• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Response of a Riser Under Excitation of Internal Waves

    2015-04-01 01:57:32LOUMinYUChenglongandCHENPeng
    Journal of Ocean University of China 2015年6期

    LOU Min, YU Chenglong, and CHEN Peng

    ?

    Dynamic Response of a Riser Under Excitation of Internal Waves

    LOU Min*, YU Chenglong, and CHEN Peng

    ,,266580,

    In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.

    dynamic response; marine riser; internal waves

    1 Introduction

    With increasing decline of petroleum resources, especially onshore resources, oil and gas exploration and development in deepwater have become the hot spot of the world energy industry (Li., 2010). However, in South China Sea the internal waves occur frequently as the seawater is deep and with serious density stratification (Moore and Lien, 2007), and the large amplitude waves are believed to be responsible for a great deal of damage in marine structures (Bole, 1994). Internal waves are buoyancy waves caused by variations in density, propagating at the interface between a layer of warmer water and a layer of cooler water beneath. It can propagate in a number of ways, including short regular waves, cnoidal and solitary waves, wave rays and internal tides (Walker, 1998). So far, a considerable number of accidents caused by internal waves have been reported. Osborne and Burch (1980) mentioned that an oil rig located at the Andaman Sea was displaced 30.48m and swung 90? for being subjected to strong internal waves; they have been also reported to displace oil platforms as much as 200m in the horizontal direction and 10m in the vertical direction (Chakrabarti, 2005). It follows that the internal wave should be considered in the ocean structure analysis and design.

    The research concerning the effects of internal waves on offshore structures is not much available in recent years. Cai. (2003) first introduced Morison empirical formula to estimate the force and torque exerted by internal solitons on cylindrical piles. Ye and Shen (2005) calculated and analyzed the force of internal waves on small- scale cylinder in different frequencies and then compared with that of surface waves and currents. Du.(2007) found that the maximum total force caused by a soliton of a current with a speed of 2.1ms?1is nearly equal to that by a surface wave with a wave length of 300m and a wave height of 18m. A lot of studies have been conducted on the effects of internal solitons on marine risers in time domain by experimental, numerical and even CFD methods (Song, 2011; Chen, 2011; Liu, 2011). Jiang(2012) estimated the dynamic characteristics of a top tension riser (TTR) under internal solitary and non-uniform current by mKDV theory in a two-layer fluid. Guo(2013) computed the dimensionless displacement and stress of a top tensioned riser (TTR) under combined excitation of internal solitary waves, surface waves and vessel motion in time domain. For all of this, most of these studies are concentrated on the internal solitons or internal solitary waves, but few are on the linear internal waves.

    This paper aims to explore the effects of linear internal waves on dynamic behavior of a marine riser. The schematic diagram for a top tensioned riser conveying fluid in internal wave field is shown in Fig.1. In Section 2, the differential equation of motion of a marine riser, the governing equation of internal waves and the solution methods are presented, in Section 3 the computational results are discussed, and the conclusions are given in Section 4.

    2 Mathematical models and Methods

    2.1 Differential Equation of Motion of Riser

    The following assumptions are stipulated in the present mathematical models: firstly, the risers are so sufficiently thick-walled that, ideally, their cross-sections remain circular after change of cross-sectional size due to the Poisson’s ratio effect, so that the elastic rod theories are usable, and Brazier effect of flattening of bent tubes is negligible; secondly, longitudinal strain is large, but shear strain is insignificant for elastic rods with high slenderness ratio; thirdly, the internal and external fluids are inviscid, incompressible, and irrotational.

    In theplane of Cartesian coordinate system, the horizontal displacement=() in-direction is considered to define the deformation of any points on the neutral axis of the static equilibrium configuration that was obtained from the static analysis. According to mathematical model and strain-displacement relationship, the curvature of the riserand the axial strainare obtained, whereis the arc length of riser element, the superscriptrepresents the derivative of the parameter with respect towith,is the initial axial strain due to the top tension. Then based on the principle of virtual work, the differential equation of motion of a marine riser transporting fluid is (Chucheepsakul., 2003):

    where the effective mass per unit length=m+m+m, the subscripts,,standing for the marine riser, the internal flow and the added mass, respectively; the small dot () represents the derivative with respect to time;is the structural damping coefficient;,are the internal flow’s velocity and acceleration, respectively. The effectivetension,hereis the Young’s modulus,is the area of the cross-sec- tion,is the Poisson’s ratio,is the hydrostatic pressure. The additional subscriptsandrefer to the exterior and interior of the riser, the sign function is defined assgn()=0 if<0, else, sgn()=1;is the moment of inertia of the cross-section andFis hydrodynamic force due to the internal waves. Generally,Fis calculated by Morison formula:

    , (2)

    Herein both ends of the marine riser are assumed to be hinged, and the boundary conditions are by:

    2.2 Governing Equation of Internal Waves

    In a two-dimensional Cartesian,coordinate system, with the linear approximation, Cai and Gan (1995) gave the second-order differential equation governing the wave function() of internal waves:

    where() is the vertical velocity of internal waves versus depth,is taken vertically upwards,is the gravitational acceleration,kis the horizontal wave number,is the internal wave frequency andis inertial frequency,is the Brunt-V?is?l? or buoyancy frequency which is related to the density gradient:

    , (5)

    in whichis the dimensional density of seawater.

    Herein imposing rigid-lid hypothesis at the sea surface, and taking the wall function to model the seabed, then the boundary condition is:

    Internal wave dispersion and wave function are determined by Eqs. (4)–(6). Since it is difficult to express() analytically, Cai and Gan introduced the Thompson- Haskell numerical method to solve the governing equation of internal waves.

    With the small amplitude wave theory, the vertical velocity of internal waves can be expressed in the form (Ye and Shen, 2005):

    where() is the normalized dimensionless amplitude of vertical velocity distributed along the depth in ocean andis the maximum amplitude of vertical velocity.

    According to the relation between the vertical displacement of water particlesand vertical velocity, one obtains:

    Note that=max, it means that once the maximum wave amplitudemaxis determined, the vertical velocity profile is obtained.

    Based on the continuity equation for incompressible flow, the horizontal relative velocityand accelerationof internal waves are obtained with some manipulation:

    . (10)

    2.3 Solving Method

    Discretize Eq. (1) by Hermite interpolation function, obtaining the general form of the finite element method:

    where [], [], [] and [] represent the total mass matrix, the total damping matrix, the total stiffness matrix, and the external force matrix, respectively. Eq. (11) is solved directly in time domain with Newmark-method, and the integration constants used are=0.25,=0.5.

    3 Numerical Simulations

    3.1 Example Data

    Consider the dimensional density, which is assumed as in Holmboe model and given by (Ye and Shen, 2005):

    where0is the density of seawater in0,0is vertical coordinate of the middle of pycnocline,is half of the thickness of pycnocline,andare dimensionless coefficients correlating with the density. The parameters of seawater model are given in Table 1. Then the density and buoyancy frequency of seawater are obtained as shown in Fig.2.

    Table 1 Model properties of seawater

    Fig.2 Distribution of density ρ and buoyancy frequency N versus depth.

    According to vast field observations and investigations of the internal waves in the South China Sea in recent decades (Ebbesmeyer., 1991; Bole., 1994; Qiu., 1996; Fang., 2000; Li., 2003), the internal waves of high frequency (about 3–5cph) and huge amplitude (about 15–100m) are commonly observed. In this study, a typical internal wave with frequency of 5.2358× 10?3rads?1and maximum amplitude of 30m is selected for the calculation.

    By solving the governing differential equation of internal wave using the Thompson-Haskell method with a vertical resolution of 1m, the distribution of waves eigenfunction for the first three modes are obtained. The horizontal wave numberkare 0.00378, 0.01553 and 0.02628m?1, respectively. Meanwhile, the wave amplitudes of 2ndand 3rdmodes are assumed as 1/2 and 1/3 that of 1stmode (Ye and Shen, 2005), thus, the horizontal velocity distribution of internal waves versus depth is computed and shown in Fig.3. It is found that the internal waves result in a shear flow in the sea water.

    Fig.3 Horizontal velocity amplitude of internal waves corresponding to the first three modes.

    The riser parameters and their values employed in the calculation are presented in Table 2. The total water depth is 300m while the riser is 20m above the water surface.

