzu, A., Yoshimizu, C., Nagata, T., and Tayasu, I., 2010. Carbon and nitrogen stable isotope ratios of macroinvertebrates in the littoral zone of Lake Biwa as indicators of anthropogenic activities in the watershed., 25 (4): 847-855.

    Kline, T. C., Wilson, W. J., and Goering, J. J., 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska., 55 (6): 1494-1502.

    Lake, J. L., McKinney, R. A., Osterman, F. A, Pruell, R. J, Kiddon, J., Ryba, S. A., and Libby, A. D., 2001. Stable nitrogen isotopes as indicatiors of anthropogenic activities in small freshwater systems., 58 (5): 870-878.

    Lebreton, B., Richard, P., Parlier, E. P., Guillou, G., and Blanchard, G. F., 2011. Trophic ecology of mullets during their spring migration in a European saltmarsh: A stable isotope study.,91 (4): 502-510.

    Le Loc’h, F., and Hily, C., 2005. Stable carbon and nitrogen isotope analysis of Nephrops norvegicus/Merluccius merluccius fishing grounds in the Bay of Biscay (NE Atlantic)., 62 (1): 123- 132.

    Luo, B. Z, Xue, P., Lu, J. W., and Huang, S. F., 1992.Impact of the Three Gorges Project on the fishery of the Changjiang estuary and adjacent waters., 33: 341-351.

    McClelland, J. W., Valiela, I., and Michener, R. H., 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds.,42 (5): 930-937.

    Minagawa, M., and Wada, E., 1984. Stepwise enrichment of15N along food chains: further evidence and the relation between15N and animal age.,48 (5): 1135-1140.

    Nixon, S. W., Buckley, B. A., Granger, S., L., Entsua-Mensah, M., Ansa-Asare, O., White, M. J., Mckinney, R. A., and Mensah, E., 2007.Anthropogenic enrichment and nutrients in some tropical lagoons of Ghana, West Africa., 17 (sp5): S144-S164.

    Peterson, B. J., and Fry, B., 1987. Stable isotopes in ecosystem studies., 18: 291- 320.

    Post, D. M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions., 83(3): 703-718.

    Sackett, W. M., and Thompson, R. R., 1963. Isotopic organic carbon composition of recent continental derived clastic sediments of eastern Gulf Coast, Gulf of Mexico., 47 (3): 525-531.

    Vander Zanden, M. J., and Rasmussen, J. B., 2001. Variation in15N and13C trophic fractionation: implications for aquatic food web studies., 46 (8): 2061- 2066.

    Vizzini, S., and Mazzola, A., 2006. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area., 368 (2): 723-731.

    Walker, J. L., Potter, C. W., and Macko, S. A., 1999. The diets of modern and historic bottlenose dolphin populations reflected through stable isotopes., 15 (2): 335- 350.

    Wang, D. T., Yang, J., Jiang, T., Liu, H. B., and Shen, X. Q., 2012. A comparative study of the morphology of different geographical populations of., 36 (1): 79-90.

    Wang, Y. Y., Yu, X. B., Zhang, L., and Xu, J., 2009. Food web structure of Poyang Lake during the dry season by stable carbon and nitrogen isotopes analysis., 29 (3): 1181-1188.

    Whitehead, P., Nelson, G., and Wongratana, T., 1988. FAO species catalogue. Clupeoid fishes of the world (Suborder Clupeoidei). Part 2. Engraulididae., 125 (7): 460-475.

    Xu, J., Xie, P., Zhang, M., and Yang, H., 2005. Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake., 541 (1): 215-220.

    Xu, Z. Q., Ge, J. C., Huang, C., Dou, H. X., Pan, J. L., and Xia, A. J., 2009. Taxonomy of short jaw tapertail anchovyby jaw length and mitochondrial Cytochrome b gene analysis., 24 (3): 243-246.

    Yang, J., Arai T., Liu, H., Miyazaki, N., and Tsukamoto, K., 2006. Reconstructing habitat use ofandof the Yangtze River estuary, and ofof Taihu Lake, based on otolith strontium and calcium., 69 (4): 1120-1135.

    Yuan, C. M., Qin A. L., Liu, R. H., and Lin J. B., 1980. On the classification of the anchovies,from the lower Yangtze River and the southeast coast of China., 3: 67-82.

    Yuan, C. M., 1987. Spawning migration of Chinese anchovy., 12: 1-3.

    Zhang, M. Y., Xu, D. P., Liu, K., and Shi, W. G., 2005. Studies on biological characteristics and change of resource ofSchlegel in the lower reaches of the Yangtze River., 14 (6): 694- 698.

