• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Lower Order Method of Modal Parameter Estimation for Offshore Structures Using Reconstructed Signals

    2015-10-14 13:08:23LIUFushunQINJunfeiLIHuajunLUHongchaoandWANGShuqing
    Journal of Ocean University of China 2015年6期

    LIU Fushun, QIN Junfei, LI Huajun, LU Hongchao, and WANG Shuqing

    ?

    An Improved Lower Order Method of Modal Parameter Estimation for Offshore Structures Using Reconstructed Signals

    LIU Fushun*, QIN Junfei, LI Huajun, LU Hongchao, and WANG Shuqing

    ,,266100,

    For modal parameter estimation of offshore structures, one has to deal with two challenges: 1) identify the interested frequencies, and 2) reduce the number of false modes. In this article, we propose an improved method of modal parameter estimation by reconstructing a new signal only with interested frequencies. The approach consists of three steps: 1) isolation and reconstruction of interested frequencies using FFT filtering, 2) smoothness of reconstructed signals, and 3) extraction of interested modal parameters in time domain. The theoretical improvement is that the frequency response function (FRF) of filtered signals is smoothed based on singular value decomposition technique. The elimination of false modes is realized by reconstructing a block data matrix of the eigensystem realization algorithm (ERA) using the filtered and smoothed signals. The advantage is that the efficiency of the identification process of modal parameters will be improved greatly without introducing any false modes. A five-DOF mass-spring system is chosen to illustrate the procedure and demonstrate the performance of the proposed scheme. Numerical results indicate that interested frequencies can be isolated successfully using FFT filtering, and unexpected peaks in auto spectral density can be removed effectively. In addition, interested modal parameters, such as frequencies and damping ratios, can be identified properly by reconstructing the Hankel matrix with a small dimension of ERA, even the original signal has measurement noises.

    modal parameter estimation; interested frequency; frequency response function (FRF)

    1 Introduction

    Accurate modal parameters such as modal frequencies and mode shapes are essential to model update and damage detection of offshore structures (Li, 2008; Liu, 2012), especially for poor spatial coverage of measured modes (Liu, 2011; Liu and Li, 2012, 2013). Only lower order modes could be excited by environmental forces for real structures and measured signals are inevitably contaminated with noise, Thus, one has to deal with two challenges: 1) how to identify genuine (interested) modal frequencies from false ones, and 2) how to reduce the influence of measurement noise and improve the efficiency of identification procedure of modal parameters.

    Modal parameter identification involves estimating the modal parameters of a structural system from measured input-output data (Skingle and Urgueira, 1997; Ewins, 2009). Over the past thirty years, many algorithms have been developed to estimate modal parameters based upon the measured frequency response function (FRF) or equivalent impulse response function (IRF). The problem is that the measured FRF and IRF may not be clear and accurate enough because of measurement noises. Tradi-tional method of identifying genuine physical modes is that the computational model order is set higher than the true system order with the so-called ‘noise modes’ being absorbed (Allemang and Brown, 1998). Among many researchers proposing the usage of an over-determined system (, one with the order higher than that of a physical system) for improving the accuracy of parameter identification in noisy situations, Braun and Ram (1987) described the strategy to determine the necessary extent of over determination and the procedure for distinguishing true system modes. By presenting an efficient perturbation method based on the singular value decomposition, they also demonstrated that such an over determination is both possible and useful in the frequency domain.

    In contrast to the classical method, setting a higher model order to absorb noise in the modal parameter estimate, the present proposed procedure is to isolate interested frequencies by performing signal filtering, reconstructing a new signal, and applying a time domain technique for modal parameter estimation. A low-pass filter can be readily applied to perform signal filtering, but can only be used for noise cancelation with a priori known bandwidth. Another important element in the modern theory of statistical signal extraction was proposed by Kalman (1960) and Kalman and Bucy (1961), which describes the filtering and forecasting of time-varying linear stochastic systems in discrete and continuous times. But the problem is how to adjust the Kalman filter if there is no information about the accuracy of measurements and no possibility to determine and select a better system model (Jwo and Chang, 2008). Pickrel (1996) focused on the assessment of data quality and used the singular value decomposition (SVD) technique to estimate the effects of frequency band, number of measurement locations and signal-to-noise ratio on measured response. Sanliturk and Cakar (2005) presented a method based on singular value decomposition (SVD) to eliminate noise from measured FRFs and to improve the quality of measured data. Hu(2010) proposed a different approach from the tradi- tional methods for estimating modal parameters from noisy IRF. But no discussion was presented about how to reconstruct a signal only with components of interested frequencies.