    Table 2 Model parameters of marine riser

    3.2 Dynamic Responses of Riser under Internal Waves

    Program resp.m in MATLAB is developed to solve the dynamic responses in internal wave field, and the data given in Tables 1 and 2 are employed to the compiled code. In addition, the pipe59 element in ANSYS software is used to simulate the movement of riser, the force of internal wave is computed by Morison formula, and finally the prestress method is taken in transient analysis. The results of time history of riser under internal waves and the maximum transfiguration are shown in Figs.4 and 5, respectively. Apparently, the results obtained are in very good agreement.

    Fig.4 Time history of riser displacement under internal waves: (a) 1st mode, H=?50m; (b) 2nd mode, H=?100m; (c) 3rd mode, H=?115m.

    Fig.5 Maximum deformation of riser: (a) 1st mode; (b) 2nd mode; (c) 3rd mode.

    It can be seen from Fig.4 that the oscillating cycles of riser in different modes of internal wave are the same as the wave period. However, Fig.5 displays that the configurations of riser appear in different shape. Meanwhile, the reversal point is located in upper layer in the 1stmode while it shifts downward to the mixing layer in the higher mode. Furthermore, the maximum displacements of riser under the first three modes of internal waves are 0.21, 0.10 and 0.002m, respectively. Apparently, it suggests that the first mode of internal wave plays the dominant role in the dynamic response of marine riser.

    3.3 Effect of Wave Amplitude

    In order to ascertain the dynamic behavior of marine riser under internal waves with different amplitudes, the variation of wave amplitude is taken to be between 15 and 100m. Fig.6 portrays the effect of wave amplitude on the dynamic response of marine riser in internal wave field. To show the nonlinearity more clearly, we use non- dimensional displacement (displacement divided by wave amplitude, D/A) in this graph. It is found that the wave amplitude has a considerable influence on the dynamic responses of riser. As the wave amplitude increases, the response displacements of riser increase greatly. And the phenomenon is more apparent with high value of wave amplitude.

    Fig.7 shows the relation between riser displacement and wave amplitude of internal waves. As witnessed previously, the wave amplitudes quadratically increase the res- ponse displacements.

    Fig.6 Time history of riser displacement under internal waves of different amplitudes.

    Fig.7 The function relation between riser displacement and internal wave amplitudes.

    3.4 Effect of Wave Frequency

    To study the effect of wave frequency on the response performance of marine riser in internal wave field, the circular frequency of internal waves is calculated from 1.745×10?3to 1.047×10?2rads?1 in this section. Fig.8 depictsthe time history of maximum displacement of riser under internal waves of different frequencies. In all cases, the response frequencies of riser are always the same as the wave frequencies. From low to high wave frequency, the response displacements of riser are reduced in some degree; this is more apparent with high value of displacement. However, compared with the wave amplitude, the wave frequency has less effect in the response displacement of riser. Nevertheless, the internal waves of high wave frequency will result in a high-frequency oscillation of riser; it possibly gives rise to the fatigue crack extension and the partial fatigue failure, even leakage.

    Fig.8 Time history of riser displacement under internal waves of different frequencies.

    4 Conclusions

    In this paper, the dynamic behavior of a marine riser under excitation of internal waves is presented. Based on the linear approximation, the horizontal velocity fields of internal waves are obtained. Combined with the Morison formula, the differential equation of marine riser motion is solved. We get the riser’s response displacement and transfiguration. The effect of parameters of internal waves is discussed in detail. The following conclusions are drawn:

    1) Internal waves of the first two modes play a dominant role in dynamic responses of a marine riser. The response performance of the riser diminishes rapidly with higher modes.

    2) The deformations of riser have different shapes under different modes of internal waves. The location of maximum displacement shifts downward.

    3) The wave amplitude of internal waves quadratically increases the response displacement of marine riser. It plays a considerable role in response displacement of riser, while the wave frequency contributes little.

    Acknowledgements

    This research is funded by the Fundamental Research Funds for the Central Universities (No. 11CX04018A) and the National Natural Science Foundation of China (No. 51309241).

    Bole, J. B., Ebbesmeyer, J. J., and Romea, R. D., 1994. Soliton currents in South China Sea: Measurements and theoretical modeling.. Houston, Texas, 367-375.

    Cai, S. Q., and Gan, Z. J., 1995. A numerical method of internal waves dispersion relation., 14 (1): 22-29 (in Chinese with English abstract).

