• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effective Method of UV-Oxidation of Dissolved Organic Carbon in Natural Waters for Radiocarbon Analysis by Accelerator Mass Spectrometry

    2015-04-01 01:57:36XUEYuejunGETiantianandWANGXuchen
    Journal of Ocean University of China 2015年6期

    XUE Yuejun, GE Tiantian, and WANG Xuchen, 2), *

    ?

    An Effective Method of UV-Oxidation of Dissolved Organic Carbon in Natural Waters for Radiocarbon Analysis by Accelerator Mass Spectrometry

    XUE Yuejun1), GE Tiantian1), and WANG Xuchen1), 2), *

    1)Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China,Qingdao 266100, P.R. China?2)Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao266100,P.R. China

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%± 4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3μgC) that is critical for14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

    radiocarbon; dissolved organic carbon; UV-oxidation; natural waters; AMS

    1 Introduction

    Dissolved organic carbon (DOC) is the second largest organic carbon reservoir on earth and the largest exchangeable organic carbon pool (about 660PgC) in the ocean (Hedges, 1992). DOC plays important roles not only for the global carbon cycle but affecting the nutrients and many elements cycles and microbial activities in the ocean as well (Hansell and Carlson, 2001, 2002; Middelbore and Lundsgaard, 2003; Jiao., 2010; Nelson and Carlson, 2012). In the last two decades, although we have gained a great knowledge about the distribution and cycling of DOC in the world oceans (Druffel., 1992; Hansell., 2009; Bauer., 2013). Its sources and bioavailability in the ocean especially in the ocean’s deep regions (>1500m), however, are still not fully understood (Jiao and Azam, 2011; Becker., 2014; Follett., 2014). It thus remains as an on-going active research area to study the sources, transformation and bioavailability of DOC in the ocean.

    Measurement of natural occurring radiocarbon (14C) compositions in DOC is a very powerful tool to identify the sources and cycling processes of DOC in natural waters (Williams and Druffel, 1987; Williams., 1992; Druffel., 1992; Raymond and Bauer, 2001; Wang., 2012). Based on the abundances of14C, the radiocarbon age (year before present) of DOC can be then calculated so it provides insight information about the sources and cycling time scales of DOC in the ocean. Measurements of14C in DOC have revealed that the14C age of DOC in the deep ocean ranged 4000-6000 years old, suggesting that a large fraction of DOC in the ocean is cycling on a very long time scales (Williams and Druffel, 1987; Druffel and Bauer, 2000). However, a recent DOC-14C study by Follett. (2014) reported that up to 30% of DOC in the deep ocean could be modern which represents a significant fraction of recent-fixed modern carbon flux in the deep ocean. In the river and coastal waters,14C age of DOC also varied widely. Our previous study have measured the14C compositions of DOC in the Huanghe and Changjiang Rivers and the14C age ranged from 305 to 1570 years with great seasonality as affected by different organic matter inputs (Wang., 2012). These14C studies certainly provide promise information to our understanding of the sources and cycling of DOC in the river and ocean that other chemical methods could not possibly provide.

    To measure14C in seawater DOC is a complicated process that requires the first step for complete oxidation of sufficient DOC to CO2. This is rather difficult for seawater analysis because the very high proportion of salts and extremely low DOC concentrations in the deep ocean (about 40μmolL?1). Contamination during sample processing is often a big consideration. With the application of accelerator mass spectrometry (AMS) in the last 20 years, the amount of carbon required for high precision14C analysis has been sustainably reduced to about 100μgC or less. Even though, 300-500mL seawater usually is needed for oxidation in order to collect enough CO2for high precision14C analysis. The most commonly used method for sufficient DOC oxidation is by ultraviolet light oxidation (UV-Oxidation) (Williams and Druffel, 1987; Bauer., 1992). More recently, Beaupre. (2007) developed a UV-oxidation method for DOC based on the modification of the conventional UV-oxidation method. This method could oxidize 30mL to 500mL seawater and gives low blank and high precision for14C measurements. However, the disadvantage of the method is that only one sample can be oxidized at same time using the system and it takes at least 6h to finish one sample. This time consuming process certainly has limitations for studies when large number of DOC samples need to be processed throughput.

    In the paper, we report an effective UV-oxidation method developed in our laboratory for oxidation of DOC in natural waters. Depending on the DOC concentration, 4 to 12 samples can be oxidized at the same time and the reproducibility and precisions are good for both13C and14C measurements. We have used this method for DOC-14C studies in riverine, estuarine, coastal and oceanic waters and have obtained promise results.

