• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave Pressure Acting on V-Shaped Floating Breakwater in Random Seas

    2015-04-01 01:57:27YUYangDINGNingLINJieandHOUJiajia
    Journal of Ocean University of China 2015年6期

    YU Yang, DING Ning, LIN Jie, and HOU Jiajia

    ?

    Wave Pressure Acting on V-Shaped Floating Breakwater in Random Seas

    YU Yang1), DING Ning2), 3), *, LIN Jie4), and HOU Jiajia5)

    1),,100190,2),,300072,3),300161,4),,300300,5),,300452,

    Wave pressure on the wet surface of a V-shaped floating breakwater in random seas is investigated. Considering the diffraction effect, the unit velocity potential caused by the single regular waves around the breakwater is solved using the finite-depth Green function and boundary element method, in which the Green function is solved by integral method. The Response-Amplitude Operator (RAO) of wave pressure is acquired according to the Longuet-Higgins’ wave model and the linear Bernoulli equation. Furthermore, the wave pressure’s response spectrum is calculated according to the wave spectrum by discretizing the frequency domain. The wave pressure’s characteristic value corresponding to certain cumulative probability is determined according to the Rayleigh distribution of wave heights. The numerical results and field test results are compared, which indicates that the wave pressure calculated in random seas agrees with that of field measurements. It is found that the bigger angle between legs will cause the bigger pressure response, while the increase in leg length does not influence the pressure significantly. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases clearly, while at the side of head sea, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequency (long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the structure safety.

    random seas; V-shaped floating breakwater; wave pressure; boundary element method; spectrum analysis

    1 Introduction

    With the fast development of ocean exploration, break- waters have been widely used in ocean engineering practice to reduce wave height in working areas. There are many different forms of breakwaters designed for different environments. A V-shaped breakwater is effectively designed for offshore construction or open sea cargo transferring between ships. As the bow of the breakwater faces incident waves, an angle forms between the breakwater’s leg and the direction of incident waves. Waves inside the breakwater are reduced due to wave reflection and diffraction by the extended breakwater body under the water surface. However, the reflection and diffraction effects will induce wave force and moment on the wet surface of the breakwater as well as attenuate waves inside the breakwater. Being the integration of wave pressure on the wet surface, these forces are parts of the main loads in the analysis of anchoring and body structure, and play a very important role in the design of breakwaters under random seas. If wave pressure is determined, the wave force and moment can be easily estimated. Therefore, studying the characteristics of wave pressure on the wet surface of a V-shaped breakwater in random seas has practical significance in its design.

    Some researches have been done about the V-shaped breakwater. Cheng(2005) studied wave diffraction and wave attenuation. Lu(2007) studied excited wave force. Chang(2012) studied the distribution of wave height and wave attenuation. However, though many studies examined wave pressure on other kinds of breakwaters, no previous studies have focused on the investigation of wave pressure on the wet surface of V-shaped breakwaters in random seas. MuniReddy and Neelamani (2003) carried out a series of physical model tests in a wave flume to examine the performance of defense structure (offshore submerged breakwater) in reducing wave pressure on seawalls/caissons. Based on the potential flow theory for regular wave propagation, Elchahal(2006) set up an analytical model to compute the pressure of sea waves on vertical breakwaters, in which wave pressure was expressed in a linear form. Additionally, an extension to the structural analysis was studied, which was based on the mechanics of continuous medium for the stress distribution inside the fixed breakwater and on the frame theory for the floating breakwater. Elchahal(2007) investigatied the hydrodynamic prssure over the floating breakwater without considering diffraction or transmission of regular waves. By assimilating port quay walls Elchahal(2009) investigated the hydrodynamic performance of moored rectangular floating breakwaters with a leeward boundary. With various mooring configu- rations Ozeren(2011) investigated the hydro-dy- namic interactions of cylindrical breakwaters (single- and multiple-cylinder cross sections) with monochromatic waves in deep and transitional waters. Wang(2011) investigated the interactions between surface and sub- merged horizontal/vertical plates with regular waves. Duan(2012) studied the sheltering effects on arc-shaped floating perforated breakwaters using an analytical method.