    In this study, the Eigensystem Realization Algorithm (ERA) (Huang and Pappa, 1985) is used for the modal parameter identification of a system and special attention is paid to the construction of block data matrix aiming at improving computational efficiency. Synthesized measurements of a 5 degree-of-freedom (DOF) mass-spring-dashpot system are used to demonstrate the performance, and illustrate the procedure of the proposed scheme.

    2 Signal Reconstruction with Interested Frequencies

    Assume a noisy signal vector in which the noise is created and correlated with the signal,,

    Convert the signal to the frequency domain using the Fourier transformation,

    whereis the frequency in radian, and

    . (3)

    Assume that the original signal() consists of a number of individual components in the frequency domain,(1,),(2,), L, then Eq. (2) can be rewritten as

    whereis the number of components of the original signal in the frequency domain.

    Define a window, such as Hanning window with 50% overlap, in the frequency domain as(). Multiplying()with the FRF, the filtered signal can be found as

    and the filtered signal can be expressed as

    , (6)

    where |()| is the absolute value of(), and() is the phase angle.

    Theoretically, the Hankel matrix, corresponding to the noisy but band filtered signaly() in Eq. (6), can be partitioned into two parts

    , (8)

    in whichy,srepresents theth measured signal.

    The SVD technique is also utilized for the estimation of the rank of the matrixin the process of noise elimination from measured FRFs,,

    whereandare the orthogonal matrices,is the real diagonal matrix whose diagonalelementsσare called the singular values of, and the superscript ‘T’ denotes the transpose of a matrix. For measured data, singular values can become very small but will never be zero due to random errors and implemented band filtering; thus Eq. (9) can be changed to

    . (10)

    , (11)

    with,being the number of rows and columns, respectively.

    After a band-filtered and noise-removed signal is obtained, then move the window to a new position which covers the other interested-order frequency one by one; thus one can construct a new signal with only interested frequencies.

    3 Improved Eigensystem Realization Algorithm

    Using the traditional Eigensystem Realization Algorithm to obtain expected modal parameters,andhave to be assumed very large. But the assumption will generate unexpected false modes and reduce the efficiency of ERA. Therefore, the Hankel matrix with proper dimensions and desired modal information is constructed based on Eq. (12),

    . (14)

    When several sensors are used for modal identification simultaneously, the nearest matrixshould be changed to be

    . (16)

    , (18)

    , (19)

    is a minimum realization, where ? represents a quantity estimate. The desired modal damping rates and damped natural frequencies are simply the real and imaginary parts of eigenvalues after the transformation from the discrete-time domain to the continuous-time domain using the relationship.

    4 Numerical Test: A Five-DOF Mass-Stiffness System

    A five-DOF mass-spring system, as shown in Fig.1, was chosen for a numerical test to illustrate the procedure and demonstrate the performance of the proposed scheme. Uniform mass and stiffness coefficients were taken to bem=60kg andk=2.3×107Nm?1. In addition, dashpots were provided and the uniform damping coefficient wasc=100Nsm?1. The coordinates of the five-DOF model are denoted byxwith1at the fixed end and5at the freeend. Performing the eigenvalue analysis of the system, five modal frequencies are obtained: 13.139, 63.756, 116.97, 159.88, 187.54Hz, and the corresponding damping ratios: 1.7947×10?4, 8.7085×10?4, 15.977×10?4, 21.838×10?4, 25.616× 10?4.

    In this study, first whether all components could be isolated is investigated. Then the signal is reconstructed to verify the approach. Finally the proposed method is applied on the isolation of some interested frequencies, including the usage of measured data corrupted with noise.

    Fig.1 A five-DOF system.

    4.1 Signal Reconstruction by All Frequency Components

    To demonstrate the proposed scheme, initial investigation was conducted on whether all the frequencies could be isolated and a proper new signal could be reconstructed. In this test, first the five frequencies were isolated step by step, and then a new signal was constructed and compared with the simulated signal. A total of 2000 simulated points were used to represent the signal with the 500Hz sampling rate.