    Cai, S. Q., Long, X. M., and Gan, Z. J., 2003. A method to estimate the forces exerted by internal solitons on cylindrical piles., 30 (5): 673-689.

    Chakrabarti, S., 2005.Elsevier Ltd., Vol. 1, 105-106.

    Chen, W. M., Zheng, Z. Q., and Zhang, L. W., 2011. Vortex-induced vibration of deepwater flexible riser experiencing internal-wave-induced shear flow., 28 (12): 250-256.

    Chucheepsakul, S., Monprapussorn, T., and Huang, T., 2003. Large strain formulations of extensible flexible marine pipes transporting fluid., 17 (2): 185-224.

    Du, T., Sun, L., and Zhang, Y. J., 2007. An estimation of internal soliton forces on a pile in the ocean., 6 (2): 101-106.

    Ebbesmeyer, C. C., Coomes, C. A., and Hamilton, R. C., 1991. New observation on internal wave (solutions) in the South China Sea using an acoustic Doppler current profiler.. New Orleans, 165-175.

    Fang, X. H., Jiang, M. S., and Du, T., 2000. Dispersion relation of internal waves in the western equatorial Pacific Ocean., 19 (4): 37-45.

    Guo, H. Y., Zhang, L., and Li, X. M., 2013. Dynamic responses of top tensioned riser under combined excitation of internal solitary wave, surface wave and vessel motion., 12 (1): 6-12.

    Jiang, W. J., Lin, Z. Y., and You, Y. X., 2012. Dynamic characteristic of a top tension riser under combined excitation of internal solitary wave and non-uniform current., 27 (4): 424-435 (in Chinese with English abstract).

    Li, P. L., Zuo, J. C., and Li, L., 2003. Characteristics of the transition layer in the South China Sea., 21 (1): 27-33 (in Chinese with English abstract).

    Li, X. D., Zhao, Z., and Wen, Z. X., 2010. Development trends of world upstream oil and gas industries., 37 (5): 623-627.

    Liu, B.T., Li, W., and You, Y. X., 2011. Numerical simulation of interaction of internal solitary waves with deep-sea risers., 29 (4): 1-7.

    Moore, S. E., and Lien, R. C., 2007. Pilot whales follow internal solitary waves in the South China Sea., 23 (1): 193-196.

    Osborne, A. R., and Burch, T. L., 1980. Internal solitons in the Andaman Sea., 208 (4443): 451-60.

    Qiu, Z., Xu, X. Z., and Long, X. M., 1996. A preliminary analysis on internal tide characteristics at an observation point in Northern South China Sea., 15 (4): 63-67 (in Chinese with English abstract).

    Song, Z. J., Teng, B., and Gou, Y., 2011. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses., 33 (2): 120-129.

    Walker, S. A., Martin, A. J., and Easson, W. J., 1998. Velocity fields in solitary internal waves.. Montreal, Canada, 11-17.

    Ye, C. S., and Shen, G. G., 2005. Numerical calculation and analysis about internal wave’s force on small-scale cylinder., 38 (2): 102-108 (in Chinese with English abstract).

    (Edited by Xie Jun)

    DOI 10.1007/s11802-015-2701-2

    ISSN 1672-5182, 2015 14 (6): 982-988

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    (July 4, 2014; revised September 30, 2014; accepted September 15, 2015)

