• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping Toll-Like Receptor Signaling Pathway Genes of Zhikong Scallop (Chlamys farreri) with FISH

    2015-04-01 02:11:53ZHAOBosongZHAOLiangLIAOHuanCHENGJieLIANShanshanLIXuanHUANGXiaotingandBAOZhenmin
    Journal of Ocean University of China 2015年6期

    ZHAO Bosong, ZHAO Liang, LIAO Huan, CHENG Jie, LIAN Shanshan, LI Xuan,HUANG Xiaoting, and BAO Zhenmin

    ?

    Mapping Toll-Like Receptor Signaling Pathway Genes of Zhikong Scallop () with FISH

    ZHAO Bosong, ZHAO Liang, LIAO Huan, CHENG Jie, LIAN Shanshan, LI Xuan,HUANG Xiaoting*, and BAO Zhenmin

    ,,,266003,

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop () have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes (TLR,Myd88,TRAF6,NFκB, andIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescencehybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes ofwill aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

    immunogenetics;; TLR signaling pathway; FISH

    1 Introduction

    The innate immune system is the first-line defense for all living organisms, and it is almost the only path for invertebrates to cope with the invasion of microorganisms present in the environment (Wang., 2011). Innate immune responses are initiated by germline-encoded pattern-recognition receptors that recognize conserved motifs of pathogens termedpathogen-associated molecules (Meijer., 2004), such as lipopolysaccharides, β-1,3- glucans and peptidoglycans (Janeway, 1989; Ashida., 1998; Hoffmann., 1999). Toll-like receptors (TLRs) are among the most extensively studied pattern-recogni- tion receptors. TLRs act as signal transducers using adaptor proteins (MyD88, TIRAP, TRIF, and TRAM), making the common TLR signaling pathway function. TLR signaling pathway culminates in the activation of a variety of inducible transcriptional factors such as nuclear factor kappa B (NFκB) and interferon-regulatory factor, raising various downstream immunological responses to the invasion of pathogens (Kawai and Akira, 2010).

    Toll protein was first reported in(Belvin and Anderson, 1996), and it has now been identified in a wide range of species (Coscia., 2011). Furthermore, the TLR gene family and their associating pathways are evolutionarily conservative from fly to humans (Roach., 2005; Hoffmann and Reichhart, 2002). Recent genomic analysis has detected a rich collection of TLR signaling pathway genes in non-mammalian organisms including marine invertebrates such as(Sasaki., 2009),(Hibino., 2006),(Inamori., 2004) and(Zhang., 2011). The structures, expressions and possible signaling of these genes are well documented. Evidence shows that TLR signaling pathway genes are involved in the innate immune system of marine invertebrates (Coscia., 2011).

    Zhikong scallop,Joneset Preston, 1904, is one of the most important maricultured shellfish in northern China. Over the last decade, the population ofis lightened sharply due to various infections. A better understanding of the innate immune system ofwould facilitate the control of infectious diseases. To date, most of the TLR signaling pathway genes have been found in, which includedTLR (Qiu.,2007a),Myd88 (Qiu., 2007b),TRAF6 (Qiu., 2009),NFκB, andIκB (Wang., 2011) with their sequence features characterized clearly. The transcripts of these genes are up-regulated after lipopolysaccharide stimulation and down-regulated once being RNA interferenced (Wang., 2011). A TLR signaling pathway exists in scallop, which may involve in immune signaling and activating downstream response and eliminating invading pathogens (Wang., 2011).

    In recent years, research on TLR signaling pathway genes of scallop has mainly focused on gene expression (Wang., 2011; Qiu., 2007a, b; Qiu., 2009). Physically mapping these genes is still unmentioned, although such mapping can help determine whether there are gene clusters in TLR signaling pathway, and how these genes arearranged on chromosomes. In species with complete genome sequence information, it is relatively easy to identify the physical location of genes through comparing sequences against a reference genome (Lorenzi., 2010). To scallop, however, the whole genome sequence is not available. Thus it is necessary to map genes with other methods such as fluorescencehybridization (FISH). Recently, three bacterial artificial chromosome (BAC) libraries ofhave been constructed based on different restriction enzymes (Zhao., 2013), providing researchers a convenience of physically mapping related genes on the chromosomes of.

    In the present study, BAC clones containing five TLR signaling pathway genes (TLR,Myd88,TRAF6,NFκB andIκB) were screened from BAC libraries of. The five genes were mapped tochromosomes through FISH. It provided the first physical mapping of TLR signaling pathway genes in mollusk, aiding to better understanding this pathway and chromosomal assignment of gene sequences.

    2 Materials and Methods

    2.1 BAC Library Screening

    PrimersforTLR,Myd88,TRAF6 andIκB were designed from their homologous cDNAs (Table 1) while those ofNFκB were the published by Wang. (2011). Positive BAC clones were screened by four-di- mensional, two-step PCR from theIII-BAC (BH) andI-BAC (BB) libraries of(Zhao., 2013). The PCR products of gene fragments were reconfirmed by sequencing (Zhao., 2012).

