• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping Toll-Like Receptor Signaling Pathway Genes of Zhikong Scallop (Chlamys farreri) with FISH

    2015-04-01 02:11:53ZHAOBosongZHAOLiangLIAOHuanCHENGJieLIANShanshanLIXuanHUANGXiaotingandBAOZhenmin
    Journal of Ocean University of China 2015年6期

    ZHAO Bosong, ZHAO Liang, LIAO Huan, CHENG Jie, LIAN Shanshan, LI Xuan,HUANG Xiaoting, and BAO Zhenmin

    ?

    Mapping Toll-Like Receptor Signaling Pathway Genes of Zhikong Scallop () with FISH

    ZHAO Bosong, ZHAO Liang, LIAO Huan, CHENG Jie, LIAN Shanshan, LI Xuan,HUANG Xiaoting*, and BAO Zhenmin

    ,,,266003,

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop () have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes (TLR,Myd88,TRAF6,NFκB, andIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescencehybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes ofwill aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

    immunogenetics;; TLR signaling pathway; FISH

    1 Introduction

    The innate immune system is the first-line defense for all living organisms, and it is almost the only path for invertebrates to cope with the invasion of microorganisms present in the environment (Wang., 2011). Innate immune responses are initiated by germline-encoded pattern-recognition receptors that recognize conserved motifs of pathogens termedpathogen-associated molecules (Meijer., 2004), such as lipopolysaccharides, β-1,3- glucans and peptidoglycans (Janeway, 1989; Ashida., 1998; Hoffmann., 1999). Toll-like receptors (TLRs) are among the most extensively studied pattern-recogni- tion receptors. TLRs act as signal transducers using adaptor proteins (MyD88, TIRAP, TRIF, and TRAM), making the common TLR signaling pathway function. TLR signaling pathway culminates in the activation of a variety of inducible transcriptional factors such as nuclear factor kappa B (NFκB) and interferon-regulatory factor, raising various downstream immunological responses to the invasion of pathogens (Kawai and Akira, 2010).

    Toll protein was first reported in(Belvin and Anderson, 1996), and it has now been identified in a wide range of species (Coscia., 2011). Furthermore, the TLR gene family and their associating pathways are evolutionarily conservative from fly to humans (Roach., 2005; Hoffmann and Reichhart, 2002). Recent genomic analysis has detected a rich collection of TLR signaling pathway genes in non-mammalian organisms including marine invertebrates such as(Sasaki., 2009),(Hibino., 2006),(Inamori., 2004) and(Zhang., 2011). The structures, expressions and possible signaling of these genes are well documented. Evidence shows that TLR signaling pathway genes are involved in the innate immune system of marine invertebrates (Coscia., 2011).

    Zhikong scallop,Joneset Preston, 1904, is one of the most important maricultured shellfish in northern China. Over the last decade, the population ofis lightened sharply due to various infections. A better understanding of the innate immune system ofwould facilitate the control of infectious diseases. To date, most of the TLR signaling pathway genes have been found in, which includedTLR (Qiu.,2007a),Myd88 (Qiu., 2007b),TRAF6 (Qiu., 2009),NFκB, andIκB (Wang., 2011) with their sequence features characterized clearly. The transcripts of these genes are up-regulated after lipopolysaccharide stimulation and down-regulated once being RNA interferenced (Wang., 2011). A TLR signaling pathway exists in scallop, which may involve in immune signaling and activating downstream response and eliminating invading pathogens (Wang., 2011).

    In recent years, research on TLR signaling pathway genes of scallop has mainly focused on gene expression (Wang., 2011; Qiu., 2007a, b; Qiu., 2009). Physically mapping these genes is still unmentioned, although such mapping can help determine whether there are gene clusters in TLR signaling pathway, and how these genes arearranged on chromosomes. In species with complete genome sequence information, it is relatively easy to identify the physical location of genes through comparing sequences against a reference genome (Lorenzi., 2010). To scallop, however, the whole genome sequence is not available. Thus it is necessary to map genes with other methods such as fluorescencehybridization (FISH). Recently, three bacterial artificial chromosome (BAC) libraries ofhave been constructed based on different restriction enzymes (Zhao., 2013), providing researchers a convenience of physically mapping related genes on the chromosomes of.

    In the present study, BAC clones containing five TLR signaling pathway genes (TLR,Myd88,TRAF6,NFκB andIκB) were screened from BAC libraries of. The five genes were mapped tochromosomes through FISH. It provided the first physical mapping of TLR signaling pathway genes in mollusk, aiding to better understanding this pathway and chromosomal assignment of gene sequences.

    2 Materials and Methods

    2.1 BAC Library Screening

    PrimersforTLR,Myd88,TRAF6 andIκB were designed from their homologous cDNAs (Table 1) while those ofNFκB were the published by Wang. (2011). Positive BAC clones were screened by four-di- mensional, two-step PCR from theIII-BAC (BH) andI-BAC (BB) libraries of(Zhao., 2013). The PCR products of gene fragments were reconfirmed by sequencing (Zhao., 2012).