    2 Methods

    2.1 UV-Oxidation System

    The UV-oxidation system we used is shown in Fig.1. It includes an Ace Glass model 7900 UV-Oxidation apparatus with power supply (Ace Glass Inc.). A 50cm long 1200 watts medium-pressure mercury arc UV lamp (Hanovia) is vertically placed in the center of the UV- Oxidation housing. Twelve custom-made quartz sample reaction tubes (140mL, 2.6cm OD×56cm, Fig.1-1) can be vertically placed in the housing around the UV lamp. The specially designed reaction tube has a top ground-glass joint stripping probe which is used for gas purging and can be connected directly to the vacuum line for CO2extraction as shown in Fig.1. The vacuum extraction line is made from 12-15mm OD Pyrex tubing and contains mainly a (2) KI solution trap; (3) a cold water trap (dry ice/isopropanol slush); (4) a liquid nitrogen trap for CO2collection; (5) cold-finger trap with calibrated volume for CO2quantification; (6) CO2transfer tubing connection; (7) a protection liquid nitrogen trap at the end of the vacuum line leading to (10) an oil-free molecular rotary pump (TPS Compact Dry TV301, Agilent Technologies); (8) a pressure gauge for high vacuum measurement (to 1×10?4Torr, Agilent) and (9) a pressure transducer to quantify CO2volume (0-200 Torr, MKS Inc.). The major improvement of our UV-oxidation system is using the multiple Ace Glass UV-Oxidation apparatus with specially designed 12 quartz UV-oxidation tubes which can be connected directly to vacuum line. In this case, multiple water samples can be oxidized at the same time.

    Fig.1 Schematic diagram of the UV-oxidation system for DOC and the vacuum extraction line. Detail information for each component is provided in the text.

    2.2 UV-Oxidation of DOC

    We first tested the UV-oxidation efficiency and the blank level using the system. A 1.0molL?1DOC stock solution was prepared using a reagent purity oxalic acid (Aladdin, 99.99%). Three DOC concentrations (100μmolL?1, 200μmolL?1and 400μmolL?1) were then diluted using the stock solution and Milli-Q high purity water. Measured 120mL of each DOC solution was placed in each of the pre-combusted (850℃ for 2h) quartz reaction tubes and acidified to pH 2 using 85% H3PO4. The acidified DOC solutions were purged with ultra-high purity (UHP) helium gas through the top of the reaction tube (Fig.1-1) for 20min to remove dissolved inorganic carbon (DIC). Four duplicates were prepared for each DOC standard solution. After purging, the DOC standard solutions were UV-oxidized for 5h. At each half hour, water samples were collected from each reaction tube to measure DOC concentration. We also used river water, estuarine water and seawater of different salinities to test the UV-oxidation efficiencies. The water samples were collected in Changjiang River and Huanghe River Estuaries during cruises in March and April, 2014. Water samples were filtered using GF/F filters (pre-combusted at 550℃ for 5h) and kept frozen in glass bottles until processing. The procedure of UV-oxidation of DOC for the field water samples was conducted in the same way as the DOC standard solutions as described above.

    To test the system blanks on carbon isotope measurement, we used a 200μmolL?1DOC standard solution to conduct UV-oxidation and extracted CO2generated from DOC oxidation for carbon isotope measurement. As described above, 120mL solution was placed into a quartz reaction tube in four duplicates and acidified to pH 2 using 85% H3PO4. The acidified standard solutions were purged with UHP helium gas for 20min and UV-oxidized for 5h. Following the UV-oxidation, gaseous CO2generated from DOC oxidation was purged again with UHP helium gas through the vacuum extraction line and CO2was purified and collected cryogenically and flame- sealed inside 6mm OD Pyrex break-seal tubes for14C and13C analysis.

    We also conducted the UV-oxidation blank test using field water samples. Three samples (from Huanghe River, Changjiang River and coastal seawater outside Changjiang Estuary) were tested for reproducibility on isotope measurements. As described above, 120mL water sample was placed into a quartz reaction tube in triplicate and acidified to pH 2 using 85% H3PO4. The acidified water samples were purged with UHP helium gas for 20min and UV-oxidized for 5h. After UV-oxidation, generated CO2from DOC oxidation was purged again with UHP helium gas through the vacuum extraction line and CO2was purified and collected cryogenically. After measuring the volume, CO2was then flame-sealed inside 6mm OD Pyrex break-seal tubes for14C and13C analysis.