    Table 1 The primer sequences used for FISHing toll-like receptor signaling pathway genes

    2.2 Preparation of Probe and C0t-1 DNA

    BAC DNA was isolated from 20mL of overnight culture using a standard laboratory method (Sambrook., 1989). Approximately 1μg of BAC DNA was labeled with nick translation kit (Roche, Basel, Switzerland) with digoxygenin-11-dUTP or biotin-16-dUTP according to the manufacturer’s instructions. Labeled probes were stored at ?20℃.0-1 DNA and enriched repetitive DNA sequences were prepared according to the procedure described early (Hu., 2011).

    2.3 Chromosome Preparation

    Chromosomes were prepared from trochophore larvae ofwith the method described by Zhang. (2008). Trochophore larvae were treated with 0.01% colchicine for 2h and then exposed to 0.075molL?1of KCl for 30min. Thereafter, the larvae were fixed three times, 15 min each, in Carnoy’s solution (methanol: glacial acetic acid, 3:1). The larvae were dissociated in 50% acetic acid, then dropped onto hot-wet slides and air dried.

    2.4 FISH Analysis

    Chromosome slides were pretreated with 1.6% pepsin at 37℃ for 30min and washed in 2x saline sodium citrate (SSC) for 5min. Specimens were denatured in a mixture containing 70% formamide and 2x SSC at 75℃ for 2min, followed by immediate dehydration in an ice-cold ethanol gradient (70%, 90%, and 100%; 5min each) and air-drying. One microgram of labeled probe was mixed in a hybridization buffer of 50% deionized formamide and 2x SSC, plus 50ngμL?1 C0-1 DNA. For hybridization, the probe mixture was denatured at 75℃ for 5min and preannealed at 37℃ for 30min. Thereafter, each slide was covered with 20μL of probe mixture and incubated for 16h at 37℃ in a humid box.

    For double-color FISH, probes labeled with digoxigenin and biotin were mixed and incubated at 37℃. A series of washes was followed: 50% formamide and 2x SSC, 42℃, 5min; 1x SSC, 42℃, 5min; and 2x SSC at room temperature, 5min. The probes were detected using anti-digoxigenin-rhodamine or/and fluorescein avidin D Cell Sorter Grade. Chromosomes were counterstained with 4’,6-diamidino-2-phenylindole or propidium iodide. Slides were viewed under an Eclipse-600 epi?uorescence microscope equipped with a CCD camera. Pictures were merged and edited using LUCIA Cytogenetics and Photoshop CS3.

    For karyotype analysis, chromosomes were paired according to their morphology from 20 good metaphases. Short and long arms were measured to calculate the relative length and centrometric index in accordance with Levan. (1964).

    3 Results

    3.1 BAC Library Screening

    BAC libraries were screened by four-dimensional, two-step PCR ofTLR,Myd88,TRAF6,NFκB andIκB. BAC clones yielded clear single DNA fragments and expected sizes were selected for further use. After PCR screening, all the five genes were found to be represented by at least one BAC clones each (Table 2).

    Table 2 Positive bacterial artificial chromosome (BAC) clones containing Toll-like receptor signaling pathway genes identified from scallop BAC libraries through PCR screening

    Note:*BAC clones selected for FISH.

    3.2 FISH Mapping

    For each gene, one representative clone was selected randomly for FISH (Table 2). FISH signals for individual positive BAC clones were analyzed in 20 metaphase chromosome spreads. All the five BAC clones were mapped to the corresponding chromosomes of. TheTLR-containing clone BB87B9 was hybridized to the telomeric region of the short arm on a pair of subtelocentric chromosomes (Fig.1a), and theNFκB-contain- ing clone BH802F5 was mapped to a similar position on a pair of submetacentric chromosomes (Fig.1b). Probes derived from clones BB26G9 containingMyd88 (Fig.1c) and BH409H8 containingTRAF6 (Fig.1d) showed signals in the centromeric region of the long arm on a pair of submetacentric or subtelocentric chromosomes, respectively. TheIκB-containing clone BB275F7 (Fig.1e) was mapped to the central section of the long arm in a pair of submetacentric chromosomes.

    In order to test whether all the screened BAC clones were located on the same pair of chromosomes, the representative clone was co-hybridized with each of the other clones through double-color FISH. For example (Fig.2), we co-hybridized BB26G9 with each of the other fiveMyd88-containing clones,, BH89A3, BH254D8, BH794G3, BH925B2, and BB253F6. Co-localization of BB26G9 with each of the five clones was confirmed using probes capable of generating merged signals in each case. We concluded that all the sixMyd88-containing clones were located at the same site in the genome. Similar conclusions were drawn from the study on the remaining four genes.

    After karyotyping, the means and standard deviations of the relative length and centromeric index were calculated for chromosome pairs with signals (Table 3). TheIκB-containing chromosomes has a smaller relative length while the remaining four chromosomes with signals were considerably larger than the largest metacentric chromosome. The results indicated that clone BB275F7 containingIκB was localized to a different pair of chromosomes from the other clones, BB87B9, BB26G9, BH409H8, and BH802F5.