    It can be noticed that these studies focused on the investigation of wave pressure acting on breakwaters under regular waves or wave attenuating effects, but not on V-shaped floating breakwaters. In this paper, the wave pressure on the wet surface of V-shaped floating breakwaters in random seas is investigated. Considering the diffraction effect, the unit velocity potential around a breakwater caused by the single regular wave is solved using the finite-depth Green function and the boundary element method, in which the Green function near the breakwater is solved by integral method. The frequency response function of wave pressure is acquired according to the Longuet-Higgins’ wave model and the linear Bernoulli equation. From this, the Response-Amplitude Operator’s (RAO) numerical solution is obtained by calculating the unit velocity potential, and furthermore, the wave pressure’s response spectrum is calculated according to the wave spectrum. Considering that wave height obeys the Rayleigh distribution, the wave pressure’s characteristic value corresponding to certain cumulative probability is determined. Taking the wave spectrum of field measurements as an example, the wave pressure spectrum at a typical point is calculated, and the com-parative analysis indicates an agreement between the numerical and field results. It can be found that the larger angle between legs will cause the larger pressure response while, clearly, the increase in leg length does not influence the pressure. The pressure at the side of head sea is larger than that of back waves. When the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases obviously, while at the side of head sea, the situation is more complicated and no clear tendency is displayed. The concentration of wave energy around low frequency (long wavelength) will induce bigger wave pressure, and more attention should be paid to this situation for the safety of structures.

    2 The Determination of Wave Pressure of Regular Waves

    Let the draft of the V-shaped breakwater be, the length of each of the breakwater’s two legs be, the angle between its two legs be(<π), and the water depth be(<) (see Fig.1). The coordinate system iswith the origin located at the bow of the breakwater. The planeis the surface of calm water, the axisis the midline of the breakwater with its forward direction towards the stern, the axisis the upright, and the axisobeys the right-hand rule. The incident wave is a single regular wave train with,andbeing its amplitude, frequency and incident angle (between the wave direction and the forward direction of), respectively. The wave pressure on the wet surface of the breakwater in this problem can be solved according to the linear Bernoulli equation with the velocity potential determined in the linear frequency domain as follows.

    In order to get effective wave attenuation, the breakwater needs to be anchored firmly. As a result, its motions of six freedoms are very small and the consequent wave pressure excited by radiation effect is very small comparing with that excited by the incident waves and the diffraction effect. It is reasonable to calculate the sum of wave pressures excited by the incident waves and the diffraction waves as the final results while ignoring the pressure excited by radiation effect.

    Fig.1 Breakwater and coordinate system.

    According to the superposition principle, the total velocity potential Φ of flow field around the breakwater can be written as the sum of the two parts Φand Φ:

    By introducing the complex functions7(,,) and0(,,),the space and time variables of velocity potential can be separated as follows:

    ,

    ,

    whereis the wave potential with the unit amplitude,7is the diffraction potential around the breakwater excited by the waves with the unit amplitude,is the acceleration of gravity,is the wave frequency, and0is the root of equation0·th(0·)2/. According to the linear Bernoulli equation, the wave pressure at any point in the flow field is:

    Using the wave potential and the diffraction potential, the wave pressure can be written as follows:

    . (1)

    The wave pressure can then be converted for the determination of diffraction potential.

    The boundary conditions of diffraction potential are:

    (=0), (3)

    (=?), (4)

    (on the body surface). (6)

    It is a boundary value problem of the Laplace equation, which can be changed to another form by the 3-D Green function and the Green formula (Dai, 1998),

    where(,,) is a field point,(,,) is a source point,7() is the source intensity at the source point, and(,) is the 3-D Green function of finite depth in the frequency domain. Eq. (7) satisfies the same definite conditions as Eqs. (2)–(5):

    (in the flow field),

    (?),

    ,

    where2/and. Taking the remaining condition Eq. (6) into account, the numerical solution of source intensity7() can be solved by discretizing the wet surfaceSusing the boundary element method.7is then calculated by Eq. (7) and the wave pressure in the wet surface of breakwater can be determined from Eq. (1). For the determination of the Green function in this paper, refer to Newman (1984, 1985, 1986) and Endo (1987). Besides, the irregular frequencies are removed based on an integral equation obtained by including a panel model of the internal water plane (Ohmatsu, 1975).