    Concentration of DOC was measured by high temperature catalytic oxidation (HTCO) method (Sharp., 1993) using a Shimadzu TOC-L analyzer equipped with an ASI-L auto-sampler. The instrument was calibrated using 5-point calibration curves derived from prepared DOC standard (KHP) solution. Instrument blank DOC value was checked against reference low carbon water and seawater (CRM, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences). Blank subtraction was carried out using Milli-Q water which was analyzed before each sample ran. Total blanks associated with DOC measurement was about 5μmolL?1and the analytic precision on triplicate injections were < 3%.

    2.3 Isotopic Measurement

    Carbon isotope (14C and13C) compositions were measured for the purified CO2gas generated from UV-oxidation of DOC at the National Ocean Science Accelerator Mass Spectrometry (NOSAMS) facilities at Woods Hole Oceanographic Institution (WHOI) in USA. A small split fraction of CO2was measured for13C using a VG IR-MS and the rest CO2was graphitized for14C analysis using AMS. Values of13C are reported in ‰ relative to the PDB standard and values of14C measured as the fraction modern based on modern reference material used and14C values are calculated and reported in ‰ relative to the standard as well.

    3 Results and Discussion

    3.1 UV-Oxidation Efficiency

    The results of UV-oxidation efficiency tested using DOC standard solution and field samples were summarized in Table 1 and plotted in Fig.2. The UV-oxidation efficiencies were 97% to 98%±2% for DOC standard solutions and 94% to 96%±4% for the field samples determined at the end of the UV-oxidation (Table 1). During the time series UV-oxidation test, about 40%-60% of DOC were oxidized after one hour and 94%-98% of DOC oxidation efficiencies were reached at 4h. These oxidation efficiencies obtained in our experiments are quite consistent with the results reported using a different setting of UV-oxidation method (Beaupre., 2007), indicating that our UV-oxidation system is effective for DOC oxidation in natural waters with good reproducibility. We therefore set 5 consecutive hours as standard oxidation time for all samples to ensure a completed DOC oxidation. The recovery of CO2collected cryogenically on the vacuum extraction line was slightly lower than that of UV-oxidized, probably due to the small calibration errors of CO2pressure volume or lost during pumping of the uncondensed gases. In any cases, this small differences will not affect the measured values of both13C and14C (Table 1).

    The values of bothd13C andD14C measured for the DOC standard solution after UV-oxidation showed good agreement with the values of solid oxalic acid standard (within 2% differences), indicating the system blanks arevery low and the reproducibility of UV-oxidation is good. For the three field DOC samples, the reproducibility and precisions ofd13C andD14C measurements are slightly lower than that of the DOC standard solution but still considered as reasonably well as compared with the results of Beaupre. (2007) using a different UV-oxidation method.

    Table 1 UV-oxidation efficiency and isotope results reproducibility

    Note:aUV-oxidized (%) is calculated based on DOC concentrations measured before and after UV-oxidation;bRecovery (%) is calculated based on the CO2collected at the end of the UV-oxidation.

    Fig.2 (a) DOC concentration changes and (b) DOC oxidation efficiencies during the time series UV-oxidation of DOC standard solutions; (c) DOC concentration changes and (d) DOC oxidation efficiencies during the time series UV-oxidation of riverine, estuarine and coastal waters with different salinity.

    As discussed by Beaupre. (2007), the biggest pro- blems and challenges for measuring marine DOC isotopic ratios are the high proportion of salts in seawater, low DOC concentration and blanks associated with sample processing. Since the application of AMS, the amount of carbon needed for high precision14C analysis has been reduced substantially to 100μg or less. Thus the sample volume needed for DOC oxidation can be reduced to 100-200mL for estuarine and coastal waters and 300mL for deep ocean waters accordingly. Our results suggest that with carefully designed UV-oxidation systems and sample handling, this can be successfully achieved. We have used our UV-Oxidation system to oxidize DOC in natural waters including rain and snow samples for14C studies and have received promise results (Wang., 2015).

    As a summary, our UV-oxidation system showed high efficiency for DOC oxidation in natural waters. The blanks associated with the system are low and the reproducibility is high for DOC isotopic measurement. As a great advantage of our UV-Oxidation system, multiple samples (4 to 12 depending on DOC concentration) can be oxidized at same time so it reduces the sample processing time substantially compared with other UV-oxidation methods. This system and method can be used for radiocarbon studies of DOC in natural waters especially when large amount of samples need to be processed in timely.