    Using FFT band filtering, it is first investigated that whether the first frequency component of signal at1=13.139Hz could be isolated. To reflect the fact that the exact frequency of a system is never known in practice, the filter is designed with a center frequency that is different from the known value1=13.139Hz. Here it is assumed to be 13.270Hz, which is 1% higher than the true value. The pass band has a frequency range from 11.77 to 14.77Hz, and thus the first frequency component is inside the band. The requirement for determining the center frequency is that the chosen window should cover the interested frequency. Considering the interested frequency is usually unknown in practice, an alternative is to use a wider window initially.

    Fig.2 shows the isolated signal in the frequency domain (auto spectral density with frequency). One can conclude from Fig.2 that the FFT filter can isolate the first frequency component while unexpected peaks appear because of the roll-off of the filter around a cut-off frequency. Likewise, one can isolate signals at four other frequencies. Combining the isolated signals, one can get a new reconstructed signal. Fig.3 shows the auto spectral density for the signal reconstructed by the five isolated components, which displays the consistency between the exact and filtered signals but the opposite in phase angle. Besides these, Fig.3 also shows unexpected peaks corresponding to other frequencies of the auto spectral density.

    Fig.2 Auto spectral density of the isolated component f1=13.139Hz.

    To smooth FRFs of filtered signals in the frequency domain, it is first needed to determine the model order of smoothed signals, which is by estimating the rank of a related Hankel matrix as shown in Eq. (8) if the singular values of the matrix are ordered sequentially from the largest to the smallest. The ordered singular values associated with the Hankel matrix of size=750 are plotted in Fig.4, where each singular value is normalized by the first (largest) singular value. For a system with five significant frequencies, the rank of the Hankel matrix associated with the filtered signal must be equal to 10, which is twice the number of modes of the system. Applying Eqs. (8) to (14) for the band filtered signal in Fig.3, one can obtain the smoothed FRFs. Fig.5 clearly demonstrates the effectiveness of the proposed method.

    Fig.4 Normalized singular values of Hankel matrix.

    4.2 Signal Reconstruction by Interested-Order Frequency Components

    As an example, the first two frequencies are used for damage detection and model updating. A new signal is reconstructed only with these two frequencies. Based on the same consideration on isolating frequency1=13.139Hz, the second frequency2=63.756Hz can be isolated as discussed above. The only difference is that the model order in this example should be equal to 4. Implementing the proposed approach, one can reconstruct a new signal as shown in the frequency domain in Fig.6. Based on Eq. (14), the Hankel matrix with a dimension of 4×4can be used as the ERA block data matrix. Numerical results indicate that the first two interested frequencies and damping ratios can be calculated accurately.

    4.3 Modal Parameter Identification

    In reality, measurements always contain errors. The remaining numerical study focuses on implementing the proposed method with corrupted signals which are generated by adding a Gaussian white noise to a noise-free signal. The level of the white noise is quantified by a stated percentage, defined as the ratio of the standard deviation of the white noise to that of the no noise signal. In this example, it is assumed that the white noise level is 5% and the interested order of frequencies is the first two frequencies as discussed above. Fig.7 is the comparisons of magnitudes and phase angles between the assumed noisy signal, and the filtered and smoothed signal after 10 iterations. One can also find that the interested-frequencies could be isolated and smoothed effectively even the measured signal contains a noise level of 5%. The estimated frequencies are 13.140Hz and 63.756Hz, which are very close to their true values; and the estimated damping ratios are 4.1656×10?4and 8.635×10?4, respectively. Though the second damping ratio is estimated properly, the first one shows clear influence by measurement noise.

    Further investigation is conducted to evaluate the performance of damping ratio estimation with different noise levels varying from 1% to 10% with an interval of 1%. Fig.8 shows the comparison of the first damping ratio between the preset and the estimated value and the estimated first damping ratio displays clear correspondence to increased noise levels.

    Fig.8 Estimation of the first damping ratio and change in noise level.