    Table 1 The primer sequences used for FISHing toll-like receptor signaling pathway genes

    2.2 Preparation of Probe and C0t-1 DNA

    BAC DNA was isolated from 20mL of overnight culture using a standard laboratory method (Sambrook., 1989). Approximately 1μg of BAC DNA was labeled with nick translation kit (Roche, Basel, Switzerland) with digoxygenin-11-dUTP or biotin-16-dUTP according to the manufacturer’s instructions. Labeled probes were stored at ?20℃.0-1 DNA and enriched repetitive DNA sequences were prepared according to the procedure described early (Hu., 2011).

    2.3 Chromosome Preparation

    Chromosomes were prepared from trochophore larvae ofwith the method described by Zhang. (2008). Trochophore larvae were treated with 0.01% colchicine for 2h and then exposed to 0.075molL?1of KCl for 30min. Thereafter, the larvae were fixed three times, 15 min each, in Carnoy’s solution (methanol: glacial acetic acid, 3:1). The larvae were dissociated in 50% acetic acid, then dropped onto hot-wet slides and air dried.

    2.4 FISH Analysis

    Chromosome slides were pretreated with 1.6% pepsin at 37℃ for 30min and washed in 2x saline sodium citrate (SSC) for 5min. Specimens were denatured in a mixture containing 70% formamide and 2x SSC at 75℃ for 2min, followed by immediate dehydration in an ice-cold ethanol gradient (70%, 90%, and 100%; 5min each) and air-drying. One microgram of labeled probe was mixed in a hybridization buffer of 50% deionized formamide and 2x SSC, plus 50ngμL?1 C0-1 DNA. For hybridization, the probe mixture was denatured at 75℃ for 5min and preannealed at 37℃ for 30min. Thereafter, each slide was covered with 20μL of probe mixture and incubated for 16h at 37℃ in a humid box.

    For double-color FISH, probes labeled with digoxigenin and biotin were mixed and incubated at 37℃. A series of washes was followed: 50% formamide and 2x SSC, 42℃, 5min; 1x SSC, 42℃, 5min; and 2x SSC at room temperature, 5min. The probes were detected using anti-digoxigenin-rhodamine or/and fluorescein avidin D Cell Sorter Grade. Chromosomes were counterstained with 4’,6-diamidino-2-phenylindole or propidium iodide. Slides were viewed under an Eclipse-600 epi?uorescence microscope equipped with a CCD camera. Pictures were merged and edited using LUCIA Cytogenetics and Photoshop CS3.

    For karyotype analysis, chromosomes were paired according to their morphology from 20 good metaphases. Short and long arms were measured to calculate the relative length and centrometric index in accordance with Levan. (1964).

    3 Results

    3.1 BAC Library Screening

    BAC libraries were screened by four-dimensional, two-step PCR ofTLR,Myd88,TRAF6,NFκB andIκB. BAC clones yielded clear single DNA fragments and expected sizes were selected for further use. After PCR screening, all the five genes were found to be represented by at least one BAC clones each (Table 2).

    Table 2 Positive bacterial artificial chromosome (BAC) clones containing Toll-like receptor signaling pathway genes identified from scallop BAC libraries through PCR screening

    Note:*BAC clones selected for FISH.

    3.2 FISH Mapping

    For each gene, one representative clone was selected randomly for FISH (Table 2). FISH signals for individual positive BAC clones were analyzed in 20 metaphase chromosome spreads. All the five BAC clones were mapped to the corresponding chromosomes of. TheTLR-containing clone BB87B9 was hybridized to the telomeric region of the short arm on a pair of subtelocentric chromosomes (Fig.1a), and theNFκB-contain- ing clone BH802F5 was mapped to a similar position on a pair of submetacentric chromosomes (Fig.1b). Probes derived from clones BB26G9 containingMyd88 (Fig.1c) and BH409H8 containingTRAF6 (Fig.1d) showed signals in the centromeric region of the long arm on a pair of submetacentric or subtelocentric chromosomes, respectively. TheIκB-containing clone BB275F7 (Fig.1e) was mapped to the central section of the long arm in a pair of submetacentric chromosomes.

    In order to test whether all the screened BAC clones were located on the same pair of chromosomes, the representative clone was co-hybridized with each of the other clones through double-color FISH. For example (Fig.2), we co-hybridized BB26G9 with each of the other fiveMyd88-containing clones,, BH89A3, BH254D8, BH794G3, BH925B2, and BB253F6. Co-localization of BB26G9 with each of the five clones was confirmed using probes capable of generating merged signals in each case. We concluded that all the sixMyd88-containing clones were located at the same site in the genome. Similar conclusions were drawn from the study on the remaining four genes.

    After karyotyping, the means and standard deviations of the relative length and centromeric index were calculated for chromosome pairs with signals (Table 3). TheIκB-containing chromosomes has a smaller relative length while the remaining four chromosomes with signals were considerably larger than the largest metacentric chromosome. The results indicated that clone BB275F7 containingIκB was localized to a different pair of chromosomes from the other clones, BB87B9, BB26G9, BH409H8, and BH802F5.