    Co-hybridization was necessary to estimate whether the latter four BAC clones were located on different pairs of chromosomes separately. However, signals of probes derived from each clone were weakened when all these 4 clones were co-hybridized in one experiment. Thus, two BAC clones were assigned to similar chromosomes to confirm their chromosomal assignments by double-color FISH. Clone BB87B9 containingTLRwas labeled with biotin and BH409H8containingTRAF6 with digoxigenin. Results showed that the two probes were localized to two different subtelocentric chromosome pairs (Fig.3a).

    Then, the other two BAC clones BB26G9 (digoxigenin) and BH802F5 (biotin) were co-hybridized, and signals were observed on two non-homologous submetacentric chromosome pairs (Fig.3b). The locations of the four BACs obtained from double-color FISH were consistent with the results of one-color FISH. All these available data indicated that the five BAC clones, which containedTLR,Myd88,TRAF6,NFκB andIκB, respectively, were located in five non-homologous chromosome pairs of.

    Fig.1 FISH mapping of bacterial artificial chromosome clones containing CfTLR(a),CfNFκB(b), CfIκB (c), CfMyd88(d), and CfTRAF6 (e) from Chlamys farreri. Inset at top right for each probe corresponds to one chromosomal location showing the labeled chromosome adjacent to the largest metacentric chromosome. Scale bars=5μm.

    Fig.2 Double-color FISH showing 6 CfMyd88-containing bacterial artificial chromosome clones co-localized on the Chlamys farreri genome. Red, green, and blue channels were recorded separately and then merged. Red signals indicate localization of clone BB26G9 first mapped using single-color FISH, and green signals indicate clones BH89A3, BH254D8, BH794G3, BH925B2, and BB253F6. Signals are indicated by arrows in merged images.

    Table 3 Measurements (X±S.D) and classification of Toll-like receptor pathway genes containing chromosomes and the largest metacentric chromosome from metaphases of Chlamys farreri

    Fig.3 Co-hybridization of Toll-like receptor pathway genes. (a) Bacterial artificial chromosome clones containing CfTLR and CfTRAF6; and (b) clones containing CfNFκB and CfMyd88. Scale bars=5μm.

    4 Discussion

    An understanding of immune components that underpine host resistance to pathogens is a key step towards elucidating immune mechanisms in scallop. A large number of immune components are known in scallop (Su., 2004; Gao., 2007; Wang., 2007; Yu., 2007; Zhang., 2007). Most of these components have been characterized and analyzed regarding gene function, but few have been physically mapped to chromosomes. In the present study, we used FISH to map five immune genes functioning inTLR signaling pathway in order to study their chromosomal locations. The results showed that each gene occupied a single position on a chromosome pair.

    Early studies have shown that genes with similar expression patterns tend to cluster more frequently than those with different expression patterns (Liu and Han, 2009; Chen., 2010). Inand human, there is about 43% and 65% of analyzed pathways showing significant physical clustering of genes across the genome, respectively (Lee and Sonnhammer, 2003). Immune genes inare highly concentrated on chromosome 2, clustered in regions of high recombination rates (Wegner, 2008), which may be a fast and effective way to control expression of genes. As to scallop, the lack of whole genome data limits the research of immune genes. Recently, 2 lipopolysaccharide and beta-1,3-glucan binding protein genes and 3 membrane transport genes have been shown clustered in 2 scallop BAC clones (Zhao., 2012), there may exist groups of functionally related genes that are linked, which could cluster in scallop.

    For comparison analysis, the distributions of TLR signaling pathway genes in five model species (Table 4) were obtained from the NCBI database (NCBI Map Viewer, http://www.ncbi.nlm.nih.gov/mapview/). In, all the five TLR signaling pathway genes locate on five non-homologous chromosome pairs. However, there are different distribution patterns in the remaining four species. In, there are two TLR components (Tol-1 and IκB-1) co-locate on chromosome 1, 9.2Mb apart. In, cactus and dorsal, which are homologous with IκB and NFκB, respectively, are co-located on the long arm of chromosome 2, 1.1Mb apart, while MyD88 is located on the other arm of chromosome 2. In, NFκB3 spaces out TRAF6 49.5 Mb apart on chromosome 7. In, TRAF6 is located on the short arm of chromosome 11, while NFκB3 is located on the long arm of the same chromosome. In summary, the candidate immune genes TLR, MyD88, TRAF6, IκB and NFκB are distantly linked in the latter four species.

    As to, the five immune genes studied located in five non-homologous chromosome pairs, indicating that the TLR pathway may not show significant clustering as in. These TLR signaling pathway genes were significantly more distant than other functionally related genes, such as lipopolysaccharide and beta-1,3- glucan binding protein genes and membrane transport genes. However, the non-clustering of these genes possibly has little effect on the immune response. In, there is no significant difference in gene expression between clustered and non-clustered immune genes (Wegner, 2008). Here, the co-expression of TLR signaling pathway genes inmay not act in a distance-dependent way.

    Table 4 Chromosomal localization of Toll-like receptor signal pathway genes in five model organisms

    Note: * Gene ID in NCBI GENE database.