    5 Conclusions

    Because of measurement noise and limitation of excitation techniques, accurately estimating model parameters has been a challenging task. An improved estimate method is proposed by reconstructing a new signal only with interested frequencies. The approach includes three steps: 1) isolation and reconstruction of interested frequencies using FFT filtering by defining a series of windows and pass bands, 2) FRF smoothness of the reconstructed signal by implementing the Cadzow’s algorithm for the structured low rank approximation (SLRA) on the Hankel matrix, and 3) extraction of interested model parameters using filtered and smoothed signals in the time domain. In implementing the method, it is found that choosing the bandwidth of a filter is not so strict comparing to the traditional FFT filtering. The only requirement is that the center frequency lies in the selected pass band. Numerical results for a 5-DOF mass-spring system indicate that even the true values of the model parameters of a test structure are not known, the interested frequencies can be isolated successfully using the FFT filtering, and unexpected peaks in auto spectral density can be removed effectively. In addition, interested model parameters, both frequencies and damping ratios, can be identified properly by reconstructing a small dimension Hankel matrix even the original signal has measurement noises.

    Acknowledgements

    The authors wish to acknowledge the financial support of the Excellent Youth Foundation of Shandong Scientific Committee (Grant no. JQ201512) and the National Natural Science Foundation of China (Grant nos. 51279188, 51479184, 51522906).

    Allemang, R. J., and Brown, D. L., 1998. A unified matrix polynomial approach to modal identification., 211 (3): 301-322.

    Braun, S., and Ram, Y. M., 1987. Time and frequency identification methods in over-determined systems., 1 (3): 245-257.

    Ewins, D. J., 2009.. Research Studies Press, Baldock, Hertfordshire, England, 576pp.

    Hu, S.-L. J., Bao, X. X., and Li, H. J., 2010. Model order determination and noise removal for modal parameter estimation., 24 (6): 1605-1620.

    Huang, J. N., and Pappa, R. S., 1985. An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction., 8 (5): 620-627.

    Jwo, D. J., and Chang, S. C., 2008. Application of optimization technique for GPS navigation Kalman filter adaptation. In:. Aspects of Theoretical and Methodological Issues, 227-234.

    Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME. Series D., 82: 35-45.

    Kalman, R. E., and Bucy, R. S., 1961. New results in linear filtering and prediction theory., 83: 95-107.

    Li, H. J., Liu, F. S., and Hu, S.-L. J., 2008. Employing incomplete complex modes for model updating and damage detection of damped structures., 51 (12): 2254-2268.

    Liu, F. S., 2011. Direct mode-shape expansion of a spatially incomplete measured mode by a hybrid-vector modification., 330 (18-19): 4633-4645.

    Liu, F. S., and Li, H. J., 2012. Rapid direct mode shape expansion for offshore jacket structures using a hybrid vector., 51 (1): 119-128.

    Liu, F. S., and Li, H. J., 2013. A two-step mode shape expansion method for offshore jacket structures with physical meaningful modeling errors., 63 (1): 26-34.

    Liu, F. S., Chen, Z. S., and Li, W., 2012. Non-iterative mode shape expansion for three-dimensional structures based on coordinate decomposition., 14 (3): 984-993.

    Pickrel, C. R., 1996. Estimating the rank of measured response data using SVD and principal response functions. Proceedings of the Second International Conference on Structural Dynamics Modeling, Test Analysis and Correlation DTA/NAFEMS, 89-100.

    Sanliturk, K. Y., and Cakar, O., 2005. Noise elimination from measured frequency response functions., 19: 615-631.

    Skingle, W. T., and Urgueira, A., 1997.. Research Studies Press, Taunton, Somerset, England, 488pp.

    (Edited by Xie Jun)

    DOI 10.1007/s11802-015-2438-y

    ISSN 1672-5182, 2015 14 (6): 969-974

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    (July 7, 2013; revised October 25, 2013; accepted August 24, 2015)