    Co-hybridization was necessary to estimate whether the latter four BAC clones were located on different pairs of chromosomes separately. However, signals of probes derived from each clone were weakened when all these 4 clones were co-hybridized in one experiment. Thus, two BAC clones were assigned to similar chromosomes to confirm their chromosomal assignments by double-color FISH. Clone BB87B9 containingTLRwas labeled with biotin and BH409H8containingTRAF6 with digoxigenin. Results showed that the two probes were localized to two different subtelocentric chromosome pairs (Fig.3a).

    Then, the other two BAC clones BB26G9 (digoxigenin) and BH802F5 (biotin) were co-hybridized, and signals were observed on two non-homologous submetacentric chromosome pairs (Fig.3b). The locations of the four BACs obtained from double-color FISH were consistent with the results of one-color FISH. All these available data indicated that the five BAC clones, which containedTLR,Myd88,TRAF6,NFκB andIκB, respectively, were located in five non-homologous chromosome pairs of.

    Fig.1 FISH mapping of bacterial artificial chromosome clones containing CfTLR(a),CfNFκB(b), CfIκB (c), CfMyd88(d), and CfTRAF6 (e) from Chlamys farreri. Inset at top right for each probe corresponds to one chromosomal location showing the labeled chromosome adjacent to the largest metacentric chromosome. Scale bars=5μm.

    Fig.2 Double-color FISH showing 6 CfMyd88-containing bacterial artificial chromosome clones co-localized on the Chlamys farreri genome. Red, green, and blue channels were recorded separately and then merged. Red signals indicate localization of clone BB26G9 first mapped using single-color FISH, and green signals indicate clones BH89A3, BH254D8, BH794G3, BH925B2, and BB253F6. Signals are indicated by arrows in merged images.

    Table 3 Measurements (X±S.D) and classification of Toll-like receptor pathway genes containing chromosomes and the largest metacentric chromosome from metaphases of Chlamys farreri

    Fig.3 Co-hybridization of Toll-like receptor pathway genes. (a) Bacterial artificial chromosome clones containing CfTLR and CfTRAF6; and (b) clones containing CfNFκB and CfMyd88. Scale bars=5μm.

    4 Discussion

    An understanding of immune components that underpine host resistance to pathogens is a key step towards elucidating immune mechanisms in scallop. A large number of immune components are known in scallop (Su., 2004; Gao., 2007; Wang., 2007; Yu., 2007; Zhang., 2007). Most of these components have been characterized and analyzed regarding gene function, but few have been physically mapped to chromosomes. In the present study, we used FISH to map five immune genes functioning inTLR signaling pathway in order to study their chromosomal locations. The results showed that each gene occupied a single position on a chromosome pair.

    Early studies have shown that genes with similar expression patterns tend to cluster more frequently than those with different expression patterns (Liu and Han, 2009; Chen., 2010). Inand human, there is about 43% and 65% of analyzed pathways showing significant physical clustering of genes across the genome, respectively (Lee and Sonnhammer, 2003). Immune genes inare highly concentrated on chromosome 2, clustered in regions of high recombination rates (Wegner, 2008), which may be a fast and effective way to control expression of genes. As to scallop, the lack of whole genome data limits the research of immune genes. Recently, 2 lipopolysaccharide and beta-1,3-glucan binding protein genes and 3 membrane transport genes have been shown clustered in 2 scallop BAC clones (Zhao., 2012), there may exist groups of functionally related genes that are linked, which could cluster in scallop.

    For comparison analysis, the distributions of TLR signaling pathway genes in five model species (Table 4) were obtained from the NCBI database (NCBI Map Viewer, http://www.ncbi.nlm.nih.gov/mapview/). In, all the five TLR signaling pathway genes locate on five non-homologous chromosome pairs. However, there are different distribution patterns in the remaining four species. In, there are two TLR components (Tol-1 and IκB-1) co-locate on chromosome 1, 9.2Mb apart. In, cactus and dorsal, which are homologous with IκB and NFκB, respectively, are co-located on the long arm of chromosome 2, 1.1Mb apart, while MyD88 is located on the other arm of chromosome 2. In, NFκB3 spaces out TRAF6 49.5 Mb apart on chromosome 7. In, TRAF6 is located on the short arm of chromosome 11, while NFκB3 is located on the long arm of the same chromosome. In summary, the candidate immune genes TLR, MyD88, TRAF6, IκB and NFκB are distantly linked in the latter four species.

    As to, the five immune genes studied located in five non-homologous chromosome pairs, indicating that the TLR pathway may not show significant clustering as in. These TLR signaling pathway genes were significantly more distant than other functionally related genes, such as lipopolysaccharide and beta-1,3- glucan binding protein genes and membrane transport genes. However, the non-clustering of these genes possibly has little effect on the immune response. In, there is no significant difference in gene expression between clustered and non-clustered immune genes (Wegner, 2008). Here, the co-expression of TLR signaling pathway genes inmay not act in a distance-dependent way.

    Table 4 Chromosomal localization of Toll-like receptor signal pathway genes in five model organisms

    Note: * Gene ID in NCBI GENE database.