    3 The Wave Pressure in Random Seas

    According to the Longuet-Higgins’s wave model (Long- uet-Higgins, 1975), the wave surface is expressed as:

    where() is the distance from the wave surface to the still water level,a,kandare the amplitude, wave number and frequency of theth composition wave, respectively, andεis the initial phase of theth composition wave.εis a random variable that obeys the uniform distribution in (0, 2π),() obeys the normal distribution, and wave height obeys the Rayleigh distribution.

    In the linear frequency domain, the total velocity potential of flow field in random seas has the same form as that of regular waves:

    where the wave potential is:

    ,

    the diffraction potential is:

    .

    In the above equation7is the diffraction potential cor- responding to theth composition wave potential. From these equations it can be seen that the transformation defined by Eqs. (2)–(5) is linear. If random waves are defined as input and wave pressure is defined as output, then the wave pressure, according to the superposition principle of a linear system (Yu, 2011), can be written as follows:

    ,

    where the complex function()is the frequency response function and its modulus |()| is the system’s response amplitude operator (RAO). As the numerical solution of7was obtained in Section 2 and0also known, the numerical solution of() can be determined by calculating the values of() at all frequencies. However, the corresponding values of() at all frequencies cannot be calculated because of the infinite number of the values. Therefore the frequency domain is discretized intosubintervals for the calculations with70 (Yu, 2011). And the cut-off-frequencyis determined under the condition that the energy loss must be less than 0.2%. By multiplying the squares of these calculated values and given wave spectrum, the spectrum of wave pressure is determined at the corresponding frequency. Furthermore, the statistical results of wave pressure can also be obtained by calculating the corresponding cumulative probability.

    4 Example and Analysis

    The wave pressure on the external wet surface of a V-shaped breakwater is calculated under the conditions that the water depth=13.4m, the draft=7.3m, the leg length=77.1m, the angle between the two legs=60?, and the beam of legs=2.4m.

    Fig.2 is a 3-D view of the breakwater’s panel layout. Newman and Lee (1992) recommended a minimum of 6 to 12 panels per the smallest wavelength. In this example, the longitudinal panel length of 1.0m corresponds to a minimum of 6.24 panels per the shortest wavelength of 6.24m at 2s. Fig.3 is the transient distribution of external wave pressure of regular waves with amplitude=1.2m, period=3s, and incident angle=0?, and it is consistent with the results of Wamit by Briggs (2001).

    Fig.2 3-D view of the panel layout.

    Fig.3 Transient distribution of external wave pressure of regular waves.

    Fig.4 is the measured wave spectrum by Briggs (2001), for which the peak frequency is 0.3Hz with the wave energy concentrated on. Fig.5 is the calculated and measured external wave pressure spectrum at point1(8.133, 4.692, ?2.959) with=0?. Figs.6 and 7 are the time-history curves of the external wave pressure calculated and meas- ured at the same point. The comparison in Fig.5 indicates that the calculated results are consistent with the field results with two peaks at 0.12Hz and 0.3Hz, respectively.

    Fig.4 Measured wave spectrum.

    Fig.5 Wave pressure spectrum.

    Fig.6 Time-history curve of wave pressure calculated in random seas.

    Fig.7 Time-history curve of wave pressure measured in random seas.

    Table 1 shows the significant wave height (1/3) and the corresponding wave pressures calculated according to wave spectrum, calculated and measured wave pressure spectrum. The calculated wave pressure,1/3, is almost the same as the measured wave pressure,1/3, which indicates that the radiation effect may be neglected for a properly fixed breakwater. In fact, for an improperly properly fixed floating breakwater, the designed level of wave reduction effect may not be achieved.