    * Corresponding author. Tel: 0086-532-66781672 E-mail: percyliu@ouc.edu.cn

    欧美黄色淫秽网站| 中文资源天堂在线| 国产精品永久免费网站| 免费在线观看成人毛片| a在线观看视频网站| 亚洲国产欧洲综合997久久, | 琪琪午夜伦伦电影理论片6080| 哪里可以看免费的av片| 国产精品自产拍在线观看55亚洲| 俺也久久电影网| 欧美中文综合在线视频| 女性被躁到高潮视频| 日本免费一区二区三区高清不卡| 视频区欧美日本亚洲| 一级作爱视频免费观看| 中文字幕久久专区| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 色精品久久人妻99蜜桃| 日本三级黄在线观看| 久久久久国产精品人妻aⅴ院| 色在线成人网| av视频在线观看入口| xxxwww97欧美| 搞女人的毛片| av欧美777| 日本a在线网址| 国产区一区二久久| 女性被躁到高潮视频| 18禁黄网站禁片免费观看直播| 久久中文字幕一级| 色av中文字幕| 亚洲人成网站高清观看| 亚洲国产欧美日韩在线播放| 黄片小视频在线播放| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站 | 免费看十八禁软件| www日本黄色视频网| 精品乱码久久久久久99久播| 欧美日韩中文字幕国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 欧美激情极品国产一区二区三区| 亚洲熟妇熟女久久| 深夜精品福利| 黄色女人牲交| 午夜福利一区二区在线看| 日本五十路高清| 成人国产综合亚洲| 国产亚洲精品久久久久久毛片| 91字幕亚洲| 亚洲欧美日韩无卡精品| 国产免费av片在线观看野外av| 长腿黑丝高跟| 欧美人与性动交α欧美精品济南到| 精品第一国产精品| 国产亚洲av高清不卡| 欧美午夜高清在线| 亚洲一卡2卡3卡4卡5卡精品中文| 91在线观看av| 久热爱精品视频在线9| 亚洲三区欧美一区| 欧美精品啪啪一区二区三区| 欧美绝顶高潮抽搐喷水| 精品久久蜜臀av无| 国内精品久久久久久久电影| 欧美久久黑人一区二区| 一级黄色大片毛片| 精品国产一区二区三区四区第35| 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影免费在线| xxx96com| 看免费av毛片| 国产黄片美女视频| 12—13女人毛片做爰片一| 欧美日本亚洲视频在线播放| 亚洲激情在线av| 免费高清在线观看日韩| 亚洲国产欧美一区二区综合| 国产国语露脸激情在线看| 国内精品久久久久久久电影| 亚洲免费av在线视频| svipshipincom国产片| 中文字幕最新亚洲高清| 在线观看舔阴道视频| 黄色成人免费大全| 午夜日韩欧美国产| 成人精品一区二区免费| 91大片在线观看| 窝窝影院91人妻| 国产精品亚洲美女久久久| 人人妻人人看人人澡| 国语自产精品视频在线第100页| www.自偷自拍.com| 黄色女人牲交| 亚洲无线在线观看| 久久久久九九精品影院| 久久久久久亚洲精品国产蜜桃av| 欧美一级毛片孕妇| 日韩欧美国产在线观看| 国产成人av激情在线播放| 中文字幕高清在线视频| 国语自产精品视频在线第100页| 国内少妇人妻偷人精品xxx网站 | 男人的好看免费观看在线视频 | 欧美日韩一级在线毛片| 欧美成人免费av一区二区三区| 精品久久久久久久久久免费视频| 好看av亚洲va欧美ⅴa在| 国产亚洲av高清不卡| 999久久久国产精品视频| 国产又色又爽无遮挡免费看| 国产精品二区激情视频| 亚洲狠狠婷婷综合久久图片| 久久久国产成人免费| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 国产一区二区在线av高清观看| 精品熟女少妇八av免费久了| 日韩欧美国产在线观看| 精品国产国语对白av| 一边摸一边做爽爽视频免费| 18禁黄网站禁片免费观看直播| 国产一区二区在线av高清观看| 久久亚洲真实| 一进一出抽搐动态| 国产av一区在线观看免费| 一本大道久久a久久精品| 国产精品1区2区在线观看.