    FISH is a powerful tool significantly contributing to aquaculture genome research. FISH mapping of multicopy genes and repetitive elements has been frequently reported in scallop. Huang. (2007) mapped ribosomal DNA and (TTAGGG)n telomeric sequence to chromosomes inZhang. (2007) detected histone H3 gene sites by FISH in four scallops,,,, and. All these results have led to research advance on bivalve evolution and facilitated chromosome identification. However, there is a limited range of probes derived from multi-copy genes and repetitive elements. Mapping of large-insert clones will extend the application of FISH. Nine P1 clones were mapped in the eastern oyster,, identifying seven chromosomes (Wang., 2005). In, Zhang. (2008) identified eight of nineteen chromosomes by co-hybridizing eight fosmid clones. In the present study, we anchored five BAC clones with immune genes to five non-homologous chromosome pairs. These results will provide useful probes for chromosome identification of.

    Acknowledgements

    We thank Xunshan Aquatic Product Group Co., Ltd. (Rongcheng, China) for scallop samples. This research was financially supported by the National Natural Science Foundation of China (31270047), the National High Tech R&D Program (2012AA10A410), the National Basic Research Program of China (2010CB126402), and the National Key Technology R&D Program of China (2011BAD45B01 and 2011BAD13B05).

    Ashida, M., and Brey, P. T., 1998. Recent advances on the research of the insect prophenoloxidase cascade. In:Chapman and Hall, London, 135-172.

    Belvin, M. P., and Anderson, K. V., 1996. A conserved signaling pathway: The Drosophila toll-dorsal pathway., 12: 393-416.

    Chen, W., Meaux, J., and Lercher, M. J., 2010. Co-expression of neighbouring genes in Arabidopsis: Separating chromatin effects from direct interactions., 11: 178.

    Coscia, M. R., Giacomelli, S., and Oreste, U., 2011. Toll-like receptors: An overview from invertebrates to vertebrates., 8: 210-226.

    Gao, Q., Song, L., Ni, D., Wu, L., Zhang, H., and Chang, Y., 2007. cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop., 147: 704-715.

    Hibino, T., Loza-Coll, M., Messier, C., Majeske, A. J., Cohen, A. H., Terwilliger, D. P., Buckley, K. M., Brockton, V., Nair, S. V., Berney, K., Fugmann, S. D., Anderson, M. K., Pancer, Z., Cameron, R. A., Smith, L. C., and Rast, J. P., 2006. The immune gene repertoire encoded in the purple sea urchin genome., 300: 349-365.

    Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A., 1999. Phylogenetic perspectives in innate immunity., 284: 1313-1318.

    Hoffmann, J. A., and Reichhart, J. M., 2002. Drosophila innate immunity: An evolutionary perspective., 3: 121-126.

    Huang, X., Hu, X., Hu, J., Zhang, L., Wang, S., Lu, W., and Bao, Z., 2007. Mapping of ribosomal DNA and (TTAGGG)n telomeric sequence by FISH in., 73: 393-398.

    Hu, L., Shang, W., Sun, Y., Wang, S., Ren, X., Huang, X., and Bao, Z., 2011. Comparative cytogenetics analysis of,, andwith0-1DNA by fluorescencehybridization., 2011: 785831.

    Inamori, K., Ariki, S., and Kawabata, S., 2004. A Toll-like receptor in horseshoe crabs., 198: 106- 115.

    Janeway, J. C., 1989. Approaching the asymptote? Evolution and revolution in immunology.. 54: 1-13.

    Kawai, T., and Akira, S., 2010. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors., 11: 373-384.

    Lee, J. M., and Sonnhammer, E. L., 2003. Genomic gene clustering analysis of pathways in eukaryotes., 13: 875-882.

    Levan, A., Fredga, K., and Sandberg, A. A., 1964. Nomenclature for centrometric position on chromosomes., 52: 201-220.

    Liu, X., and Han, B., 2009. Evolutionary conservation of neighboring gene pairs in plants., 437: 71-79.

    Lorenzi, L., Molteni, L., and Parma, P., 2010. FISH mapping in cattle (L.) is not yet out of fashion., 51: 497-499.

    Meijer, A. H., Gabby Krens, S. F., Medina Rodriguez, I. A., He, S., Bitter, W., Ewa Snaar-Jagalska, B., and Spaink, H. P., 2004. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish., 40: 773-783.

    Qiu, L., Song, L., Xu, W., Ni, D., and Yu, Y., 2007a. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong scallop,., 22: 451-466.

    Qiu, L., Song, L., Yu, Y., Xu, W., Ni, D., and Zhang, Q., 2007b. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop., 23: 614-623.

    Qiu, L., Song, L., Yu, Y., Zhao, J., Wang, L., and Zhang, Q., 2009. Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop., 26: 359-367.

    Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E., and Aderem, A., 2005. The evolution of vertebrate Toll-like receptors., 102: 9577-9582.

    Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989.. 2nd edition. Cold Spring Harbor Laboratory, New York, 1659pp.

    Sasaki, N., Ogasawara, M., Sekiguchi, T., Kusumoto, S., and Satake, H., 2009. Toll-like receptors of the ascidian,: Prototypes with hybrid functionalities of vertebrate Toll-like receptors., 284: 27336-27343.