    FISH is a powerful tool significantly contributing to aquaculture genome research. FISH mapping of multicopy genes and repetitive elements has been frequently reported in scallop. Huang. (2007) mapped ribosomal DNA and (TTAGGG)n telomeric sequence to chromosomes inZhang. (2007) detected histone H3 gene sites by FISH in four scallops,,,, and. All these results have led to research advance on bivalve evolution and facilitated chromosome identification. However, there is a limited range of probes derived from multi-copy genes and repetitive elements. Mapping of large-insert clones will extend the application of FISH. Nine P1 clones were mapped in the eastern oyster,, identifying seven chromosomes (Wang., 2005). In, Zhang. (2008) identified eight of nineteen chromosomes by co-hybridizing eight fosmid clones. In the present study, we anchored five BAC clones with immune genes to five non-homologous chromosome pairs. These results will provide useful probes for chromosome identification of.

    Acknowledgements

    We thank Xunshan Aquatic Product Group Co., Ltd. (Rongcheng, China) for scallop samples. This research was financially supported by the National Natural Science Foundation of China (31270047), the National High Tech R&D Program (2012AA10A410), the National Basic Research Program of China (2010CB126402), and the National Key Technology R&D Program of China (2011BAD45B01 and 2011BAD13B05).

    Ashida, M., and Brey, P. T., 1998. Recent advances on the research of the insect prophenoloxidase cascade. In:Chapman and Hall, London, 135-172.

    Belvin, M. P., and Anderson, K. V., 1996. A conserved signaling pathway: The Drosophila toll-dorsal pathway., 12: 393-416.

    Chen, W., Meaux, J., and Lercher, M. J., 2010. Co-expression of neighbouring genes in Arabidopsis: Separating chromatin effects from direct interactions., 11: 178.

    Coscia, M. R., Giacomelli, S., and Oreste, U., 2011. Toll-like receptors: An overview from invertebrates to vertebrates., 8: 210-226.

    Gao, Q., Song, L., Ni, D., Wu, L., Zhang, H., and Chang, Y., 2007. cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop., 147: 704-715.

    Hibino, T., Loza-Coll, M., Messier, C., Majeske, A. J., Cohen, A. H., Terwilliger, D. P., Buckley, K. M., Brockton, V., Nair, S. V., Berney, K., Fugmann, S. D., Anderson, M. K., Pancer, Z., Cameron, R. A., Smith, L. C., and Rast, J. P., 2006. The immune gene repertoire encoded in the purple sea urchin genome., 300: 349-365.

    Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A., 1999. Phylogenetic perspectives in innate immunity., 284: 1313-1318.

    Hoffmann, J. A., and Reichhart, J. M., 2002. Drosophila innate immunity: An evolutionary perspective., 3: 121-126.

    Huang, X., Hu, X., Hu, J., Zhang, L., Wang, S., Lu, W., and Bao, Z., 2007. Mapping of ribosomal DNA and (TTAGGG)n telomeric sequence by FISH in., 73: 393-398.

    Hu, L., Shang, W., Sun, Y., Wang, S., Ren, X., Huang, X., and Bao, Z., 2011. Comparative cytogenetics analysis of,, andwith0-1DNA by fluorescencehybridization., 2011: 785831.

    Inamori, K., Ariki, S., and Kawabata, S., 2004. A Toll-like receptor in horseshoe crabs., 198: 106- 115.

    Janeway, J. C., 1989. Approaching the asymptote? Evolution and revolution in immunology.. 54: 1-13.

    Kawai, T., and Akira, S., 2010. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors., 11: 373-384.

    Lee, J. M., and Sonnhammer, E. L., 2003. Genomic gene clustering analysis of pathways in eukaryotes., 13: 875-882.

    Levan, A., Fredga, K., and Sandberg, A. A., 1964. Nomenclature for centrometric position on chromosomes., 52: 201-220.

    Liu, X., and Han, B., 2009. Evolutionary conservation of neighboring gene pairs in plants., 437: 71-79.

    Lorenzi, L., Molteni, L., and Parma, P., 2010. FISH mapping in cattle (L.) is not yet out of fashion., 51: 497-499.

    Meijer, A. H., Gabby Krens, S. F., Medina Rodriguez, I. A., He, S., Bitter, W., Ewa Snaar-Jagalska, B., and Spaink, H. P., 2004. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish., 40: 773-783.

    Qiu, L., Song, L., Xu, W., Ni, D., and Yu, Y., 2007a. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong scallop,., 22: 451-466.

    Qiu, L., Song, L., Yu, Y., Xu, W., Ni, D., and Zhang, Q., 2007b. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop., 23: 614-623.

    Qiu, L., Song, L., Yu, Y., Zhao, J., Wang, L., and Zhang, Q., 2009. Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop., 26: 359-367.

    Roach, J. C., Glusman, G., Rowen, L., Kaur, A., Purcell, M. K., Smith, K. D., Hood, L. E., and Aderem, A., 2005. The evolution of vertebrate Toll-like receptors., 102: 9577-9582.

    Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989.. 2nd edition. Cold Spring Harbor Laboratory, New York, 1659pp.