    Acknowledgements

    We thank the advices and technical assistants from Dr. Xu Li in the NOSAMS facility at Woods Hole Oceanographic Institution in USA. We also thank the staff at NOSAMS for high precision measurements of14C of the samples. Financial support for this work was provided by Ocean University of China (841312004) and National Natural Science Foundation of China (Grant Nos. 41476057 and 41221004).

    Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A., 2013. The changing carbon cycle of the coastal ocean.,504: 61-70.

    Bauer, J. E., Williams, P. M., and Druffel, E. R. M., 1992.14C activity of dissolved Organic carbon fractions in the N. central Pacific and Sargasso Sea., 357: 667- 670.

    Beaupre, S. R., Druffel, E. R. M., and Griffin, S., 2007. A low- blank phytochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon.:, 5: 174-184.

    Becker, J. W., Berube, P. M., Follett, C. L., Waterbury, J. B., Chrisholm, S. W., DeLong E. F., and Repeta, D. J., 2014. Closely related phytoplankton species produce similar suites of dissolved organic matter., DOI:10.3389/fmicb.2014.00111.

    Druffel, E.R.M., and Bauer, J.E., 2000. Radiocarbondistributions in Southern Oceandissolved and particulate organic matter.,27:1495-1498.

    Druffel, E.R.M., Williams, P.M., Bauer, J.E., and Ertel, J.R., 1992.Cycling ofdissolved and particulate organic matter in the open ocean.,97: 15639-15659.

    Follett, C. L., Repeta, D. J., Rothman, D. H., Xu, L., and Santinelli, C., 2014. Hidden cycle of dissolved organic carbon in the deep ocean.,111: 16706-16711.

    Hansell, A. A., Carlson, C. A., Repeta, D., and Schlitzer, R., 2009. Dissolved organic matter in the ocean: New insights stimulated by a controversy.,22: 202-211.

    Hansell, D. A., and Carlson, C. A., 2001. Biogeochemistry of total organic carbon andnitrogen in the Sargasso Sea: Control by convective overturn.II:,48: 1649-1667, DOI:10.1016/S0967-0645(00)00153-3.

    Hansell, D. A., and Carlson, C. A., 2002.. Academic Press, Beijing, 774pp.

    Hedges, J. I., 1992. Global biogeochemical cycles: Progress and problems.,39: 67-93.

    Jiao, N. Z., and Azam, F., 2011. Microbial carbon pump and its significance for carbon sequestration in the ocean. In:. Jiao, N.,., eds., Science/AAAs, Washington D. C., 43-45, DOI: 10.1126/science. opms.sd 0001.

    Jiao, N. Z., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T. W., Chen, F., and Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean.,8: 593- 599.

    Middelbore, M., and Lundsgaard, C., 2003. Microbial activity in the Greeland Sea: Role of DOC lability, mineral nutrients and temperature., 32: 151-163.

    Nelson, C. E., and Carlson, C. A., 2012. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton., DOI: 101111/j.1462-2920.2012.02738. x.

    Raymond, P. A., and Bauer, J. E., 2001. Use of14C and13C natural abundances forevaluating riverine, estuarine, and coastal DOC and POC sources and cycling: Areview and synthesis.,32: 469-485, DOI:10.1016/S0146-6380(00)00190-X.

    Sharp, J. H., Benner, R., Bennett, L., Carlson, C. A., Dow, R., and Fitzwater, S. E., 1993. Re-evaluation of high-temperature combustion and chemical oxidation measurements of dissolved organic in seawater., 38: 1774-1782.

    Wang, X. C., and Ge, T. T., Xue, Y. J., and Luo, C. L., 2015. Carbon isotopic (14C and13C) characterization of fossil-fuel derived dissolved organic carbon in wet precipitation in Shandong Province, China., DOI: 10.1007/s10874-015-9323-3.

    Wang, X. C., Ma, H. Q., Li, R. H., Song, Z. S., and Wu, J. P., 2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese rivers: The Yellow River and Changjiang (Yangtze) River.,26, DOI: 10.1029/2011GB004130.

    Williams, P. M., and Druffel, E. R. M., 1987. Radiocarbon in dissolved organic carbon in the central North Pacific Ocean.,330: 246-248.

    Williams, P. M., Robertson, K. J., Soutar, A., Griffin, S. M., and Druffel, E. R. M., 1992. Isotopic signatures (14C,13C,15N) as tracers of sources and cycling of soluble andparticulate organic matter in the Santa Monica Basin, California.,30: 253-290, DOI:10.1016/0079-6611(92)90015-R.