    Su, J., Song, L., Xu, W., Wu, L., Li, H., and Xiang, J., 2004. cDNA cloning and mRNA expression of the lipopolysaccharide- and beta-1,3-glucan-binding protein gene from scallop., 239: 69-80.

    Wang, H., Song, L., Li, C., Zhao, J., Zhang, H., Ni, D., and Xu, W., 2007, Cloning and characterization of a novel C-type lectin from Zhikong scallop., 44: 722-731.

    Wang, M., Yang, J., Zhou, Z., Qiu, L., Wang, L., Zhang, H., Gao, Y., Wang, X., Zhang, L., Zhao, J., and Song, L., 2011. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop., 35: 511-520.

    Wang, Y., Xu, Z., Pierce, J. C., and Guo, X., 2005. Characterization of Eastern oyster (Gmelin) chromosomes by fluorescence in situ hybridization with bacterio- phage P1 clones., 7: 207-214.

    Wegner, K. M., 2008. Clustering ofimmune genes in interplay with recombination rate., 3: e2835.

    Yu, Y., Qiu, L., Song, L., Zhao, J., Ni, D., Zhang, Y., and Xu, W., 2007. Molecular cloning and characterization of a putative lipopolysaccharide-induced TNF-a factor (LITAF) gene homo- logue from Zhikong scallop., 23: 419-429.

    Zhang, H., Song, L., Li, C., Zhao, J., Wang, H., Gao, Q., and Xu, W., 2007. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop., 44: 3492-3500.

    Zhang, L., Bao, Z., Wang, S., Huang, X., and Hu, J., 2007. Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops., 130: 193-198.

    Zhang, L., Bao, Z., Wang, S., Hu, X., and Hu, J., 2008. FISH mapping and identification of Zhikong scallop () chromosomes., 10: 151-157.

    Zhang, L., Li, L., and Zhang, G., 2011. AToll-like receptor and comparative analysis of TLR pathway in invertebrates., 30: 653-660.

    Zhao, B., Cheng, J., Chen, L., Yu, N., Huang, X., and Bao, Z., 2013. Construction of three bacterial artificial chromosome (BAC) libraries for Zhikong scallop ()., 43: 57-63.

    Zhao, C., Zhang, T., Zhang, X., Hu, S., and Xiang, J., 2012. Sequencing and analysis of four BAC clones containing innate immune genes from the Zhikong scallop ()., 502: 9-15.

    (Edited by Qiu Yantao)

    DOI 10.1007/s11802-015-2643-8

    ISSN 1672-5182, 2015 14 (6): 1075-1081

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    (April 4, 2014; revised August 21, 2014; accepted June 20, 2015)