    Sasaki, N., Ogasawara, M., Sekiguchi, T., Kusumoto, S., and Satake, H., 2009. Toll-like receptors of the ascidian,: Prototypes with hybrid functionalities of vertebrate Toll-like receptors., 284: 27336-27343.

    Su, J., Song, L., Xu, W., Wu, L., Li, H., and Xiang, J., 2004. cDNA cloning and mRNA expression of the lipopolysaccharide- and beta-1,3-glucan-binding protein gene from scallop., 239: 69-80.

    Wang, H., Song, L., Li, C., Zhao, J., Zhang, H., Ni, D., and Xu, W., 2007, Cloning and characterization of a novel C-type lectin from Zhikong scallop., 44: 722-731.

    Wang, M., Yang, J., Zhou, Z., Qiu, L., Wang, L., Zhang, H., Gao, Y., Wang, X., Zhang, L., Zhao, J., and Song, L., 2011. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop., 35: 511-520.

    Wang, Y., Xu, Z., Pierce, J. C., and Guo, X., 2005. Characterization of Eastern oyster (Gmelin) chromosomes by fluorescence in situ hybridization with bacterio- phage P1 clones., 7: 207-214.

    Wegner, K. M., 2008. Clustering ofimmune genes in interplay with recombination rate., 3: e2835.

    Yu, Y., Qiu, L., Song, L., Zhao, J., Ni, D., Zhang, Y., and Xu, W., 2007. Molecular cloning and characterization of a putative lipopolysaccharide-induced TNF-a factor (LITAF) gene homo- logue from Zhikong scallop., 23: 419-429.

    Zhang, H., Song, L., Li, C., Zhao, J., Wang, H., Gao, Q., and Xu, W., 2007. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop., 44: 3492-3500.

    Zhang, L., Bao, Z., Wang, S., Huang, X., and Hu, J., 2007. Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops., 130: 193-198.

    Zhang, L., Bao, Z., Wang, S., Hu, X., and Hu, J., 2008. FISH mapping and identification of Zhikong scallop () chromosomes., 10: 151-157.

    Zhang, L., Li, L., and Zhang, G., 2011. AToll-like receptor and comparative analysis of TLR pathway in invertebrates., 30: 653-660.

    Zhao, B., Cheng, J., Chen, L., Yu, N., Huang, X., and Bao, Z., 2013. Construction of three bacterial artificial chromosome (BAC) libraries for Zhikong scallop ()., 43: 57-63.

    Zhao, C., Zhang, T., Zhang, X., Hu, S., and Xiang, J., 2012. Sequencing and analysis of four BAC clones containing innate immune genes from the Zhikong scallop ()., 502: 9-15.

    (Edited by Qiu Yantao)

    DOI 10.1007/s11802-015-2643-8

    ISSN 1672-5182, 2015 14 (6): 1075-1081

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    (April 4, 2014; revised August 21, 2014; accepted June 20, 2015)