    (Edited by Ji Dechun)

    DOI 10.1007/s11802-015-2935-z

    ISSN 1672-5182, 2015 14 (6): 989-993

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    (January 20, 2015; revised August 4, 2015; accepted September 15, 2015)

    * Corresponding author. Tel: 0086-532-66782831 E-mail:xuchenwang@ouc.edu.cn

    国产亚洲一区二区精品| 色视频在线一区二区三区| av线在线观看网站| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人 | 男女国产视频网站| 日韩一区二区视频免费看| 久久人人爽人人爽人人片va| 乱码一卡2卡4卡精品| 91久久精品国产一区二区成人| 观看美女的网站| 男女下面进入的视频免费午夜| 大陆偷拍与自拍| 久久精品熟女亚洲av麻豆精品| 免费黄网站久久成人精品| 亚洲精品色激情综合| 亚洲av中文字字幕乱码综合| 美女xxoo啪啪120秒动态图| 小蜜桃在线观看免费完整版高清| 搡老乐熟女国产| 亚洲欧美日韩东京热| 国产成人免费无遮挡视频| kizo精华| 一级毛片 在线播放| 亚洲av福利一区| 九九久久精品国产亚洲av麻豆| 噜噜噜噜噜久久久久久91| 插阴视频在线观看视频| 男人狂女人下面高潮的视频| 亚洲av在线观看美女高潮| 美女中出高潮动态图| 亚洲性久久影院| 久久女婷五月综合色啪小说| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 3wmmmm亚洲av在线观看| 2018国产大陆天天弄谢| 青春草亚洲视频在线观看| 国产成人免费无遮挡视频| 国产美女午夜福利| 亚洲人成网站在线播| 久久久a久久爽久久v久久| 在线观看免费视频网站a站| 国产成人精品福利久久| 熟女电影av网| 哪个播放器可以免费观看大片| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 国产精品嫩草影院av在线观看| 少妇 在线观看| 国产大屁股一区二区在线视频| 欧美日本视频| 大香蕉久久网| av在线观看视频网站免费| 国产精品人妻久久久影院| av卡一久久| 韩国高清视频一区二区三区| 新久久久久国产一级毛片| 亚洲无线观看免费| 女人久久www免费人成看片| 亚洲精品日韩在线中文字幕| 最近最新中文字幕免费大全7| 91在线精品国自产拍蜜月| 99久久精品国产国产毛片| 在线亚洲精品国产二区图片欧美 | 美女xxoo啪啪120秒动态图| 99久久综合免费| 韩国av在线不卡| h视频一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲精品乱码久久久久久按摩| 亚洲av.av天堂| 免费大片18禁| 狂野欧美激情性bbbbbb| 国产成人精品一,二区| 波野结衣二区三区在线| 日本av免费视频播放| 国产成人精品婷婷| 久久影院123| 一级毛片我不卡| 欧美丝袜亚洲另类| 国产精品伦人一区二区| 久久这里有精品视频免费| 波野结衣二区三区在线| 日本色播在线视频| 精品午夜福利在线看| 久久综合国产亚洲精品| 一本久久精品| 免费看av在线观看网站| 国产日韩欧美亚洲二区| 国产成人a区在线观看| 看免费成人av毛片| 日韩人妻高清精品专区| 99久久精品热视频| 中文乱码字字幕精品一区二区三区| 午夜免费观看性视频| 日韩人妻高清精品专区| 激情 狠狠 欧美| 妹子高潮喷水视频| 国产高清不卡午夜福利| 国国产精品蜜臀av免费| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 免费人妻精品一区二区三区视频| 亚洲色图综合在线观看| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 国产免费视频播放在线视频| 美女中出高潮动态图| 亚洲精品自拍成人| 青青草视频在线视频观看| 亚洲精品中文字幕在线视频 | 成人亚洲欧美一区二区av| 丰满人妻一区二区三区视频av| 久久久久网色| 亚洲久久久国产精品| 黄片wwwwww| 亚洲婷婷狠狠爱综合网| 久热这里只有精品99| 久久久午夜欧美精品| 丰满迷人的少妇在线观看| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 水蜜桃什么品种好| 看十八女毛片水多多多| 一级毛片 在线播放| 亚洲国产精品成人久久小说| 内射极品少妇av片p| 成人国产麻豆网| 日本一二三区视频观看| 欧美日本视频| 成人国产av品久久久| 青青草视频在线视频观看| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 欧美激情极品国产一区二区三区 | 另类亚洲欧美激情| 又粗又硬又长又爽又黄的视频| 免费黄色在线免费观看| 成人亚洲精品一区在线观看 | 高清毛片免费看| 国产成人一区二区在线| 日韩制服骚丝袜av| 简卡轻食公司| 亚洲精华国产精华液的使用体验| 日本wwww免费看| 精品一区二区三区视频在线| 人人妻人人爽人人添夜夜欢视频 | 国国产精品蜜臀av免费| 伊人久久国产一区二区| 国产精品偷伦视频观看了| 久久韩国三级中文字幕| 另类亚洲欧美激情| 在线观看一区二区三区| 最近的中文字幕免费完整| 不卡视频在线观看欧美| 少妇的逼好多水| 秋霞在线观看毛片| av.