    * Corresponding author. Tel: 0086-532-86981701 E-mail: shidaloumin@163.com

    亚洲国产精品成人久久小说| 欧美性感艳星| 男人爽女人下面视频在线观看| 国产久久久一区二区三区| 91狼人影院| 国产乱人视频| 国产高清国产精品国产三级 | 熟女人妻精品中文字幕| 亚洲av成人精品一区久久| 亚洲在线观看片| 欧美最新免费一区二区三区| 少妇人妻一区二区三区视频| 欧美另类一区| 国产精品熟女久久久久浪| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免| 午夜福利在线在线| 免费大片18禁| 欧美极品一区二区三区四区| 日韩,欧美,国产一区二区三区| 日韩av不卡免费在线播放| 一级片'在线观看视频| 久久久久九九精品影院| 99热全是精品| 国产伦在线观看视频一区| 国内少妇人妻偷人精品xxx网站| av免费在线看不卡| 国语对白做爰xxxⅹ性视频网站| 亚洲美女搞黄在线观看| 在线a可以看的网站| 又大又黄又爽视频免费| 日韩欧美精品免费久久| 精品人妻一区二区三区麻豆| 高清午夜精品一区二区三区| 亚洲国产av新网站| 亚洲欧美清纯卡通| 青春草视频在线免费观看| 天堂中文最新版在线下载 | 美女视频免费永久观看网站| 人人妻人人爽人人添夜夜欢视频 | 国产黄色视频一区二区在线观看| 日韩视频在线欧美| 1000部很黄的大片| 国国产精品蜜臀av免费| 青春草国产在线视频| 午夜免费男女啪啪视频观看| 九草在线视频观看| 成人一区二区视频在线观看| 国产成人精品婷婷| 国产精品偷伦视频观看了| 精华霜和精华液先用哪个| 午夜福利在线观看免费完整高清在| 18+在线观看网站| av在线老鸭窝| 国产色爽女视频免费观看| 欧美成人午夜免费资源| 国产欧美日韩一区二区三区在线 | 91久久精品国产一区二区三区| 日本午夜av视频| 自拍偷自拍亚洲精品老妇| 欧美日韩综合久久久久久| 精品酒店卫生间| 日韩人妻高清精品专区| 中文精品一卡2卡3卡4更新| 亚洲婷婷狠狠爱综合网| 插阴视频在线观看视频| 成人欧美大片| 午夜日本视频在线| 综合色丁香网| 国产91av在线免费观看| 欧美区成人在线视频| 亚洲综合色惰| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 永久网站在线| 国产一区亚洲一区在线观看| 丝袜脚勾引网站| 秋霞伦理黄片| 亚洲精品日韩在线中文字幕| 色视频在线一区二区三区| 亚洲精品中文字幕在线视频 | 亚洲aⅴ乱码一区二区在线播放| 国产精品国产三级国产专区5o| 看黄色毛片网站| 亚洲精品视频女| 久久久精品欧美日韩精品| 亚洲精品成人av观看孕妇| 亚洲欧美成人精品一区二区| 国产 一区精品| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 久久精品国产亚洲网站| 久久久久国产网址| av免费在线看不卡| 国产精品99久久99久久久不卡 | 听说在线观看完整版免费高清| 久久久久国产精品人妻一区二区| 亚洲精华国产精华液的使用体验| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄| 免费黄色在线免费观看| 国产精品不卡视频一区二区| 亚洲怡红院男人天堂| 亚洲高清免费不卡视频| 精品一区二区三卡| 免费看a级黄色片| 18禁在线播放成人免费| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 一级片'在线观看视频| 国产淫片久久久久久久久| 美女被艹到高潮喷水动态| 亚洲av国产av综合av卡| 卡戴珊不雅视频在线播放| 直男gayav资源| 99视频精品全部免费 在线| 97超视频在线观看视频| 99热全是精品| av福利片在线观看| 国产亚洲91精品色在线| 婷婷色av中文字幕| 插逼视频在线观看| 国产成人福利小说| 91精品国产九色| 欧美潮喷喷水| av在线观看视频网站免费| 欧美性感艳星| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 激情 狠狠 欧美| 成人二区视频| 免费观看在线日韩| 18禁在线播放成人免费| 极品少妇高潮喷水抽搐| 亚洲av中文av极速乱| 久久久久久久精品精品| 久久精品国产a三级三级三级| 欧美最新免费一区二区三区| 一级毛片电影观看| 亚洲图色成人| 久久精品人妻少妇| 国产免费视频播放在线视频| 午夜精品一区二区三区免费看| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 69av精品久久久久久| 内地一区二区视频在线| 永久网站在线| 免费观看性生交大片5| 