    * Corresponding author. Tel: 0086-532-82031802 E-mail: xthuang@ouc.edu.cn

    国产高清有码在线观看视频| 69精品国产乱码久久久| 天天操日日干夜夜撸| 国产熟女午夜一区二区三区 | 免费黄色在线免费观看| 免费少妇av软件| 欧美人与善性xxx| 午夜福利在线观看免费完整高清在| 国产精品成人在线| 国产精品女同一区二区软件| 狂野欧美白嫩少妇大欣赏| 日本欧美视频一区| 精品国产一区二区三区久久久樱花| 国产精品无大码| 男女国产视频网站| 黄色视频在线播放观看不卡| 亚洲丝袜综合中文字幕| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| videos熟女内射| 国产一区二区三区综合在线观看 | 国国产精品蜜臀av免费| 国产 精品1| 久久国产精品男人的天堂亚洲 | 亚洲国产av新网站| 日韩欧美精品免费久久| 国产一区有黄有色的免费视频| 色94色欧美一区二区| 精品久久久久久久久亚洲| 免费大片18禁| 国产视频内射| 日韩,欧美,国产一区二区三区| 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 精品久久久精品久久久| 久久精品国产鲁丝片午夜精品| 欧美激情极品国产一区二区三区 | 久久久久人妻精品一区果冻| 国产精品嫩草影院av在线观看| 久久久久人妻精品一区果冻| 色5月婷婷丁香| 亚洲国产精品国产精品| 国产av一区二区精品久久| 黄色配什么色好看| 色94色欧美一区二区| 免费观看av网站的网址| 免费少妇av软件| 亚洲av成人精品一区久久| 人妻 亚洲 视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲美女视频黄频| 在线观看三级黄色| a级毛片免费高清观看在线播放| 青春草亚洲视频在线观看| 日日爽夜夜爽网站| 建设人人有责人人尽责人人享有的| 亚洲精华国产精华液的使用体验| 日韩人妻高清精品专区| 搡老乐熟女国产| 熟女人妻精品中文字幕| 国产毛片在线视频| 99热国产这里只有精品6| 国精品久久久久久国模美| 嘟嘟电影网在线观看| 久久久久久久久久成人| 婷婷色综合大香蕉| 久久综合国产亚洲精品| 亚洲美女搞黄在线观看| 亚洲成人av在线免费| 哪个播放器可以免费观看大片| 男的添女的下面高潮视频| videossex国产| av卡一久久| 久久 成人 亚洲| 观看美女的网站| 亚洲综合精品二区| 少妇 在线观看| 高清毛片免费看| 日韩视频在线欧美| a级片在线免费高清观看视频| 五月开心婷婷网| 狠狠婷婷综合久久久久久88av| 亚洲精品乱码久久久久久按摩| 少妇丰满av| 精品久久国产蜜桃| 热re99久久精品国产66热6| 久久av网站| 国产熟女午夜一区二区三区 | 免费看不卡的av| 成人毛片60女人毛片免费| 一级片'在线观看视频| 美女国产高潮福利片在线看| 一区二区日韩欧美中文字幕 | 日韩中字成人| 婷婷色综合www| 亚洲国产毛片av蜜桃av| 亚洲精品aⅴ在线观看| 九色成人免费人妻av| 亚洲国产精品成人久久小说| 午夜免费男女啪啪视频观看| 黄片无遮挡物在线观看| 天堂8中文在线网| 如何舔出高潮| 天堂中文最新版在线下载| 一区二区av电影网| 日本与韩国留学比较| 精品人妻偷拍中文字幕| 国产伦理片在线播放av一区| 在线观看人妻少妇| 少妇高潮的动态图| 日韩av在线免费看完整版不卡| 成人黄色视频免费在线看| 日本av免费视频播放| www.色视频.com| 国产片内射在线| 国产精品一二三区在线看| 亚洲性久久影院| 最黄视频免费看| 18禁在线无遮挡免费观看视频| 一个人免费看片子| 国产成人精品无人区| 成人影院久久| 美女视频免费永久观看网站| 永久网站在线| 中国国产av一级| 特大巨黑吊av在线直播| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 天堂俺去俺来也www色官网| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 熟女人妻精品中文字幕| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 女性被躁到高潮视频| 国产精品国产av在线观看| 久久99蜜桃精品久久| 久久97久久精品| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 丝袜美足系列| 另类亚洲欧美激情| 极品人妻少妇av视频| 国产片特级美女逼逼视频| 赤兔流量卡办理| 如日韩欧美国产精品一区二区三区 | 国产熟女欧美一区二区| 夫妻午夜视频| 伊人久久国产一区二区| 汤姆久久久久久久影院中文字幕| 国产免费一区二区三区四区乱码| kizo精华| 一本—道久久a久久精品蜜桃钙片| 水蜜桃什么品种好| 国产成人精品在线电影| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 一级毛片黄色毛片免费观看视频| 丰满迷人的少妇在线观看| 在线亚洲精品国产二区图片欧美 | 一级黄片播放器| 十八禁网站网址无遮挡| 九色成人免费人妻av| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 啦啦啦中文免费视频观看日本| 中文字幕人妻熟人妻熟丝袜美| 在线看a的网站| 99九九线精品视频在线观看视频| 午夜影院在线不卡| 91国产中文字幕| 99九九在线精品视频| 欧美97在线视频| 国产精品无大码| av国产久精品久网站免费入址| 日韩电影二区| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 伦理电影大哥的女人| 亚洲综合色网址| a级毛色黄片| 久久国产精品大桥未久av| 免费av中文字幕在线| 如何舔出高潮| 永久免费av网站大全| 丰满迷人的少妇在线观看| 伊人久久国产一区二区| 国产一区二区三区av在线| 丰满少妇做爰视频| 久久精品国产亚洲av涩爱| 亚洲伊人久久精品综合| 久久99热6这里只有精品| 久久久国产精品麻豆| 日韩av免费高清视频| 国产69精品久久久久777片| 免费av不卡在线播放| 久久久国产一区二区| 啦啦啦啦在线视频资源| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av国产av综合av卡| 天天操日日干夜夜撸| 91久久精品国产一区二区三区| 嘟嘟电影网在线观看| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 