在线天堂| 狂野欧美激情性xxxx在线观看| 纯流量卡能插随身wifi吗| 亚洲电影在线观看av| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 国产女主播在线喷水免费视频网站| 丰满迷人的少妇在线观看| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 精品少妇久久久久久888优播| 亚洲av在线观看美女高潮| 中文天堂在线官网| 啦啦啦视频在线资源免费观看| 亚洲第一av免费看| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| h视频一区二区三区| 亚洲精品日韩av片在线观看| 欧美精品亚洲一区二区| 国产av精品麻豆| 黑人猛操日本美女一级片| 亚洲精品456在线播放app| 99视频精品全部免费 在线| 有码 亚洲区| 中文字幕亚洲精品专区| 亚洲激情五月婷婷啪啪| 免费观看的影片在线观看| 在线播放无遮挡| 精品久久久久久电影网| 免费看av在线观看网站| 男的添女的下面高潮视频| 久久97久久精品| 精品久久久噜噜| 一区二区三区精品91| 97热精品久久久久久| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 三级国产精品片| 国产高清不卡午夜福利| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 91aial.com中文字幕在线观看| 亚洲欧美清纯卡通| 五月开心婷婷网| 国产精品三级大全| 观看免费一级毛片| 日韩伦理黄色片| 亚洲精品日本国产第一区| 久久精品国产亚洲av涩爱| 色婷婷av一区二区三区视频| 国产一级毛片在线| 日韩一本色道免费dvd| 国产免费视频播放在线视频| 国产毛片在线视频| 多毛熟女@视频| 午夜精品国产一区二区电影| 午夜日本视频在线| 在线 av 中文字幕| 人体艺术视频欧美日本| 久久97久久精品| av专区在线播放| 最新中文字幕久久久久| 亚洲欧美日韩另类电影网站 | 久久97久久精品| 日韩电影二区| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 只有这里有精品99| 国产 精品1| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 久久久久国产精品人妻一区二区| 国产成人精品久久久久久| 人人妻人人添人人爽欧美一区卜 | 国产精品秋霞免费鲁丝片| a 毛片基地| 亚洲色图av天堂| 国产视频首页在线观看| 男人添女人高潮全过程视频| 美女国产视频在线观看| 午夜精品国产一区二区电影| 日本av免费视频播放| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 国产精品一区二区在线不卡| 日韩电影二区| 亚洲自偷自拍三级| 国产日韩欧美亚洲二区| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 性色avwww在线观看| 一个人看视频在线观看www免费| 精品久久久久久久久av| 久久久久久久亚洲中文字幕| 精品久久久久久电影网| 国产爽快片一区二区三区| 男人舔奶头视频| 日韩免费高清中文字幕av| 欧美激情国产日韩精品一区| 久久影院123| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 极品教师在线视频| 国产一区二区三区av在线| 亚洲国产色片| 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 亚洲精华国产精华液的使用体验| 国产精品欧美亚洲77777| 国产大屁股一区二区在线视频| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 最后的刺客免费高清国语| 亚洲最大成人中文| 黑人猛操日本美女一级片| tube8黄色片| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 嫩草影院入口| 色综合色国产| 久久精品久久精品一区二区三区| 91狼人影院| 有码 亚洲区| 少妇精品久久久久久久| 精品久久久久久电影网| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 99热全是精品| 