| 久久欧美精品欧美久久欧美| 国产精品免费一区二区三区在线| 欧美成人性av电影在线观看| 国产av又大| 色av中文字幕| 国产精品电影一区二区三区| 精品不卡国产一区二区三区| 嫩草影视91久久| 国产精品久久久久久精品电影 | 亚洲国产精品sss在线观看| 亚洲久久久国产精品| 欧美日韩乱码在线| 99久久国产精品久久久| 亚洲国产精品久久男人天堂| 波多野结衣巨乳人妻| 国产一级毛片七仙女欲春2 | 亚洲男人的天堂狠狠| 日日夜夜操网爽| 免费在线观看视频国产中文字幕亚洲| 又紧又爽又黄一区二区| 巨乳人妻的诱惑在线观看| 亚洲国产欧洲综合997久久, | 亚洲av片天天在线观看| 亚洲一区二区三区色噜噜| 亚洲国产精品999在线| 久久久水蜜桃国产精品网| 俺也久久电影网| 91麻豆av在线| 成人一区二区视频在线观看| 亚洲五月色婷婷综合| 国产又爽黄色视频| 亚洲人成77777在线视频| 嫁个100分男人电影在线观看| 国内久久婷婷六月综合欲色啪| 搡老熟女国产l中国老女人| 精品国产亚洲在线| 午夜福利一区二区在线看| 亚洲黑人精品在线| 日韩一卡2卡3卡4卡2021年| 国产人伦9x9x在线观看| 欧美日韩瑟瑟在线播放| ponron亚洲| 国产精品久久久久久精品电影 | 韩国av一区二区三区四区| 99久久久亚洲精品蜜臀av| 丰满的人妻完整版| 欧美成人性av电影在线观看| 亚洲免费av在线视频| 成人欧美大片| 黄色成人免费大全| 在线观看一区二区三区| 欧美日韩乱码在线| 国内精品久久久久久久电影| 中文字幕av电影在线播放| 亚洲精品在线美女| 久久亚洲精品不卡| 国产成人精品无人区| 日韩有码中文字幕| 久久午夜综合久久蜜桃| 成年版毛片免费区| 丁香欧美五月| 国内毛片毛片毛片毛片毛片| 久久这里只有精品19| 精品国产国语对白av| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 男人操女人黄网站| 黄片播放在线免费| 亚洲一区二区三区色噜噜| 国产精品香港三级国产av潘金莲| 欧美日韩亚洲综合一区二区三区_| 久99久视频精品免费| 最新美女视频免费是黄的| 色综合婷婷激情| 国产99白浆流出| 88av欧美| 桃红色精品国产亚洲av| 国产激情久久老熟女| 久久久久国产精品人妻aⅴ院| 久久欧美精品欧美久久欧美| 91成年电影在线观看| 欧美日韩一级在线毛片| 人妻丰满熟妇av一区二区三区| 欧美日韩黄片免| 免费高清视频大片| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| 麻豆久久精品国产亚洲av| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 一级毛片精品| 日本免费一区二区三区高清不卡| 国产欧美日韩精品亚洲av| 俺也久久电影网| 精品国产乱子伦一区二区三区| 久久久久久人人人人人| www.999成人在线观看| 真人一进一出gif抽搐免费| 最新美女视频免费是黄的| 欧美亚洲日本最大视频资源| 在线免费观看的www视频| 别揉我奶头~嗯~啊~动态视频| 国产熟女xx| 91字幕亚洲| 19禁男女啪啪无遮挡网站| 桃色一区二区三区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 久久中文字幕人妻熟女| av片东京热男人的天堂| 亚洲va日本ⅴa欧美va伊人久久| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频 | 日日夜夜操网爽| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 日本一区二区免费在线视频| 亚洲av成人一区二区三| 国产精品久久久av美女十八| 成人午夜高清在线视频 | 国产精品免费一区二区三区在线| 给我免费播放毛片高清在线观看| 免费在线观看日本一区| 亚洲精品一区av在线观看| 亚洲九九香蕉| 亚洲第一电影网av| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕精品免费在线观看视频| 亚洲专区中文字幕在线| 久久欧美精品欧美久久欧美| 日韩大尺度精品在线看网址| 久久久久久久久中文| 欧美日韩黄片免| 亚洲人成77777在线视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文字幕日韩| 国产一卡二卡三卡精品| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美| 亚洲三区欧美一区| АⅤ资源中文在线天堂| 在线av久久热| 国产亚洲精品久久久久久毛片| 亚洲无线在线观看| 99热这里只有精品一区 | 少妇被粗大的猛进出69影院| 国产成人影院久久av| 国产精品久久电影中文字幕| 白带黄色成豆腐渣| 99精品欧美一区二区三区四区| 国产不卡一卡二| 成人午夜高清在线视频 | 曰老女人黄片| 99精品欧美一区二区三区四区| 人人妻人人澡人人看| 黑人操中国人逼视频| 欧美在线黄色| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 日本免费一区二区三区高清不卡| or卡值多少钱| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费| 午夜免费成人在线视频| 久久精品国产亚洲av高清一级| 亚洲avbb在线观看| 少妇 在线观看| 88av欧美| 99热6这里只有精品| 亚洲最大成人中文| 久久精品国产清高在天天线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品一区二区www| 