    Table 1 Significant wave height, and calculated and measured wave pressures (P'H1/3 and PH1/3) in random seas

    Figs.8 and 9 are the calculated results at1(8.133, 4.692, ?2.959) and its mirror2(8.133, ?4.692, ?2.959) about theplane with=60?. Figs.10 and 11 are the calculated results at1and2with=90?. Figs.12 and 13 are the calculated results at1and2with=60? and=154m. The spectral peaks are all around 0.12Hz and 0.3Hz in those figures, which indicates that the response of wave pressure of low frequency (long wavelength) waves is larger than that of higher frequency (short wavelength) waves. The pressure response spectrums at1and2with=0? are the same due to the breakwater symmetry. When=30?,=60? and=90?, the pressure spectrum is larger at2than that at1because2is at the side of head sea while1is at the side of back waves. From Figs.8, 10 and 12, it can be seen that at the side of back waves the pressure spectrum decreases withincreasing from 0? to 90?, while at the side of head sea the situation is more complicated and there seems no obvious tendency. Whenchanges from 60? to 90?, the pressure spectrum become larger. There is no significant difference as the leg lengthchanges from 77m to 154m.

    Fig.8 Wave pressure spectrum calculated at P1 (α=60?).

    Fig.9 Wave pressure spectrum calculated at P2 (α=60?).

    Fig.10 Wave pressure spectrum calculated at P1 (α=90?).

    5 Conclusions

    The structural response in random seas can be estimated using wave pressures on the structure. The wave pressures can be used to calculate wave forces and moments, operational stresses, and ultimately to benefit the design for survivability. However, wave pressures are random variables in normal working conditions. In order to determine the statistical characteristics of the pressures, a numerical model is built according to Longuet-Higgins wave model in the linear frequency domain. The objective of the modeling study is to make the spectrum analysis and solve the boundary value problem by finding the velocity potential that satisfies the Laplace equation and four linearized boundary conditions for the free surface, bottom, body surface, and radiation condition.

    The numerical solution of the velocity potential at each frequency is obtained in the frequency domain using the finite depth Green function and boundary element method by assuming the flow to be ideal and time-harmonic. The response amplitude operator (RAO) is estimated according to the Bernoulli equation and superposition principle. The wave pressure spectrum is then determined by multiplying the square of RAO and the wave spectrum at each frequency. Following that, the statistical characteristics of pressures are estimated by calculating the corresponding cumulative probability.

    The external regular wave pressure is calculated, and the results are consistent with Wamit calculated by Briggs (2001). The calculated pressures are compared to the measured values at a typical point, and the comparison presents the consistent results. The larger angle between legs will correspond to larger pressure response, while the increase in leg length does not have significant influence on pressure. The pressure at the side of head sea is larger than that of back waves. As the incident wave angle changes from 0? to 90?, the pressure at the side of back waves decreases obviously. At the side of head sea, however, the situation is more complicated and there seems no obvious tendency. The concentration of wave energy around low frequencies (long wavelengths) will induce larger wave pressure, and more attention should be paid to this situation for structure safety.

    Acknowledgements

    This work was supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant no. 51021004), the Research Fund of State Key Laboratory in Ocean Engineering of Shanghai Jiaotong University (Grant no. 1104), and the Scientific Research Foundation of Civil Aviation University of China (Grant no. 09QD08X).

    Briggs, M. J., 2001. Analytical and numerical models of the RIBS XM99 ocean-scale prototype., TR-01-19, Washington, DC.

    Chang, K.-H., Tsaur, D.-H., and Huang, L.-H., 2012. Accurate solution to diffraction around a modified V-shaped breakwater., 68: 56-66.

    Cheng, J. S., Miao, G. P., You, Y. X., and Wang, J. Q., 2005. Analytical research on the wave diffraction on V-type bottom-mounted breakwaters., 39 (5): 813-817.

    Dai, Y. S., 1998.. National Defence Industry Press, Beijing, 125-133.

    Duan, J. H., Cheng, J. S., and Wang, J. P., 2012. Wave diffraction on arc-shaped floating perforated breakwaters., 26 (2): 305-316.