汤姆久久久久久久影院中文字幕| 亚洲精品第二区| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 三级经典国产精品| 欧美zozozo另类| 亚洲无线观看免费| 久久精品国产亚洲网站| 欧美精品人与动牲交sv欧美| 亚洲国产色片| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说 | 欧美精品一区二区免费开放| 色视频www国产| 91久久精品电影网| 国产精品久久久久久精品电影小说 | 久久久国产一区二区| 日日啪夜夜爽| 亚洲综合色惰| av黄色大香蕉| 最近最新中文字幕免费大全7| 成年av动漫网址| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 高清黄色对白视频在线免费看 | 在线观看人妻少妇| 亚洲怡红院男人天堂| 欧美3d第一页| 久久国产乱子免费精品| 成人二区视频| 深夜a级毛片| 99热全是精品| 日本与韩国留学比较| 亚洲人与动物交配视频| 亚洲av中文av极速乱| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 五月天丁香电影| 精品熟女少妇av免费看| 中文字幕精品免费在线观看视频 | 在线免费观看不下载黄p国产| 日韩欧美 国产精品| 在线 av 中文字幕| 欧美精品人与动牲交sv欧美| 久久精品夜色国产| 日产精品乱码卡一卡2卡三| 麻豆成人午夜福利视频| 1000部很黄的大片| 国产成人aa在线观看| 交换朋友夫妻互换小说| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 国产老妇伦熟女老妇高清| 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 久久国内精品自在自线图片| 制服丝袜香蕉在线| 下体分泌物呈黄色| 22中文网久久字幕| 51国产日韩欧美| 国产爱豆传媒在线观看| 久久久久国产精品人妻一区二区| 亚洲真实伦在线观看| 亚洲欧美日韩另类电影网站 | 老司机影院成人| 日本-黄色视频高清免费观看| 中文字幕精品免费在线观看视频 | 性色av一级| 日日啪夜夜撸| 亚洲精品中文字幕在线视频 | 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 一区二区av电影网| 老师上课跳d突然被开到最大视频| 亚洲综合色惰| 亚洲第一av免费看| 国产成人精品婷婷| 另类亚洲欧美激情| 综合色丁香网| 亚洲色图av天堂| 大片免费播放器 马上看| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| 伦理电影大哥的女人| 久久 成人 亚洲| 国产精品.久久久| 免费观看无遮挡的男女| 色网站视频免费| 日韩免费高清中文字幕av| 日本免费在线观看一区| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 久久精品夜色国产| 亚洲欧美日韩无卡精品| 香蕉精品网在线| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| h视频一区二区三区| 久久久精品94久久精品| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 免费av不卡在线播放| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 夜夜骑夜夜射夜夜干| 男女免费视频国产| 99热6这里只有精品| 日本与韩国留学比较| 国产精品伦人一区二区| 99久久精品热视频| 亚洲第一av免费看| 国产亚洲最大av| 91狼人影院| 亚洲欧美日韩卡通动漫| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 自拍偷自拍亚洲精品老妇| 亚洲成人一二三区av| 精品国产乱码久久久久久小说| 亚洲av在线观看美女高潮| 国产精品国产三级国产av玫瑰| 欧美97在线视频| 国产精品三级大全| 国产成人一区二区在线| 国产精品久久久久久av不卡| 日本免费在线观看一区| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 国产精品蜜桃在线观看| 一级毛片 在线播放| 夜夜爽夜夜爽视频| 久久影院123| 看免费成人av毛片| 春色校园在线视频观看| 亚洲精品乱码久久久久久按摩| 啦啦啦啦在线视频资源| 久久久久精品久久久久真实原创| av在线老鸭窝| 精品一区在线观看国产| 亚洲最大成人中文| 日韩免费高清中文字幕av| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 黄片wwwwww| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 国产成人一区二区在线| av国产久精品久网站免费入址| 欧美三级亚洲精品| 欧美xxxx性猛交bbbb| 亚洲美女黄色视频免费看| 国产爽快片一区二区三区| 97超视频在线观看视频| 国产又色又爽无遮挡免| 91久久精品国产一区二区成人| 熟女电影av网| 免费黄色在线免费观看| 欧美bdsm另类| 一个人免费看片子| 亚洲精品国产成人久久av| 免费看光身美女| 国模一区二区三区四区视频| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 一级毛片电影观看| 18+在线观看网站| 日本爱情动作片www.