    * Corresponding author. Tel: 0086-532-82031802 E-mail: xthuang@ouc.edu.cn

    大片电影免费在线观看免费| 性高湖久久久久久久久免费观看| 国产精品国产三级国产专区5o| av卡一久久| 精品久久蜜臀av无| 久久久精品国产亚洲av高清涩受| 永久免费av网站大全| 亚洲国产日韩一区二区| 日韩一区二区视频免费看| 自线自在国产av| 久久久精品区二区三区| 又黄又粗又硬又大视频| 在线观看国产h片| 超色免费av| 免费黄频网站在线观看国产| 在现免费观看毛片| 日韩成人av中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 国产熟女午夜一区二区三区| 亚洲精品久久久久久婷婷小说| 制服丝袜香蕉在线| 成人免费观看视频高清| 亚洲男人天堂网一区| 国产不卡av网站在线观看| 精品亚洲乱码少妇综合久久| 亚洲美女搞黄在线观看| 另类精品久久| 国产精品一区二区精品视频观看| netflix在线观看网站| www.精华液| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女视频黄频| 欧美日韩成人在线一区二区| 母亲3免费完整高清在线观看| 最近最新中文字幕大全免费视频 | 日韩 亚洲 欧美在线| 日本爱情动作片www.在线观看| 国产欧美日韩综合在线一区二区| 免费高清在线观看视频在线观看| 亚洲七黄色美女视频| 黄色视频不卡| 99国产精品免费福利视频| 欧美激情 高清一区二区三区| h视频一区二区三区| tube8黄色片| 黄色 视频免费看| 免费看av在线观看网站| 国产老妇伦熟女老妇高清| 一级毛片我不卡| 国产成人a∨麻豆精品| 久久综合国产亚洲精品| 日日撸夜夜添| 成人国产麻豆网| 成人黄色视频免费在线看| 午夜日本视频在线| 母亲3免费完整高清在线观看| 欧美日韩综合久久久久久| 黄色视频不卡| 岛国毛片在线播放| 午夜福利免费观看在线| 成年人免费黄色播放视频| 日韩,欧美,国产一区二区三区| 亚洲成人国产一区在线观看 | 中文字幕制服av| 国产乱来视频区| 老司机亚洲免费影院| 精品国产国语对白av| 高清不卡的av网站| 91精品伊人久久大香线蕉| 18禁裸乳无遮挡动漫免费视频| 视频区图区小说| av福利片在线| 亚洲美女黄色视频免费看| 黑丝袜美女国产一区| 国产精品.久久久| 国产午夜精品一二区理论片| 国产精品久久久人人做人人爽| 一个人免费看片子| 新久久久久国产一级毛片| 精品亚洲成国产av| 无遮挡黄片免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲,欧美精品.| 尾随美女入室| 亚洲美女搞黄在线观看| 黄色视频在线播放观看不卡| 国产精品久久久久成人av| 欧美国产精品va在线观看不卡| 不卡av一区二区三区| www日本在线高清视频| www日本在线高清视频| 水蜜桃什么品种好| 亚洲三区欧美一区| 18禁动态无遮挡网站| 晚上一个人看的免费电影| 韩国高清视频一区二区三区| 青春草国产在线视频| 久久精品久久久久久久性| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 91成人精品电影| 99久久人妻综合| 亚洲av成人不卡在线观看播放网 | 99热国产这里只有精品6| 国产极品粉嫩免费观看在线| 人人妻人人澡人人看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美成人综合另类久久久| 99香蕉大伊视频| 极品人妻少妇av视频| 女人精品久久久久毛片| 午夜老司机福利片| 中文精品一卡2卡3卡4更新| 亚洲国产中文字幕在线视频| 男女高潮啪啪啪动态图| 中国国产av一级| 激情五月婷婷亚洲| 校园人妻丝袜中文字幕| 国产1区2区3区精品| 黄色毛片三级朝国网站| 99九九在线精品视频| 老司机亚洲免费影院| 午夜激情av网站| 久久精品久久久久久久性| 午夜精品国产一区二区电影| 高清在线视频一区二区三区| 亚洲第一av免费看| 一区二区日韩欧美中文字幕| 99热全是精品| 中文字幕另类日韩欧美亚洲嫩草| 久久免费观看电影| av在线老鸭窝| 五月开心婷婷网| 日韩中文字幕欧美一区二区 | 国语对白做爰xxxⅹ性视频网站| 丝袜美足系列| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡 | 91国产中文字幕| 欧美日韩福利视频一区二区| 大码成人一级视频| 国产精品三级大全| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一出视频| 久久久精品区二区三区| 免费黄频网站在线观看国产| 亚洲,欧美,日韩| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看| 国产精品偷伦视频观看了| 美女主播在线视频| 18禁裸乳无遮挡动漫免费视频| 国产片内射在线| 咕卡用的链子| 日韩欧美精品免费久久| 国产精品99久久99久久久不卡 | 久久免费观看电影| 汤姆久久久久久久影院中文字幕| 69精品国产乱码久久久| 桃花免费在线播放| 国产男女内射视频| 91精品国产国语对白视频| 亚洲欧美中文字幕日韩二区| 国产一级毛片在线| 丁香六月天网| 国产精品久久久人人做人人爽| 大香蕉久久网| 亚洲欧美精品自产自拍| 欧美人与性动交α欧美精品济南到| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 夜夜骑夜夜射夜夜干| 少妇 在线观看| 天天躁夜夜躁狠狠躁躁| 国产爽快片一区二区三区| 秋霞伦理黄片| 看免费成人av毛片| 久久精品国产亚洲av高清一级| 婷婷色综合大香蕉| 精品第一国产精品| 丰满饥渴人妻一区二区三| 街头女战士在线观看网站| 国产免费福利视频在线观看| 大香蕉久久成人网| 国产黄频视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久国产一级毛片高清牌| 2018国产大陆天天弄谢| 黄色怎么调成土黄色| 亚洲四区av| 丝袜在线中文字幕| 美女午夜性视频免费| 亚洲在久久综合| 精品福利永久在线观看| 国产精品偷伦视频观看了| 少妇人妻久久综合中文| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| netflix在线观看网站| 少妇 在线观看| 如何舔出高潮| 男人添女人高潮全过程视频| 国产欧美亚洲国产| 