    Zhuang, P., Luo, G., Zhang, T., Zhang, L. Z., Liu, J. Y., Feng, G. P., and Hou, J. L., 2010. Food comparison among juvenileand other six economic fishes in the Yangtze estuary., 30 (20): 5544-5554.

    (Edited by Qiu Yantao)

    DOI 10.1007/s11802-015-2611-3

    ISSN 1672-5182, 2015 14 (6): 1053-1058

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    (March 3, 2014; revised April 21, 2014; accepted August 25, 2015)

    * Corresponding author. E-mail: wqtang@shou.edu.cn

    天堂中文最新版在线下载| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影小说| 亚洲av男天堂| 777米奇影视久久| 爱豆传媒免费全集在线观看| 丰满乱子伦码专区| www.熟女人妻精品国产| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 久久久久国产精品人妻一区二区| 日韩中文字幕欧美一区二区 | 中文字幕制服av| 精品少妇一区二区三区视频日本电影 | 亚洲成人一二三区av| 极品少妇高潮喷水抽搐| 极品少妇高潮喷水抽搐| 尾随美女入室| 你懂的网址亚洲精品在线观看| 如日韩欧美国产精品一区二区三区| 亚洲av成人精品一二三区| 免费久久久久久久精品成人欧美视频| 人人澡人人妻人| 久久精品国产综合久久久| 免费黄色在线免费观看| 妹子高潮喷水视频| 久久久国产欧美日韩av| a级片在线免费高清观看视频| 久久精品人人爽人人爽视色| 叶爱在线成人免费视频播放| 交换朋友夫妻互换小说| 成人国产麻豆网| 又大又黄又爽视频免费| 日韩av不卡免费在线播放| 成人国语在线视频| 在线观看美女被高潮喷水网站| 精品少妇内射三级| 777久久人妻少妇嫩草av网站| 婷婷色av中文字幕| 精品亚洲成国产av| 在线精品无人区一区二区三| 大话2 男鬼变身卡| 99热国产这里只有精品6| 69精品国产乱码久久久| 成人国产麻豆网| 日韩大片免费观看网站| 伦理电影免费视频| 免费观看无遮挡的男女| 国产成人免费无遮挡视频| 久久国产亚洲av麻豆专区| 亚洲国产色片| 一二三四在线观看免费中文在| 建设人人有责人人尽责人人享有的| 欧美成人午夜精品| 蜜桃国产av成人99| 涩涩av久久男人的天堂| 丁香六月天网| 久久久国产欧美日韩av| 国产免费又黄又爽又色| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 久久精品人人爽人人爽视色| 波野结衣二区三区在线| 欧美日韩一区二区视频在线观看视频在线| 国产精品偷伦视频观看了| 国产精品三级大全| 日本欧美国产在线视频| 秋霞伦理黄片| 久久精品亚洲av国产电影网| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 26uuu在线亚洲综合色| 亚洲精品国产一区二区精华液| 热99国产精品久久久久久7| 丝袜喷水一区| 天堂中文最新版在线下载| 亚洲综合色网址| 国产精品嫩草影院av在线观看| 国产精品久久久av美女十八| 精品福利永久在线观看| 亚洲欧洲日产国产| 久久人人爽人人片av| 国产成人午夜福利电影在线观看| 欧美精品一区二区免费开放| 男男h啪啪无遮挡| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区黑人 | 欧美成人精品欧美一级黄| 纵有疾风起免费观看全集完整版| 久久久精品国产亚洲av高清涩受| 综合色丁香网| 午夜精品国产一区二区电影| 叶爱在线成人免费视频播放| 各种免费的搞黄视频| 中文乱码字字幕精品一区二区三区| 久久久久久人人人人人| 老司机影院毛片| 亚洲美女视频黄频| www日本在线高清视频| 亚洲国产看品久久| 亚洲精品,欧美精品| 看免费av毛片| 涩涩av久久男人的天堂| 久久久亚洲精品成人影院| 男女国产视频网站| 性色av一级| 岛国毛片在线播放| 99久久中文字幕三级久久日本| 又黄又粗又硬又大视频| 精品视频人人做人人爽| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 成人二区视频| 黑丝袜美女国产一区| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 中文字幕av电影在线播放| 伊人久久国产一区二区| 欧美xxⅹ黑人| 激情五月婷婷亚洲| 久久久久久人妻| 大香蕉久久网| 青草久久国产| 国产激情久久老熟女| 啦啦啦在线免费观看视频4| 下体分泌物呈黄色| 