在线观看| 久久精品国产亚洲av涩爱| 好男人视频免费观看在线| 免费观看在线日韩| 99热这里只有是精品在线观看| 日韩伦理黄色片| 国产精品麻豆人妻色哟哟久久| 国产精品欧美亚洲77777| 一个人看视频在线观看www免费| 一区二区三区免费毛片| 精品人妻偷拍中文字幕| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久影院| 18+在线观看网站| 国产免费视频播放在线视频| 1000部很黄的大片| 亚洲精品456在线播放app| 国产成人91sexporn| 美女中出高潮动态图| 青青草视频在线视频观看| 中文字幕制服av| av又黄又爽大尺度在线免费看| 久久久欧美国产精品| 啦啦啦视频在线资源免费观看| 日本-黄色视频高清免费观看| 少妇熟女欧美另类| 精品久久久久久电影网| av视频免费观看在线观看| 亚洲,一卡二卡三卡| 亚洲电影在线观看av| 国产精品国产三级国产专区5o| 搡女人真爽免费视频火全软件| 成人综合一区亚洲| 青青草视频在线视频观看| 欧美日韩综合久久久久久| 欧美xxxx性猛交bbbb| 26uuu在线亚洲综合色| 亚洲国产毛片av蜜桃av| 久久综合国产亚洲精品| 国产精品久久久久久久电影| 日韩一区二区三区影片| 色婷婷av一区二区三区视频| 国产精品人妻久久久久久| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 国产无遮挡羞羞视频在线观看| 我的女老师完整版在线观看| 美女中出高潮动态图| 噜噜噜噜噜久久久久久91| 欧美激情极品国产一区二区三区 | 人人妻人人爽人人添夜夜欢视频 | 青春草亚洲视频在线观看| .国产精品久久| 少妇人妻精品综合一区二区| 日本wwww免费看| av视频免费观看在线观看| 午夜福利视频精品| 久久久亚洲精品成人影院| 成年av动漫网址| 一级a做视频免费观看| 免费看光身美女| 五月天丁香电影| 精华霜和精华液先用哪个| 国产一区有黄有色的免费视频| 免费大片18禁| 午夜福利在线观看免费完整高清在| 国产无遮挡羞羞视频在线观看| 久久久久视频综合| 十八禁网站网址无遮挡 | 老师上课跳d突然被开到最大视频| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| a级毛色黄片| 一级毛片 在线播放| 欧美日本视频| 高清欧美精品videossex| 国产精品福利在线免费观看| 国产精品麻豆人妻色哟哟久久| 综合色丁香网| 高清黄色对白视频在线免费看 | 亚洲色图av天堂| 亚洲人与动物交配视频| 少妇人妻久久综合中文| 国产伦理片在线播放av一区| av不卡在线播放| 深夜a级毛片| 欧美97在线视频| 免费观看无遮挡的男女| 91午夜精品亚洲一区二区三区| 国产久久久一区二区三区| 久久ye,这里只有精品| 精品国产露脸久久av麻豆| 三级国产精品片| 久久久久视频综合| 成人高潮视频无遮挡免费网站| 久久久久精品性色| 少妇人妻 视频| 欧美高清成人免费视频www| 性色avwww在线观看| 91aial.com中文字幕在线观看| 日本欧美视频一区| 久久 成人 亚洲| 亚洲av中文av极速乱| 国产亚洲av片在线观看秒播厂| 观看美女的网站| 边亲边吃奶的免费视频| 亚洲图色成人| 18禁在线播放成人免费| 国产精品一区二区性色av| 国产欧美日韩一区二区三区在线 | 中文精品一卡2卡3卡4更新| 国产在线免费精品| 国产美女午夜福利| 日日撸夜夜添| 日韩国内少妇激情av| 乱系列少妇在线播放| 色婷婷av一区二区三区视频| 国产精品99久久久久久久久| 男人爽女人下面视频在线观看| 国产精品av视频在线免费观看| 亚洲欧美成人精品一区二区| 美女cb高潮喷水在线观看| 成人黄色视频免费在线看| 免费人成在线观看视频色| 天天躁日日操中文字幕| 国产黄频视频在线观看| 国产色婷婷99| 久久韩国三级中文字幕| 久久99精品国语久久久| 男人添女人高潮全过程视频| 亚洲高清免费不卡视频| 亚洲美女黄色视频免费看| 精品一品国产午夜福利视频| 欧美日韩国产mv在线观看视频 | 一个人免费看片子| 国精品久久久久久国模美| 婷婷色麻豆天堂久久| 在线观看一区二区三区激情| 久久 成人 亚洲| 亚洲精品,欧美精品| 日韩电影二区| 欧美日韩国产mv在线观看视频 | 一个人免费看片子| 久久6这里有精品| 免费高清在线观看视频在线观看| 夜夜爽夜夜爽视频| 国产免费一区二区三区四区乱码| 国产 一区精品| 国产午夜精品一二区理论片|