    Elchahal, G., Younes, R., and Lafon, P., 2006. Wave interaction with fixed and floating vertical breakwater based on analytical modeling. In:. Miami,1: 463-472, DOI: 10.1115/FEDSM2006-98348.

    Elchahal, G., Younes, R., and Lafon, P., 2007. Numerical modeling of floating breakwaters and shape optimization using a nonlinear programming method. In:. San Diego, 5: 235-240, DOI: 10.1115/OMAE2007-29116.

    Elchahal, G., Younes, R., and Lafon, P., 2009. Parametrical and motion analysis of a moored rectangular floating breakwater., 131 (3), 031303, DOI: 10.1115/1.3124125.

    Endo, H., 1987. Shallow-water effect on the motions of three-dimensional bodies in waves., 31 (1): 34-40.

    Longuet-Higgins, M. S., 1975. On the joint distribution of the period and amplitudes of sea waves., 80 (18): 2688-2694.

    Lu, Z. M., Miao, G. P., Zhu, R. C., and Cheng, J. S., 2007. Analytical research on the wave force exerted on V-shaped bottom-mounted breakwaters., 22 (1): 135-140.

    MuniReddy, M. G., and Neelamani, S., 2003. Reduction of wave pressures on vertical seawall/caissons due to an offshore breakwater. In:. Cancun, 3: 487-493, DOI: 10.1115/OMAE2003-37074.

    Newman, J. N., 1984. Double-precision evaluation of the oscillatory source potential., 28 (3): 151-154.

    Newman, J. N., 1985. Algorithms for the free-surface Green function., 19: 57-67.

    Newman, J. N., 1986. Distributions of sources and normal dipoles over a quadrilateral panel., 20: 113-126.

    Newman, J. N., and Lee, C.-H., 1992. Sensitivity of wave loads to the discretization of bodies. In:, London, Vol. 1, 50pp.

    Ohmatsu, S., 1975. On the irregular frequencies in the theory of oscillating bodies in a free surface., Tokyo, No. 48.

    Ozeren, Y., Wren, D. G., Asce, A. M., and Work, P. A., 2011. Experimental investigation of cylindrical floating breakwater performance with various mooring configurations., 137: 300-309.

    Wang, K., Zhang, Z. Q., and Xu, W., 2011. Transmitted and reflected coefficients for horizontal or vertical plate type breakwater., 25 (2): 285-294.

    Yu, Y. X., 2011.Dalian University of Technology Press, Dalian, 47-66.

    (Edited by Xie Jun)

    DOI 10.1007/s11802-015-2450-2

    ISSN 1672-5182, 2015 14 (6): 975-981

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    (August 1, 2013; revised April 8, 2014; accepted August 24, 2015)