午夜影院在线不卡| 在线天堂中文资源库| 最新的欧美精品一区二区| 日韩精品有码人妻一区| 国产成人91sexporn| 亚洲一级一片aⅴ在线观看| 国产人伦9x9x在线观看 | 黑人巨大精品欧美一区二区蜜桃| 午夜福利一区二区在线看| 日韩,欧美,国产一区二区三区| 女性生殖器流出的白浆| 叶爱在线成人免费视频播放| 欧美精品人与动牲交sv欧美| 欧美精品一区二区大全| 国产一区二区在线观看av| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 制服诱惑二区| 亚洲四区av| 宅男免费午夜| av片东京热男人的天堂| 国产成人aa在线观看| 99国产精品免费福利视频| 少妇人妻 视频| 又黄又粗又硬又大视频| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 麻豆乱淫一区二区| 色网站视频免费| 亚洲综合色网址| 丰满饥渴人妻一区二区三| av有码第一页| 日韩av免费高清视频| 三级国产精品片| 国产在线免费精品| 多毛熟女@视频| 国产精品蜜桃在线观看| 午夜福利在线观看免费完整高清在| 黑人猛操日本美女一级片| 久久久久久人人人人人| 久久免费观看电影| 亚洲成人手机| 欧美激情 高清一区二区三区| 成人国产麻豆网| 9热在线视频观看99| 久久精品国产亚洲av涩爱| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| av天堂久久9| 亚洲图色成人| 午夜日本视频在线| 午夜日韩欧美国产| 人妻 亚洲 视频| 精品国产乱码久久久久久小说| 亚洲综合精品二区| 欧美黄色片欧美黄色片| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 国产男女超爽视频在线观看| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看 | 亚洲精品久久成人aⅴ小说| 91国产中文字幕| 色播在线永久视频| 免费看不卡的av| 人人妻人人澡人人看| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| 亚洲av.av天堂| 少妇 在线观看| 女人久久www免费人成看片| av网站在线播放免费| 欧美 日韩 精品 国产| 满18在线观看网站| 亚洲色图综合在线观看| 人妻 亚洲 视频| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| av有码第一页| 中国国产av一级| 亚洲av在线观看美女高潮| 老鸭窝网址在线观看| av在线播放精品| 亚洲国产看品久久| 亚洲av.av天堂| 丰满饥渴人妻一区二区三| 你懂的网址亚洲精品在线观看| 丰满迷人的少妇在线观看| 老女人水多毛片| 国产精品国产三级专区第一集| 天天躁日日躁夜夜躁夜夜| a级片在线免费高清观看视频| 国产97色在线日韩免费| 久久人人爽人人片av| 捣出白浆h1v1| 亚洲av.av天堂| 天天躁日日躁夜夜躁夜夜| 99久久人妻综合| 精品一品国产午夜福利视频| 十八禁网站网址无遮挡| 国产国语露脸激情在线看| videossex国产| 久久精品国产鲁丝片午夜精品| 国产成人精品福利久久| 日本午夜av视频| 伦理电影免费视频| 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| www.av在线官网国产| 一级片免费观看大全| 18禁裸乳无遮挡动漫免费视频| 一本久久精品| 极品少妇高潮喷水抽搐| 国产高清不卡午夜福利| 最新的欧美精品一区二区| 国产精品三级大全| 久久久久网色| 老汉色∧v一级毛片| 欧美在线黄色| 九草在线视频观看| 久久久久久久久久久免费av| 免费高清在线观看视频在线观看| 亚洲欧洲国产日韩| 国产精品欧美亚洲77777| 午夜91福利影院| 一区二区三区激情视频| 午夜影院在线不卡| 国产在线免费精品| 国产精品成人在线| 美女国产视频在线观看| 亚洲婷婷狠狠爱综合网| 高清在线视频一区二区三区| 欧美日韩成人在线一区二区| 亚洲成人手机| 欧美+日韩+精品| 精品国产一区二区久久| 亚洲精品在线美女| 电影成人av| 国产av国产精品国产| 男女无遮挡免费网站观看| 69精品国产乱码久久久| 精品少妇一区二区三区视频日本电影 | 在线观看国产h片| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 99久久精品国产国产毛片| 考比视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久精品夜色国产| 久久女婷五月综合色啪小说| 中国国产av一级| 一个人免费看片子| 最黄视频免费看| 九色亚洲精品在线播放| 国产av精品麻豆| 亚洲欧洲精品一区二区精品久久久 | 亚洲内射少妇av| 欧美 日韩 精品 国产| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| videosex国产| 精品第一国产精品| 尾随美女入室| 久久午夜综合久久蜜桃| 