日韩视频在线欧美| 精品久久久久久电影网| 免费看av在线观看网站| 日韩人妻高清精品专区| 久久午夜福利片| 午夜免费男女啪啪视频观看| 精品久久蜜臀av无| 99热这里只有精品一区| 国产永久视频网站| 中文字幕精品免费在线观看视频 | 日韩av不卡免费在线播放| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 亚洲人成网站在线播| 边亲边吃奶的免费视频| 精品国产国语对白av| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 韩国高清视频一区二区三区| 国产精品 国内视频| 国产免费视频播放在线视频| 欧美+日韩+精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 精品熟女少妇av免费看| 在线观看免费高清a一片| 少妇被粗大的猛进出69影院 | 精品久久久久久久久av| 乱人伦中国视频| freevideosex欧美| 下体分泌物呈黄色| 精品国产露脸久久av麻豆| 久久影院123| tube8黄色片| 婷婷色综合大香蕉| 简卡轻食公司| 国产乱人偷精品视频| 女性生殖器流出的白浆| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 伊人久久国产一区二区| 国产精品久久久久久久电影| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 少妇被粗大的猛进出69影院 | 五月玫瑰六月丁香| av黄色大香蕉| 欧美bdsm另类| 婷婷色av中文字幕| 超色免费av| 国产精品久久久久成人av| 熟女av电影| 国产精品人妻久久久影院| 香蕉精品网在线| 国产女主播在线喷水免费视频网站| 男男h啪啪无遮挡| 熟女av电影| 啦啦啦在线观看免费高清www| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 一本久久精品| .国产精品久久| 一级二级三级毛片免费看| 亚洲欧美色中文字幕在线| 26uuu在线亚洲综合色| 久久精品国产亚洲网站| 男的添女的下面高潮视频| 亚洲国产最新在线播放| 国产免费现黄频在线看| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 国产片内射在线| 免费少妇av软件| 国产一区二区在线观看av| 天堂俺去俺来也www色官网| 亚洲成色77777| 亚洲综合色网址| 欧美丝袜亚洲另类| 十八禁网站网址无遮挡| 最新中文字幕久久久久| 王馨瑶露胸无遮挡在线观看| 午夜福利视频在线观看免费| 久久久国产精品麻豆| 26uuu在线亚洲综合色| 一区二区三区四区激情视频| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 熟女电影av网| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 免费av中文字幕在线| 一级爰片在线观看| 97超视频在线观看视频| 新久久久久国产一级毛片| 国产 一区精品| 99热6这里只有精品| 亚洲第一区二区三区不卡| 亚洲成人手机| 色94色欧美一区二区| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频| 国产精品欧美亚洲77777| 在线观看人妻少妇| 亚洲av成人精品一二三区| 91精品国产九色| 亚洲精品视频女| 国产精品久久久久久精品电影小说| 久久久久久久久久人人人人人人| 国产亚洲最大av| 精品久久久噜噜| 99热网站在线观看| 国产亚洲精品第一综合不卡 | 国产精品一区二区在线不卡| 亚洲精品一二三| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 免费播放大片免费观看视频在线观看| 国产无遮挡羞羞视频在线观看| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 欧美日韩一区二区视频在线观看视频在线| 成人无遮挡网站| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 18+在线观看网站| 久久人人爽人人爽人人片va| 国产色爽女视频免费观看| 日本vs欧美在线观看视频| 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 97精品久久久久久久久久精品| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 永久网站在线| 一本一本综合久久| 国产精品久久久久久久电影| 免费观看的影片在线观看| 性高湖久久久久久久久免费观看| 99久久综合免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久亚洲中文字幕| 99热国产这里只有精品6| 如何舔出高潮| 亚洲色图 男人天堂 中文字幕 | 国产精品久久久久久av不卡| 久久久久久久国产电影| 蜜桃在线观看..| 国产白丝娇喘喷水9色精品| 美女主播在线视频| 日韩欧美精品免费久久| 国产淫语在线视频| 国产 一区精品| 美女cb高潮喷水在线观看| 亚洲国产精品999| 一区二区av电影网| 青春草亚洲视频在线观看| 午夜福利网站1000一区二区三区| 亚洲国产精品一区三区| 亚洲国产毛片av蜜桃av| 日本av免费视频播放| 亚洲欧美中文字幕日韩二区| 性高湖久久久久久久久免费观看| 少妇的逼好多水| 成人二区视频| 99国产综合亚洲精品| 精品一区在线观看国产| 精品99又大又爽又粗少妇毛片| 午夜福利在线观看免费完整高清在| a级毛片免费高清观看在线播放| 18禁观看日本| av网站免费在线观看视频| 中文字幕av电影在线播放| 午夜影院在线不卡| 午夜av观看不卡| 大香蕉97超碰在线| 国产伦理片在线播放av一区| 国产成人91sexporn| 日韩一区二区三区影片| 久久久国产精品麻豆| 成人影院久久| 一区二区日韩欧美中文字幕 | 少妇丰满av| 国产欧美日韩一区二区三区在线 | 欧美精品高潮呻吟av久久| 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| 国产伦精品一区二区三区视频9| 久久久久久人妻| 日韩不卡一区二区三区视频在线| 成年av动漫网址| 日韩伦理黄色片| 久久久久久人妻| 