    * Corresponding author. Tel: 0086-22-84656945 E-mail: n_ding@163.com

    波多野结衣一区麻豆| 一边摸一边抽搐一进一出视频| 精品国产超薄肉色丝袜足j| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 亚洲精品国产一区二区精华液| 亚洲欧美一区二区三区久久| 人人妻,人人澡人人爽秒播| 日韩欧美一区二区三区在线观看 | 精品国产亚洲在线| 一区二区三区乱码不卡18| 黄色视频不卡| 欧美激情 高清一区二区三区| 99九九在线精品视频| av天堂久久9| 久久精品亚洲av国产电影网| 黄片大片在线免费观看| 天天操日日干夜夜撸| videosex国产| 亚洲av电影在线进入| 精品国产一区二区三区久久久樱花| 欧美激情极品国产一区二区三区| 国产一区二区三区在线臀色熟女 | 免费在线观看视频国产中文字幕亚洲| 亚洲自偷自拍图片 自拍| 国产精品99久久99久久久不卡| 一级a爱视频在线免费观看| 日本欧美视频一区| 久久久久久久久久久久大奶| 黄色丝袜av网址大全| 亚洲一区中文字幕在线| videos熟女内射| videosex国产| 中文字幕色久视频| 久久久久网色| av视频免费观看在线观看| 久久99一区二区三区| 在线av久久热| www日本在线高清视频| 曰老女人黄片| 日韩成人在线观看一区二区三区| av有码第一页| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 亚洲一区中文字幕在线| 久久精品熟女亚洲av麻豆精品| 欧美激情高清一区二区三区| 亚洲免费av在线视频| 午夜日韩欧美国产| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 少妇 在线观看| 在线观看免费视频网站a站| 男女免费视频国产| 法律面前人人平等表现在哪些方面| 香蕉久久夜色| 久久亚洲精品不卡| 大香蕉久久成人网| 精品国产乱子伦一区二区三区| 日本黄色视频三级网站网址 | 嫁个100分男人电影在线观看| 一级毛片电影观看| 亚洲欧美精品综合一区二区三区| 男女床上黄色一级片免费看| 精品熟女少妇八av免费久了| 99国产精品99久久久久| 丝袜喷水一区| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 精品福利观看| 国产精品二区激情视频| 国产国语露脸激情在线看| 91精品国产国语对白视频| 悠悠久久av| 日本黄色日本黄色录像| aaaaa片日本免费| 亚洲欧美一区二区三区久久| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| 在线观看舔阴道视频| 亚洲美女黄片视频| 午夜福利在线观看吧| 在线播放国产精品三级| 亚洲精品国产区一区二| 老司机影院毛片| 夜夜夜夜夜久久久久| 成人永久免费在线观看视频 | 国产精品一区二区在线不卡| 久久久久久人人人人人| 欧美激情高清一区二区三区| 国产高清videossex| 亚洲欧美日韩另类电影网站| 久久久水蜜桃国产精品网| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 女人精品久久久久毛片| 国产精品99久久99久久久不卡| 另类亚洲欧美激情| 一区在线观看完整版| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 最新美女视频免费是黄的| 亚洲中文字幕日韩| 国产成人精品在线电影| 高清av免费在线| 亚洲欧美精品综合一区二区三区| 亚洲av日韩精品久久久久久密| 国产一区二区在线观看av| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情久久久久久爽电影 | 日日夜夜操网爽| 国产一区二区三区视频了| 在线观看人妻少妇| 一本色道久久久久久精品综合| 两性夫妻黄色片| 可以免费在线观看a视频的电影网站| 国产免费视频播放在线视频| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃| 丁香欧美五月| 午夜老司机福利片| 日本撒尿小便嘘嘘汇集6| 大片电影免费在线观看免费| 国产av国产精品国产| 免费日韩欧美在线观看| 国产亚洲一区二区精品| 午夜福利欧美成人| 黄色视频,在线免费观看| 电影成人av| 精品国产一区二区久久| 一级片'在线观看视频| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| av免费在线观看网站| 国产日韩欧美亚洲二区| 久久久水蜜桃国产精品网| 国产黄色免费在线视频| 极品人妻少妇av视频| 男男h啪啪无遮挡| 蜜桃国产av成人99| 91精品三级在线观看| 免费人妻精品一区二区三区视频| 中文字幕色久视频| 欧美久久黑人一区二区| 黑人操中国人逼视频| 丁香欧美五月| 精品熟女少妇八av免费久了| 水蜜桃什么品种好| 国产免费现黄频在线看| 亚洲第一欧美日韩一区二区三区 | 