男人舔女人下体高潮全视频| 欧美色视频一区免费| 韩国av一区二区三区四区| 午夜福利一区二区在线看| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 天堂动漫精品| 两人在一起打扑克的视频| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 国产精品日韩av在线免费观看| 老司机午夜十八禁免费视频| 成年版毛片免费区| 亚洲av成人av| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| av有码第一页| 国产成人啪精品午夜网站| 欧美日韩黄片免| 制服丝袜大香蕉在线| 久久人妻av系列| 午夜影院日韩av| 日韩高清综合在线| 看片在线看免费视频| 美女午夜性视频免费| a在线观看视频网站| 精品高清国产在线一区| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久国产a免费观看| 国产区一区二久久| 欧美日韩瑟瑟在线播放| 欧美黄色片欧美黄色片| 久久久国产成人精品二区| 欧美成人午夜精品| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 国产成人一区二区三区免费视频网站| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看| 亚洲成av人片免费观看| 精品卡一卡二卡四卡免费| 欧美黑人精品巨大| 国产成人影院久久av| 精品高清国产在线一区| 精品国产一区二区三区四区第35| 欧美成狂野欧美在线观看| 国产熟女xx| 国产一卡二卡三卡精品| 在线看三级毛片| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 婷婷丁香在线五月| 国产一级毛片七仙女欲春2 | 亚洲一区二区三区不卡视频| 中文字幕人成人乱码亚洲影| 91国产中文字幕| 亚洲av成人一区二区三| 两个人免费观看高清视频| 99久久国产精品久久久| www日本在线高清视频| 国产精品二区激情视频| 老司机午夜福利在线观看视频| 黄网站色视频无遮挡免费观看| 亚洲狠狠婷婷综合久久图片| 最新美女视频免费是黄的| 亚洲精品一区av在线观看| 日韩高清综合在线| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 日韩有码中文字幕| 女性被躁到高潮视频| 亚洲国产欧洲综合997久久, | 国产精品久久久av美女十八| 大香蕉久久成人网| 在线观看舔阴道视频| 久久精品国产亚洲av香蕉五月| 午夜老司机福利片| www日本在线高清视频| 黄色视频不卡| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 国产激情欧美一区二区| 国产精品亚洲一级av第二区| 波多野结衣高清无吗| 黄片大片在线免费观看| 国产亚洲精品一区二区www| 99热只有精品国产| 国产成人欧美在线观看| 黄色 视频免费看| 91av网站免费观看| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| a在线观看视频网站| netflix在线观看网站| 免费电影在线观看免费观看| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 最近最新中文字幕大全电影3 | cao死你这个sao货| 色综合婷婷激情| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 午夜福利18| 很黄的视频免费| 久久精品91蜜桃| 亚洲国产精品成人综合色| 日日爽夜夜爽网站| 91麻豆精品激情在线观看国产| 老司机午夜福利在线观看视频| 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 精品福利观看| 精品免费久久久久久久清纯| 日日爽夜夜爽网站| 一区二区日韩欧美中文字幕| 国产亚洲欧美精品永久| 女人高潮潮喷娇喘18禁视频| 黄片大片在线免费观看| 日韩精品中文字幕看吧| 亚洲狠狠婷婷综合久久图片| 一级毛片女人18水好多| 久久99热这里只有精品18| 欧美黄色淫秽网站| 老汉色∧v一级毛片| 久久精品91无色码中文字幕| 9191精品国产免费久久| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 日韩有码中文字幕| 免费看十八禁软件| 9191精品国产免费久久| АⅤ资源中文在线天堂| 欧美国产日韩亚洲一区| 天天躁夜夜躁狠狠躁躁| www.www免费av| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| 免费在线观看影片大全网站| 大型av网站在线播放| 国产成+人综合+亚洲专区| 啦啦啦 在线观看视频| 欧美久久黑人一区二区| 久久亚洲精品不卡| 国产单亲对白刺激| 亚洲精品一区av在线观看| 国产精华一区二区三区| 亚洲一区中文字幕在线| 黄频高清免费视频| 亚洲国产欧美网| 美女高潮喷水抽搐中文字幕| www.