18+在线观看网站| 日韩av免费高清视频| videos熟女内射| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 2022亚洲国产成人精品| 久久久久网色| 纵有疾风起免费观看全集完整版| 老司机影院成人| 熟女电影av网| 午夜日韩欧美国产| 夫妻性生交免费视频一级片| 午夜福利视频精品| 大香蕉久久网| 国产片内射在线| 亚洲三级黄色毛片| 可以免费在线观看a视频的电影网站 | 日本欧美视频一区| 国产黄频视频在线观看| 亚洲精品在线美女| 制服诱惑二区| 如何舔出高潮| 亚洲天堂av无毛| 韩国高清视频一区二区三区| 91国产中文字幕| 在线免费观看不下载黄p国产| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 在线精品无人区一区二区三| 久久影院123| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 亚洲精品第二区| 国产福利在线免费观看视频| av女优亚洲男人天堂| 国产成人精品久久久久久| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| av卡一久久| www.av在线官网国产| xxxhd国产人妻xxx| 捣出白浆h1v1| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 9色porny在线观看| 考比视频在线观看| 国产精品一区二区在线不卡| 人人妻人人爽人人添夜夜欢视频| 综合色丁香网| 欧美激情极品国产一区二区三区| 午夜福利视频精品| 久久久久国产网址| 日韩成人av中文字幕在线观看| 欧美黄色片欧美黄色片| 精品一区在线观看国产| 久久婷婷青草| 伦理电影免费视频| 久久婷婷青草| 欧美精品av麻豆av| 深夜精品福利| 国产一区二区 视频在线| 赤兔流量卡办理| 免费久久久久久久精品成人欧美视频| 人妻 亚洲 视频| 黑人猛操日本美女一级片| 午夜免费观看性视频| 欧美中文综合在线视频| 成人午夜精彩视频在线观看| 男女国产视频网站| 欧美黄色片欧美黄色片| 国产综合精华液| 国产精品二区激情视频| 一区二区三区四区激情视频| 亚洲经典国产精华液单| videossex国产| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 波野结衣二区三区在线| 高清欧美精品videossex| av.在线天堂| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| 国产av国产精品国产| 精品酒店卫生间| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 精品第一国产精品| 九草在线视频观看| 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看| av在线播放精品| 成人免费观看视频高清| 亚洲精品av麻豆狂野| 亚洲国产日韩一区二区| 91精品伊人久久大香线蕉| 亚洲在久久综合| 侵犯人妻中文字幕一二三四区| 亚洲激情五月婷婷啪啪| 一边摸一边做爽爽视频免费| 91国产中文字幕| 999精品在线视频| 观看av在线不卡| 国产成人欧美| 菩萨蛮人人尽说江南好唐韦庄| av线在线观看网站| 最近最新中文字幕免费大全7| 丁香六月天网| 日韩av免费高清视频| 两个人免费观看高清视频| 有码 亚洲区| 久久这里有精品视频免费| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 国产成人av激情在线播放| 99国产精品免费福利视频| 免费观看无遮挡的男女| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 免费高清在线观看视频在线观看| 18禁动态无遮挡网站| 亚洲美女视频黄频| 视频区图区小说| www.自偷自拍.com| 成人国产av品久久久| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版| 日韩欧美精品免费久久| 国产成人一区二区在线| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 一区在线观看完整版| 免费黄色在线免费观看| 欧美日韩一区二区视频在线观看视频在线| av国产精品久久久久影院| 欧美变态另类bdsm刘玥| 日日撸夜夜添| 国产成人欧美| 免费人妻精品一区二区三区视频| 老司机亚洲免费影院| 成人亚洲精品一区在线观看| 成人漫画全彩无遮挡| 久久婷婷青草| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区久久| 成年人午夜在线观看视频| 亚洲精品美女久久av网站| 91久久精品国产一区二区三区| 国产xxxxx性猛交| 最新中文字幕久久久久| 另类精品久久| 国产黄频视频在线观看| 亚洲精品在线美女| 中文欧美无线码| 