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 夫妻午夜视频| 成人国产一区最新在线观看| 久久中文字幕一级| 国产日韩一区二区三区精品不卡| 中文字幕制服av| 亚洲九九香蕉| 一本—道久久a久久精品蜜桃钙片| 欧美日韩av久久| 热99久久久久精品小说推荐| 亚洲国产av新网站| 久久久久网色| 欧美老熟妇乱子伦牲交| 两人在一起打扑克的视频| 激情在线观看视频在线高清 | 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 精品国产一区二区三区四区第35| 男人操女人黄网站| av电影中文网址| 久久狼人影院| 青草久久国产| 老司机深夜福利视频在线观看| a级片在线免费高清观看视频| 日本一区二区免费在线视频| 97人妻天天添夜夜摸| 天堂动漫精品| 中文字幕色久视频| 国产精品欧美亚洲77777| 咕卡用的链子| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 午夜激情av网站| 99国产精品免费福利视频| 欧美日韩一级在线毛片| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 变态另类成人亚洲欧美熟女 | 99精品久久久久人妻精品| 美女扒开内裤让男人捅视频| 精品一区二区三区av网在线观看 | 十八禁高潮呻吟视频| 久久天堂一区二区三区四区| 中文字幕人妻丝袜制服| 最黄视频免费看| 久久久久视频综合| 真人做人爱边吃奶动态| 最新美女视频免费是黄的| 99国产精品一区二区三区| 亚洲 国产 在线| 国产不卡av网站在线观看| 久久免费观看电影| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 99re6热这里在线精品视频| 中文字幕色久视频| av线在线观看网站| 中文欧美无线码| 丝袜美足系列| 久久精品亚洲精品国产色婷小说| 蜜桃在线观看..| 国产麻豆69| 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 亚洲中文字幕日韩| 51午夜福利影视在线观看| 国产日韩一区二区三区精品不卡| av欧美777| 日本一区二区免费在线视频| 精品国产超薄肉色丝袜足j| 一夜夜www| 多毛熟女@视频| 精品人妻1区二区| 99riav亚洲国产免费| 成人永久免费在线观看视频 | 久久精品亚洲精品国产色婷小说| 女性生殖器流出的白浆| 高潮久久久久久久久久久不卡| 欧美在线黄色| 色婷婷av一区二区三区视频| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 99九九在线精品视频| 亚洲av美国av| 欧美成人免费av一区二区三区 | 精品视频人人做人人爽| 在线观看免费午夜福利视频| 在线 av 中文字幕| 少妇裸体淫交视频免费看高清 | 日本vs欧美在线观看视频| 亚洲三区欧美一区| 人成视频在线观看免费观看| 91九色精品人成在线观看| 精品人妻在线不人妻| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 中亚洲国语对白在线视频| netflix在线观看网站| 亚洲精品一二三| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| 男女之事视频高清在线观看| 成人精品一区二区免费| 十八禁网站免费在线| 香蕉久久夜色| 精品久久久久久久毛片微露脸| 人妻久久中文字幕网| 中文字幕制服av| 99riav亚洲国产免费| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 精品一区二区三区av网在线观看 | 在线观看免费午夜福利视频| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片| 成年人午夜在线观看视频| 日韩三级视频一区二区三区| 欧美大码av| 国产日韩欧美在线精品| 免费不卡黄色视频| 久久久久久人人人人人| 久9热在线精品视频| 女同久久另类99精品国产91| 大型av网站在线播放| 在线观看舔阴道视频| 成年人免费黄色播放视频| www.精华液| 亚洲精品在线观看二区| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 满18在线观看网站| 757午夜福利合集在线观看| 久久久国产精品麻豆| 高潮久久久久久久久久久不卡| 人妻 亚洲 视频| 大码成人一级视频| 在线观看人妻少妇| 国产精品亚洲av一区麻豆| 自线自在国产av| 青草久久国产| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 色综合婷婷激情| 久久久国产欧美日韩av| 国产成人精品在线电影| 一级片免费观看大全| 久久午夜综合久久蜜桃| 午夜精品国产一区二区电影| 亚洲男人天堂网一区| 精品福利永久在线观看| 777米奇影视久久| 亚洲自偷自拍图片 自拍| 国产无遮挡羞羞视频在线观看| 