在线播放无遮挡| a级毛片免费高清观看在线播放| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 天美传媒精品一区二区| 人人妻人人澡人人爽人人夜夜| 少妇猛男粗大的猛烈进出视频| 岛国毛片在线播放| 大片电影免费在线观看免费| 美女cb高潮喷水在线观看| 一级片'在线观看视频| 狂野欧美白嫩少妇大欣赏| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 午夜福利网站1000一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产成人freesex在线| 精品午夜福利在线看| 国产无遮挡羞羞视频在线观看| 亚洲成色77777| 狂野欧美激情性xxxx在线观看| av在线app专区| 午夜av观看不卡| 狂野欧美激情性bbbbbb| 国产av精品麻豆| 日韩成人av中文字幕在线观看| 久久狼人影院| 日韩制服骚丝袜av| 国产视频内射| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 97超碰精品成人国产| 国产欧美另类精品又又久久亚洲欧美| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 黄色毛片三级朝国网站| 97超碰精品成人国产| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 久久久久视频综合| 国产精品人妻久久久久久| 黄片播放在线免费| 国产精品一区二区在线观看99| 午夜福利影视在线免费观看| 中文天堂在线官网| 欧美亚洲日本最大视频资源| 亚洲怡红院男人天堂| 国产高清三级在线| 免费av中文字幕在线| 尾随美女入室| 91久久精品国产一区二区成人| 久久久久久久久久人人人人人人| 成年人午夜在线观看视频| 91精品伊人久久大香线蕉| 成人亚洲精品一区在线观看| 一本久久精品| 精品人妻偷拍中文字幕| 香蕉精品网在线| 国产一区二区在线观看av| 日韩视频在线欧美| 中国国产av一级| 亚洲精品美女久久av网站| 欧美日韩国产mv在线观看视频| 亚洲欧美精品自产自拍| 亚洲精品第二区| 美女主播在线视频| 国产亚洲av片在线观看秒播厂| 国产国拍精品亚洲av在线观看| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 熟女电影av网| 一级黄片播放器| 69精品国产乱码久久久| 91成人精品电影| 欧美少妇被猛烈插入视频| 熟女av电影| 国产成人免费无遮挡视频| 日本-黄色视频高清免费观看| 欧美精品亚洲一区二区| 精品久久久久久久久亚洲| 精品人妻一区二区三区麻豆| 色哟哟·www| 免费看光身美女| 国产精品久久久久久av不卡| 满18在线观看网站| 欧美亚洲日本最大视频资源| 亚洲av男天堂| 赤兔流量卡办理| 免费观看无遮挡的男女| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 哪个播放器可以免费观看大片| 伊人久久国产一区二区| 国产片内射在线| 看免费成人av毛片| 老司机影院成人| 免费人妻精品一区二区三区视频| 老熟女久久久| 97在线视频观看| 91精品三级在线观看| 亚洲精品国产av成人精品| 91午夜精品亚洲一区二区三区| 超碰97精品在线观看| 我的女老师完整版在线观看| 久久毛片免费看一区二区三区| 久久国产亚洲av麻豆专区| 天堂中文最新版在线下载| 亚洲精品第二区| 搡女人真爽免费视频火全软件| 免费黄频网站在线观看国产| 欧美另类一区| 女性生殖器流出的白浆| 亚洲国产色片| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂| 欧美少妇被猛烈插入视频| 国产白丝娇喘喷水9色精品| 亚洲精品日本国产第一区| 成人手机av| tube8黄色片| 久久午夜综合久久蜜桃| 亚洲人成77777在线视频| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久小说| av在线老鸭窝| 成人影院久久| 国产成人freesex在线| 青青草视频在线视频观看| 中文字幕久久专区| 国产成人一区二区在线| 欧美另类一区| 在线观看免费视频网站a站| 九色成人免费人妻av| 天天影视国产精品| 亚洲怡红院男人天堂| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 蜜臀久久99精品久久宅男| 欧美日韩av久久| 亚洲av日韩在线播放| 美女cb高潮喷水在线观看| 国产高清不卡午夜福利| 亚洲,一卡二卡三卡| 少妇高潮的动态图| 啦啦啦中文免费视频观看日本| 91精品一卡2卡3卡4卡| 国产高清国产精品国产三级| 一级毛片aaaaaa免费看小| xxx大片免费视频| 美女中出高潮动态图| xxx大片免费视频| 免费看光身美女| 国产精品嫩草影院av在线观看| 美女主播在线视频| 日韩电影二区| 免费观看无遮挡的男女| 男女边摸边吃奶| 久久精品国产a三级三级三级| 久久ye,这里只有精品| 黑丝袜美女国产一区| 秋霞在线观看毛片| 一级毛片 在线播放| 久久久久久久久久成人| 国内精品宾馆在线| 国产精品无大码| 日韩电影二区| 卡戴珊不雅视频在线播放| 亚洲激情五月婷婷啪啪| 精品亚洲乱码少妇综合久久| 激情五月婷婷亚洲| 人人妻人人澡人人爽人人夜夜| 最近的中文字幕免费完整| 久久精品国产自在天天线| 又黄又爽又刺激的免费视频.| 在线观看美女被高潮喷水网站| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 多毛熟女@视频| 夫妻性生交免费视频一级片| 性色av一级| 777米奇影视久久| 国产欧美亚洲国产| 男人爽女人下面视频在线观看| 国产极品粉嫩免费观看在线 | av网站免费在线观看视频| 99热这里只有精品一区| √禁漫天堂资源中文www| 人体艺术视频欧美日本| 久久精品久久久久久久性| 久久人人爽人人爽人人片va| 亚洲国产日韩一区二区| 午夜激情av网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美老熟妇乱子伦牲交| 美女cb高潮喷水在线观看| 国产熟女午夜一区二区三区 | 国产成人免费无遮挡视频| 日韩av不卡免费在线播放| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 欧美日韩综合久久久久久| 三级国产精品片| 中国三级夫妇交换| 岛国毛片在线播放| 在线免费观看不下载黄p国产| 日日撸夜夜添| 黄色配什么色好看| 免费黄色在线免费观看|