精华液| 国产又爽黄色视频| 亚洲第一欧美日韩一区二区三区| 伊人久久大香线蕉亚洲五| 国产精品 国内视频| 不卡av一区二区三区| 亚洲中文av在线| 欧美一级a爱片免费观看看 | 欧美精品亚洲一区二区| 黄频高清免费视频| 国产成+人综合+亚洲专区| www.999成人在线观看| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 狠狠狠狠99中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 999久久久精品免费观看国产| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 成在线人永久免费视频| 成人欧美大片| 变态另类丝袜制服| 人妻丰满熟妇av一区二区三区| 午夜免费观看网址| svipshipincom国产片| 国产精品久久久人人做人人爽| www.精华液| 日本 av在线| 国产成人啪精品午夜网站| 中文字幕人成人乱码亚洲影| 成人亚洲精品av一区二区| 欧美av亚洲av综合av国产av| 国产日本99.免费观看| 男人舔奶头视频| 欧美日韩一级在线毛片| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 亚洲国产高清在线一区二区三 | 黄色丝袜av网址大全| 久久婷婷人人爽人人干人人爱| 校园春色视频在线观看| av欧美777| 亚洲国产中文字幕在线视频| 国产一区在线观看成人免费| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 精品欧美一区二区三区在线| 91成人精品电影| 性欧美人与动物交配| 亚洲美女黄片视频| 性欧美人与动物交配| 欧美日本亚洲视频在线播放| 国产区一区二久久| 午夜福利18| 色av中文字幕| 最好的美女福利视频网| 欧美丝袜亚洲另类 | 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| 免费一级毛片在线播放高清视频| 琪琪午夜伦伦电影理论片6080| 一区二区三区国产精品乱码| 淫秽高清视频在线观看| 国产亚洲精品av在线| or卡值多少钱| 国产伦在线观看视频一区| 18禁美女被吸乳视频| 老司机在亚洲福利影院| 一边摸一边抽搐一进一小说| 亚洲五月色婷婷综合| 久久久久九九精品影院| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 一进一出抽搐gif免费好疼| 午夜精品久久久久久毛片777| 亚洲真实伦在线观看| 国产成人一区二区三区免费视频网站| 自线自在国产av| 99久久精品国产亚洲精品| 村上凉子中文字幕在线| 夜夜夜夜夜久久久久| 国产精品久久久av美女十八| 亚洲avbb在线观看| 国产不卡一卡二| 在线播放国产精品三级| 在线永久观看黄色视频| 国产精品一区二区免费欧美| 在线天堂中文资源库| 色播在线永久视频| 久久中文字幕一级| 色婷婷久久久亚洲欧美| 欧美性猛交黑人性爽| 精品国产国语对白av| 免费高清在线观看日韩| 国产免费男女视频| 狠狠狠狠99中文字幕| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 国产色视频综合| 成人av一区二区三区在线看| 三级毛片av免费| 精品久久久久久,| 国内精品久久久久久久电影| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三| 日本一本二区三区精品| 日韩三级视频一区二区三区| 韩国av一区二区三区四区| 日本a在线网址| 久久国产精品影院| 一本一本综合久久| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 亚洲激情在线av| 日日夜夜操网爽| 少妇裸体淫交视频免费看高清 | 色尼玛亚洲综合影院| 国产精品久久久久久精品电影 | 国产精品二区激情视频| 一区二区三区国产精品乱码| 性色av乱码一区二区三区2| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 亚洲全国av大片| 精品欧美一区二区三区在线| 少妇被粗大的猛进出69影院| 免费观看精品视频网站| 成在线人永久免费视频| 亚洲一区中文字幕在线| 国产成人影院久久av| 国产精品综合久久久久久久免费| 桃色一区二区三区在线观看| 欧美黑人精品巨大| 精品国产乱子伦一区二区三区| 亚洲中文av在线| www日本在线高清视频| 中亚洲国语对白在线视频| 国产成人欧美|