另类精品久久| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 久久人妻熟女aⅴ| 国产精品 欧美亚洲| 在线观看人妻少妇| 最近最新中文字幕免费大全7| 国产在线一区二区三区精| 国产成人91sexporn| 如何舔出高潮| 国产精品无大码| 在线亚洲精品国产二区图片欧美| 黄片无遮挡物在线观看| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 9热在线视频观看99| 夫妻性生交免费视频一级片| 国产精品三级大全| 香蕉精品网在线| 中文字幕人妻丝袜制服| 精品一区在线观看国产| 自线自在国产av| 母亲3免费完整高清在线观看 | 精品卡一卡二卡四卡免费| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 免费日韩欧美在线观看| 在线精品无人区一区二区三| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 国产男女超爽视频在线观看| 91久久精品国产一区二区三区| 日本欧美国产在线视频| 欧美黄色片欧美黄色片| 日日撸夜夜添| 黄网站色视频无遮挡免费观看| 久久国产精品大桥未久av| 伦理电影免费视频| 国产乱人偷精品视频| 男女边摸边吃奶| 丰满少妇做爰视频| 久久av网站| 亚洲欧洲日产国产| 国产精品不卡视频一区二区| 七月丁香在线播放| 国产成人aa在线观看| 免费高清在线观看日韩| 精品国产国语对白av| 欧美日本中文国产一区发布| 色哟哟·www| 亚洲三级黄色毛片| 只有这里有精品99| 99久久综合免费| 久久国产精品男人的天堂亚洲| 视频在线观看一区二区三区| 久久99热这里只频精品6学生| 亚洲图色成人| 老鸭窝网址在线观看| 久久久久久久精品精品| www.自偷自拍.com| 边亲边吃奶的免费视频| 中文字幕最新亚洲高清| 在线观看www视频免费| 大香蕉久久网| 久久久国产一区二区| 亚洲三区欧美一区| 欧美最新免费一区二区三区| 久久久精品94久久精品| 999精品在线视频| 免费观看在线日韩| 中文乱码字字幕精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜制服| 国产激情久久老熟女| 国产亚洲一区二区精品| www.av在线官网国产| xxx大片免费视频| 国产精品香港三级国产av潘金莲 | 99久久人妻综合| 亚洲欧洲日产国产| 中文字幕另类日韩欧美亚洲嫩草| 久久精品久久精品一区二区三区| av视频免费观看在线观看| 哪个播放器可以免费观看大片| 人妻系列 视频| 男女啪啪激烈高潮av片| 男人爽女人下面视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 美女福利国产在线| 免费大片黄手机在线观看| 日本猛色少妇xxxxx猛交久久| 久久久久久久亚洲中文字幕| 国产不卡av网站在线观看| 多毛熟女@视频| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 又黄又粗又硬又大视频| 国产探花极品一区二区| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| www.精华液| 久久鲁丝午夜福利片| 人人澡人人妻人| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 男女啪啪激烈高潮av片| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 日韩视频在线欧美| 青青草视频在线视频观看| 波野结衣二区三区在线| 女性被躁到高潮视频| 91aial.com中文字幕在线观看| 三上悠亚av全集在线观看| 一区二区av电影网| 青春草视频在线免费观看| √禁漫天堂资源中文www| 久久久久精品人妻al黑| 亚洲欧美一区二区三区久久| 国产精品 国内视频| 久久久久久人人人人人| 久久久久国产一级毛片高清牌| 国产精品不卡视频一区二区| 亚洲色图综合在线观看| 亚洲第一区二区三区不卡| 夜夜骑夜夜射夜夜干| 视频在线观看一区二区三区| 飞空精品影院首页| 99热网站在线观看| 精品人妻在线不人妻| 亚洲国产精品一区三区| 亚洲经典国产精华液单| 国产 精品1| 国产极品粉嫩免费观看在线| 精品一区二区三卡| 国产综合精华液| 免费高清在线观看日韩| 97人妻天天添夜夜摸| 日韩中字成人| 美女中出高潮动态图| av一本久久久久| 久久精品人人爽人人爽视色| 欧美日韩精品网址| 精品国产乱码久久久久久小说| 久久国产精品男人的天堂亚洲| 久久热在线av| 大香蕉久久网| 在线 av 中文字幕| 亚洲熟女精品中文字幕| 波多野结衣av一区二区av| 国产一区二区 视频在线| 国产有黄有色有爽视频| 9热在线视频观看99| 亚洲色图 男人天堂 中文字幕| 丁香六月天网| av天堂久久9| 国产av精品麻豆| 一级a爱视频在线免费观看| 成人毛片60女人毛片免费| 另类精品久久| 最近最新中文字幕免费大全7| 人妻 亚洲 视频| 2018国产大陆天天弄谢| 国产又爽黄色视频| 久久人人爽av亚洲精品天堂|