天天躁夜夜躁狠狠久久av| 少妇被粗大猛烈的视频| 欧美精品一区二区免费开放| xxx大片免费视频| 啦啦啦在线免费观看视频4| 悠悠久久av| 精品人妻熟女毛片av久久网站| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 免费在线观看视频国产中文字幕亚洲 | 日韩精品有码人妻一区| 丰满少妇做爰视频| 亚洲第一av免费看| 午夜福利网站1000一区二区三区| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 丁香六月欧美| 亚洲国产欧美一区二区综合| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 国产精品女同一区二区软件| av片东京热男人的天堂| 少妇的丰满在线观看| 狂野欧美激情性bbbbbb| 精品亚洲乱码少妇综合久久| 成人毛片60女人毛片免费| 国产人伦9x9x在线观看| 秋霞在线观看毛片| 国产av一区二区精品久久| 国产精品.久久久| 少妇 在线观看| 亚洲成人免费av在线播放| 深夜精品福利| 天堂中文最新版在线下载| 日韩不卡一区二区三区视频在线| 中国国产av一级| 欧美 亚洲 国产 日韩一| 久久久精品区二区三区| 久久国产精品男人的天堂亚洲| 亚洲av日韩精品久久久久久密 | 亚洲三区欧美一区| 99久久人妻综合| 在线天堂中文资源库| 亚洲av日韩在线播放| 操美女的视频在线观看| 欧美久久黑人一区二区| 国产精品熟女久久久久浪| 老熟女久久久| 欧美黑人欧美精品刺激| 又大又爽又粗| 欧美另类一区| 老司机亚洲免费影院| 免费黄网站久久成人精品| 亚洲国产精品999| av福利片在线| 亚洲,一卡二卡三卡| 一级a爱视频在线免费观看| 亚洲少妇的诱惑av| 老司机影院毛片| 观看av在线不卡| 丰满迷人的少妇在线观看| 女性被躁到高潮视频| 女人高潮潮喷娇喘18禁视频| 国产成人精品福利久久| 99精品久久久久人妻精品| 精品第一国产精品| 热99国产精品久久久久久7| 精品人妻一区二区三区麻豆| 99国产精品免费福利视频| 欧美日韩视频精品一区| 亚洲欧洲精品一区二区精品久久久 | 国产视频首页在线观看| 国产在视频线精品| 亚洲专区中文字幕在线 | 国产亚洲最大av| 国产日韩一区二区三区精品不卡| 久久久久精品性色| 国产亚洲av片在线观看秒播厂| 在线天堂中文资源库| 街头女战士在线观看网站| 日韩中文字幕视频在线看片| 毛片一级片免费看久久久久| 国产亚洲av高清不卡| 新久久久久国产一级毛片| 国产精品av久久久久免费| 国产一区二区在线观看av| 欧美人与性动交α欧美软件| 搡老岳熟女国产| 90打野战视频偷拍视频| 一区二区av电影网| 国产男女内射视频| 狂野欧美激情性bbbbbb| 成年动漫av网址| 成人毛片60女人毛片免费| 亚洲av福利一区| 一级毛片我不卡| 亚洲精品一区蜜桃| 婷婷色av中文字幕| 97在线人人人人妻| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 在线免费观看不下载黄p国产| 在线观看免费视频网站a站| 一级片免费观看大全| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 国产亚洲精品第一综合不卡| 免费观看人在逋| 少妇人妻久久综合中文| 午夜日韩欧美国产| 老司机靠b影院| www.av在线官网国产| 精品国产乱码久久久久久小说| 久久综合国产亚洲精品| 国产亚洲av高清不卡| 男女午夜视频在线观看| 热99久久久久精品小说推荐| 不卡视频在线观看欧美| 久久精品国产亚洲av高清一级| 最近最新中文字幕免费大全7| av国产久精品久网站免费入址| 秋霞在线观看毛片| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9 | 熟妇人妻不卡中文字幕| 18禁国产床啪视频网站| 久久性视频一级片| av一本久久久久| 曰老女人黄片| 精品一品国产午夜福利视频| 男女边摸边吃奶| 夫妻午夜视频| 欧美日韩av久久| 热99久久久久精品小说推荐| 国产精品成人在线| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 亚洲国产成人一精品久久久| av有码第一页| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 午夜福利乱码中文字幕| 最新的欧美精品一区二区| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 精品国产乱码久久久久久男人| 亚洲精品乱久久久久久| 中文乱码字字幕精品一区二区三区| 欧美在线黄色| 1024视频免费在线观看| 国产成人a∨麻豆精品| 精品视频人人做人人爽| 国产国语露脸激情在线看| 亚洲熟女精品中文字幕| 国产97色在线日韩免费| 中文字幕精品免费在线观看视频| 日本欧美视频一区| 一区二区三区精品91| 久久久久视频综合| 日本av免费视频播放| 亚洲 欧美一区二区三区| 亚洲精品一区蜜桃| 最近最新中文字幕大全免费视频 | 日韩av不卡免费在线播放| 青春草亚洲视频在线观看| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 国产成人欧美在线观看 | 久久99精品国语久久久| 观看美女的网站| 亚洲国产成人一精品久久久| 国产av精品麻豆| 又粗又硬又长又爽又黄的视频| 一区二区三区激情视频| 欧美黑人精品巨大| 国产 一区精品| 国产成人免费无遮挡视频| 久久久久久久国产电影| 满18在线观看网站| 国产一区二区 视频在线| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 熟女少妇亚洲综合色aaa.