国产久久久一区二区三区| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 青春草视频在线免费观看| 免费看a级黄色片| 色播亚洲综合网| 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 天天躁日日操中文字幕| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 日本av手机在线免费观看| 又爽又黄a免费视频| 精品酒店卫生间| 国产精品偷伦视频观看了| 国产黄片视频在线免费观看| 久久综合国产亚洲精品| 丰满少妇做爰视频| 久久午夜福利片| 欧美xxxx性猛交bbbb| 国产v大片淫在线免费观看| 成人一区二区视频在线观看| 欧美+日韩+精品| av在线蜜桃| 婷婷色综合大香蕉| 国产成人福利小说| 久久午夜福利片| 色视频www国产| 视频中文字幕在线观看| 欧美日韩国产mv在线观看视频 | 国产亚洲一区二区精品| 中国美白少妇内射xxxbb| 亚洲欧美成人综合另类久久久| 免费观看的影片在线观看| 久久久久久久国产电影| 成人免费观看视频高清| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看免费高清a一片| av在线老鸭窝| 亚洲精品成人久久久久久| 久久久久九九精品影院| 国产伦在线观看视频一区| 国产成人免费观看mmmm| 婷婷色av中文字幕| 亚洲av日韩在线播放| 我要看日韩黄色一级片| 丝袜喷水一区| 国产精品成人在线| 国产人妻一区二区三区在| 成人高潮视频无遮挡免费网站| 国产精品人妻久久久影院| 欧美丝袜亚洲另类| 亚洲欧美精品自产自拍| 免费观看无遮挡的男女| 日韩在线高清观看一区二区三区| xxx大片免费视频| 亚洲成人一二三区av| av.在线天堂| 听说在线观看完整版免费高清| 极品少妇高潮喷水抽搐| 亚洲成人精品中文字幕电影| 一本久久精品| 天天一区二区日本电影三级| 综合色av麻豆| videos熟女内射| 国产精品国产三级专区第一集| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 日韩伦理黄色片| 国产人妻一区二区三区在| 搞女人的毛片| 91久久精品国产一区二区三区| av线在线观看网站| 男人舔奶头视频| 一区二区三区免费毛片| 不卡视频在线观看欧美| 亚洲精品国产色婷婷电影| 久久久久久久久久久丰满| 日日啪夜夜撸| 亚洲精品日本国产第一区| 成人高潮视频无遮挡免费网站| 一级片'在线观看视频| 亚洲av不卡在线观看| 交换朋友夫妻互换小说| 丰满少妇做爰视频| 一个人看视频在线观看www免费| 大码成人一级视频| 亚洲av不卡在线观看| 身体一侧抽搐| 国模一区二区三区四区视频| 内射极品少妇av片p| 日韩三级伦理在线观看| 直男gayav资源| 91午夜精品亚洲一区二区三区| 一二三四中文在线观看免费高清| 97超碰精品成人国产| 成人国产av品久久久| 女人久久www免费人成看片| 国产一区二区亚洲精品在线观看| 又黄又爽又刺激的免费视频.| 深夜a级毛片| 亚洲国产色片| 肉色欧美久久久久久久蜜桃 | 亚洲国产高清在线一区二区三| 欧美一区二区亚洲| 国产精品国产av在线观看| 亚洲av.av天堂| 免费黄色在线免费观看| 午夜福利在线观看免费完整高清在| 久久99热这里只频精品6学生| 免费人成在线观看视频色| 又大又黄又爽视频免费| 极品教师在线视频| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频 | 国产永久视频网站| 热99国产精品久久久久久7| 成年版毛片免费区| 一级毛片久久久久久久久女| 国产成人午夜福利电影在线观看| 97超视频在线观看视频| 又爽又黄a免费视频| 一区二区三区精品91| 在线 av 中文字幕| 亚洲成色77777| 国产精品女同一区二区软件| 久热这里只有精品99| 亚洲伊人久久精品综合| 蜜桃亚洲精品一区二区三区| 国产亚洲5aaaaa淫片| 国产亚洲精品久久久com| 岛国毛片在线播放| av在线天堂中文字幕| 男人添女人高潮全过程视频| 亚洲精品乱久久久久久| 日本三级黄在线观看| 国产一区二区三区av在线| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 国产av不卡久久| 又爽又黄a免费视频| 深夜a级毛片| 久久久久国产精品人妻一区二区| av在线蜜桃| 能在线免费看毛片的网站| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 你懂的网址亚洲精品在线观看| 亚洲,一卡二卡三卡| 91精品一卡2卡3卡4卡| 少妇的逼好多水| 国产综合懂色| 精品国产三级普通话版| 男人狂女人下面高潮的视频| 