| 水蜜桃什么品种好| 在线精品无人区一区二区三| 亚洲国产av影院在线观看| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 国产极品粉嫩免费观看在线| 热99国产精品久久久久久7| 亚洲国产日韩一区二区| 亚洲美女视频黄频| av不卡在线播放| 尾随美女入室| 99久久精品国产亚洲精品| 一级a爱视频在线免费观看| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 亚洲欧美日韩另类电影网站| 丰满乱子伦码专区| 少妇人妻 视频| a级毛片黄视频| 九色亚洲精品在线播放| 国产色婷婷99| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品综合一区二区三区| 亚洲欧美成人精品一区二区| 国产女主播在线喷水免费视频网站| 成人三级做爰电影| 亚洲熟女毛片儿| 免费在线观看完整版高清| 国产精品成人在线| 制服人妻中文乱码| 纯流量卡能插随身wifi吗| 大香蕉久久网| 国产一区二区在线观看av| www日本在线高清视频| 美女中出高潮动态图| 亚洲av中文av极速乱| 国产视频首页在线观看| 侵犯人妻中文字幕一二三四区| 亚洲精品一二三| 国产精品一国产av| 午夜免费鲁丝| 婷婷色av中文字幕| 十八禁网站网址无遮挡| 国产 一区精品| 精品久久久精品久久久| 国产又爽黄色视频| 亚洲一码二码三码区别大吗| 国产男人的电影天堂91| 下体分泌物呈黄色| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 久久精品熟女亚洲av麻豆精品| 伊人亚洲综合成人网| 久久国产亚洲av麻豆专区| 亚洲成人免费av在线播放| 国产精品久久久久久人妻精品电影 | 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线 | 国产99久久九九免费精品| 国产亚洲av高清不卡| 日韩大码丰满熟妇| 久久精品久久精品一区二区三区| 国产野战对白在线观看| 国产精品国产三级专区第一集| 嫩草影院入口| 亚洲欧美成人精品一区二区| 各种免费的搞黄视频| 久久久精品区二区三区| 成人毛片60女人毛片免费| 精品卡一卡二卡四卡免费| 国产av一区二区精品久久| 最新在线观看一区二区三区 | 日韩大片免费观看网站| 一区二区三区激情视频| 最近最新中文字幕大全免费视频 | 丁香六月欧美| 久热这里只有精品99| 免费不卡黄色视频| 777久久人妻少妇嫩草av网站| 黄色视频不卡| 高清av免费在线| 自线自在国产av| 欧美日韩成人在线一区二区| 老司机亚洲免费影院| 大陆偷拍与自拍| 精品一区二区三区av网在线观看 | 自线自在国产av| 国产精品成人在线| 九色亚洲精品在线播放| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看 | 无遮挡黄片免费观看| 男人操女人黄网站| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲第一青青草原| 国产精品三级大全| 国产免费又黄又爽又色| 色婷婷av一区二区三区视频| 欧美 日韩 精品 国产| 午夜日本视频在线| 丝袜脚勾引网站| 国产成人精品久久久久久| 国产免费一区二区三区四区乱码| 九草在线视频观看| 亚洲国产精品一区三区| 考比视频在线观看| 又粗又硬又长又爽又黄的视频| 国产xxxxx性猛交| 美女主播在线视频| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 丝袜美腿诱惑在线| 99九九在线精品视频| 不卡视频在线观看欧美| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 女性生殖器流出的白浆| 最近最新中文字幕免费大全7| 韩国精品一区二区三区| 亚洲天堂av无毛| 国产日韩欧美视频二区| 日韩一本色道免费dvd| 日本欧美国产在线视频| 在线天堂最新版资源| 亚洲色图综合在线观看| 精品人妻熟女毛片av久久网站| 国产精品一区二区在线不卡| 久久婷婷青草| 日韩av免费高清视频| 男人添女人高潮全过程视频| 亚洲国产av新网站| 国产乱人偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 免费不卡黄色视频| 亚洲美女搞黄在线观看| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 国产一区二区三区av在线| 午夜激情av网站| 男女免费视频国产| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人| 国产在视频线精品| 美女高潮到喷水免费观看| 高清不卡的av网站| 国产欧美亚洲国产| 中文字幕av电影在线播放| 在线天堂中文资源库| 日本爱情动作片www.在线观看| 捣出白浆h1v1| 中文字幕av电影在线播放| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| 精品视频人人做人人爽| 多毛熟女@视频| 午夜免费观看性视频| svipshipincom国产片| 久久毛片免费看一区二区三区| 欧美另类一区| 亚洲精品一二三| 天堂8中文在线网| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 国产一区二区激情短视频 | 国产熟女欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 国产av码专区亚洲av| 免费在线观看视频国产中文字幕亚洲 | 超色免费av| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 热re99久久精品国产66热6| 最新的欧美精品一区二区| 亚洲欧美激情在线| 免费人妻精品一区二区三区视频| 一级a爱视频在线免费观看| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 91国产中文字幕| 免费看av在线观看网站| 国产精品无大码| 国产精品蜜桃在线观看| 又大又黄又爽视频免费| 亚洲精品国产区一区二| 欧美日韩福利视频一区二区| 18禁观看日本| av片东京热男人的天堂| 亚洲图色成人| 亚洲成国产人片在线观看| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 男人添女人高潮全过程视频| svipshipincom国产片| 黄片小视频在线播放| 看免费av毛片| 久久久久精品人妻al黑| 美女福利国产在线| 精品国产露脸久久av麻豆| av电影中文网址| 天堂中文最新版在线下载| a级毛片黄视频| 日韩av在线免费看完整版不卡| 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久人妻综合| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 老司机深夜福利视频在线观看 | 国产精品女同一区二区软件| 国产一区有黄有色的免费视频| 精品午夜福利在线看| 99久久人妻综合| av免费观看日本| 亚洲三区欧美一区| 日韩伦理黄色片|