国产午夜精品久久久久久一区二区三区| 精品人妻熟女av久视频| 欧美精品一区二区大全| 成年人午夜在线观看视频| 精品国产一区二区三区久久久樱花 | 老师上课跳d突然被开到最大视频| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 秋霞在线观看毛片| 亚洲av中文av极速乱| 国产老妇伦熟女老妇高清| 国产老妇女一区| 69av精品久久久久久| 欧美激情国产日韩精品一区| 欧美日韩视频高清一区二区三区二| 国产在线男女| av一本久久久久| 中文字幕久久专区| 国产国拍精品亚洲av在线观看| 久久久a久久爽久久v久久| 精品一区二区免费观看| av在线app专区| 搡女人真爽免费视频火全软件| 久热久热在线精品观看| 国产 一区精品| 99热这里只有是精品在线观看| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人久久小说| av网站免费在线观看视频| 在线 av 中文字幕| 91久久精品电影网| 日韩 亚洲 欧美在线| 亚洲精品aⅴ在线观看| 能在线免费看毛片的网站| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 黄色配什么色好看| av国产精品久久久久影院| 麻豆成人av视频| 舔av片在线| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 另类亚洲欧美激情| 亚洲国产欧美人成| 日韩欧美一区视频在线观看 | av国产免费在线观看| 热re99久久精品国产66热6| 汤姆久久久久久久影院中文字幕| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 免费观看av网站的网址| 色婷婷久久久亚洲欧美| 1000部很黄的大片| 乱系列少妇在线播放| 国产高潮美女av| 国产老妇伦熟女老妇高清| 永久网站在线| 色婷婷久久久亚洲欧美| 亚洲av欧美aⅴ国产| av女优亚洲男人天堂| 身体一侧抽搐| 水蜜桃什么品种好| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 中文字幕av成人在线电影| 国产精品99久久99久久久不卡 | 下体分泌物呈黄色| 男女边摸边吃奶| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 下体分泌物呈黄色| 精品人妻偷拍中文字幕| 99热全是精品| 精品人妻视频免费看| 一级av片app| 欧美日韩在线观看h| 婷婷色av中文字幕| 亚洲精品日韩av片在线观看| 成年av动漫网址| 亚洲成人中文字幕在线播放| 国产精品久久久久久久久免| 亚洲成人中文字幕在线播放| 女人被狂操c到高潮| freevideosex欧美| 成人二区视频| 日韩不卡一区二区三区视频在线| av线在线观看网站| 国产精品一及| 国产探花在线观看一区二区| 亚洲国产欧美人成| av在线亚洲专区| 黄色怎么调成土黄色| 人妻制服诱惑在线中文字幕| 好男人视频免费观看在线| 欧美日韩综合久久久久久| 一本久久精品| 1000部很黄的大片| 亚洲精品乱码久久久v下载方式| 日韩伦理黄色片| 欧美高清性xxxxhd video| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| 国产真实伦视频高清在线观看| 国产亚洲一区二区精品| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 草草在线视频免费看| av在线app专区| 国产一区亚洲一区在线观看| 亚洲av中文字字幕乱码综合| 国产综合精华液| 亚洲无线观看免费| 久久97久久精品| 一个人看的www免费观看视频| 成人无遮挡网站| 99视频精品全部免费 在线| 亚洲四区av| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 国产 一区精品| 免费黄网站久久成人精品| 久久久久久伊人网av| 在线观看一区二区三区激情| 一级毛片电影观看| 精品少妇黑人巨大在线播放| 最近最新中文字幕免费大全7| 国产精品久久久久久精品古装| 久久久久精品久久久久真实原创| tube8黄色片| 久久久国产一区二区| 欧美高清成人免费视频www| 日韩伦理黄色片| 亚洲天堂国产精品一区在线| 国产亚洲午夜精品一区二区久久 | 欧美成人a在线观看| 精品国产一区二区三区久久久樱花 | 黄色怎么调成土黄色| 三级经典国产精品| 国产精品嫩草影院av在线观看| 男女边摸边吃奶| 国产一级毛片在线| 国产成人免费观看mmmm| 精品久久久久久久人妻蜜臀av| 男人添女人高潮全过程视频| 亚洲欧洲日产国产| 伊人久久精品亚洲午夜| 国语对白做爰xxxⅹ性视频网站| 午夜福利网站1000一区二区三区| 久久精品久久久久久久性| 欧美日韩精品成人综合77777| 97在线人人人人妻| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩东京热| 成人无遮挡网站| 纵有疾风起免费观看全集完整版| 成人鲁丝片一二三区免费| 搡女人真爽免费视频火全软件| 国产成人精品一,二区| 国产亚洲最大av| 黄色一级大片看看| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 18禁动态无遮挡网站| 99久久中文字幕三级久久日本| 日韩一区二区视频免费看| 综合色丁香网| 你懂的网址亚洲精品在线观看| 国产成人aa在线观看| 成人黄色视频免费在线看| 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 久久鲁丝午夜福利片| 美女cb高潮喷水在线观看| 亚洲一区二区三区欧美精品 | 国产成年人精品一区二区| 国产精品人妻久久久久久| 色播亚洲综合网| 国内精品美女久久久久久| 国产亚洲一区二区精品| 久久久久久久久大av| 成人午夜精彩视频在线观看| 欧美激情在线99| 亚洲欧美精品自产自拍| 美女高潮的动态| 国产成人91sexporn| 夜夜爽夜夜爽视频| 国产黄a三级三级三级人| 成人一区二区视频在线观看| 亚洲精品色激情综合| 极品少妇高潮喷水抽搐| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 97在线人人人人妻| 日韩不卡一区二区三区视频在线| 国产精品蜜桃在线观看| 日本午夜av视频| 啦啦啦啦在线视频资源| 身体一侧抽搐| 在线 av 中文字幕| 交换朋友夫妻互换小说| 亚洲国产色片| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 久久精品夜色国产| 日日啪夜夜撸| 久久精品久久久久久久性| 亚洲自拍偷在线| 嘟嘟电影网在线观看| 日本午夜av视频| 午夜精品国产一区二区电影 | 性插视频无遮挡在线免费观看| 成年版毛片免费区| 毛片一级片免费看久久久久| 亚洲成人av在线免费| 国产在视频线精品| av在线蜜桃| 国产v大片淫在线免费观看| 精品午夜福利在线看| 国产探花极品一区二区| 在线 av 中文字幕| 看非洲黑人一级黄片| 男女无遮挡免费网站观看| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区黑人 | 久久精品夜色国产| 日韩制服骚丝袜av| 亚洲欧美成人精品一区二区| 丰满少妇做爰视频| 国产精品成人在线| 一级爰片在线观看| 91在线精品国自产拍蜜月| av在线蜜桃| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 最新中文字幕久久久久| 少妇熟女欧美另类| 日韩人妻高清精品专区| 久久久久国产精品人妻一区二区| 亚洲精品亚洲一区二区| 久久久久性生活片| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 搡女人真爽免费视频火全软件| 日日啪夜夜爽| 在线观看三级黄色| 亚洲人成网站在线观看播放| 18禁在线播放成人免费| 人妻制服诱惑在线中文字幕| 嫩草影院入口| 免费观看av网站的网址| 亚洲欧美中文字幕日韩二区| 国产黄色免费在线视频| 蜜桃亚洲精品一区二区三区| 亚洲国产av新网站| 丝袜喷水一区| 国产精品三级大全| 伦精品一区二区三区| 久久韩国三级中文字幕| 全区人妻精品视频| 黄色视频在线播放观看不卡| av在线观看视频网站免费| 国产v大片淫在线免费观看| 国产伦精品一区二区三区视频9| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 内射极品少妇av片p| 国产精品久久久久久av不卡| 精品熟女少妇av免费看| 男人爽女人下面视频在线观看| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 免费看光身美女| 毛片女人毛片| 精品熟女少妇av免费看| 国产精品一二三区在线看| 三级男女做爰猛烈吃奶摸视频| 久久久久网色| 国产亚洲5aaaaa淫片| 国产爽快片一区二区三区| 亚洲av免费在线观看| av专区在线播放| 视频中文字幕在线观看| 国产老妇女一区| 麻豆乱淫一区二区| 99久久精品热视频| 久久久精品免费免费高清| 亚洲av一区综合| 欧美三级亚洲精品| 干丝袜人妻中文字幕| 免费电影在线观看免费观看| 欧美老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| av一本久久久久| 久久久久久久久久久免费av|