精品乱码久久久久久99久播| 久久九九热精品免费| 两个人看的免费小视频| 国产精品免费视频内射| 欧美午夜高清在线| 国产黄色免费在线视频| 久久热在线av| 亚洲专区中文字幕在线| 91成年电影在线观看| 99热国产这里只有精品6| 脱女人内裤的视频| 97在线人人人人妻| 满18在线观看网站| 久久久精品94久久精品| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区 | 99精品久久久久人妻精品| 精品国产超薄肉色丝袜足j| 一边摸一边抽搐一进一小说 | 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区精品| 午夜视频精品福利| 黄色片一级片一级黄色片| 亚洲国产成人一精品久久久| 中文欧美无线码| 建设人人有责人人尽责人人享有的| 国产精品久久久久久人妻精品电影 | 考比视频在线观看| 国产高清videossex| 国产又色又爽无遮挡免费看| 国产亚洲午夜精品一区二区久久| 精品一品国产午夜福利视频| 成人三级做爰电影| 久久久精品免费免费高清| 亚洲avbb在线观看| 国产主播在线观看一区二区| 高清在线国产一区| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 日本黄色日本黄色录像| 国产1区2区3区精品| 欧美激情极品国产一区二区三区| 午夜福利视频精品| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区久久久樱花| 亚洲av片天天在线观看| 免费观看人在逋| 成人永久免费在线观看视频 | 麻豆乱淫一区二区| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 夫妻午夜视频| 国产一卡二卡三卡精品| 国产一区二区 视频在线| 亚洲第一青青草原| 久久99热这里只频精品6学生| 老汉色av国产亚洲站长工具| 99精品在免费线老司机午夜| 国产免费现黄频在线看| 99九九在线精品视频| 99国产综合亚洲精品| 久久精品国产综合久久久| 国产免费现黄频在线看| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成77777在线视频| 中文字幕高清在线视频| 黄色视频,在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕一级| 亚洲一区中文字幕在线| 一边摸一边抽搐一进一小说 | 男女床上黄色一级片免费看| 丁香六月欧美| 黄色视频,在线免费观看| 美国免费a级毛片| 极品教师在线免费播放| www日本在线高清视频| 欧美精品一区二区大全| 变态另类成人亚洲欧美熟女 | 99久久人妻综合| 操美女的视频在线观看| 精品国产一区二区三区四区第35| av一本久久久久| 他把我摸到了高潮在线观看 | 免费高清在线观看日韩| 成人永久免费在线观看视频 | 久久久久久免费高清国产稀缺| 后天国语完整版免费观看| 免费在线观看影片大全网站| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 桃花免费在线播放| 精品国产一区二区三区四区第35| 正在播放国产对白刺激| 亚洲久久久国产精品| 色视频在线一区二区三区| 国产精品二区激情视频| 色综合婷婷激情| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 黄片大片在线免费观看| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 亚洲精品一二三| xxxhd国产人妻xxx| 国产精品自产拍在线观看55亚洲 | 国产真人三级小视频在线观看| 午夜久久久在线观看| 国产91精品成人一区二区三区 | 欧美激情高清一区二区三区| 777久久人妻少妇嫩草av网站| a级毛片在线看网站| 天堂俺去俺来也www色官网| 亚洲色图 男人天堂 中文字幕| 悠悠久久av| 国产一区二区在线观看av| 波多野结衣av一区二区av| 亚洲avbb在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 99国产精品一区二区蜜桃av | av超薄肉色丝袜交足视频| 高清欧美精品videossex| 狠狠狠狠99中文字幕| 777久久人妻少妇嫩草av网站| 大香蕉久久成人网| 美女主播在线视频| 丝瓜视频免费看黄片| 久久久久视频综合| 宅男免费午夜| 男男h啪啪无遮挡| 黄频高清免费视频| 国产视频一区二区在线看| 久9热在线精品视频| 午夜免费成人在线视频| 在线av久久热| 久久天堂一区二区三区四区| 久久 成人 亚洲| 国产有黄有色有爽视频| 亚洲专区国产一区二区| 精品熟女少妇八av免费久了| 丁香欧美五月| 两个人看的免费小视频| 亚洲人成77777在线视频| 色婷婷久久久亚洲欧美| 成人手机av| 99久久人妻综合| 午夜激情久久久久久久| 欧美老熟妇乱子伦牲交| 亚洲国产欧美网| 两个人看的免费小视频| 成年人免费黄色播放视频| 美国免费a级毛片| 亚洲黑人精品在线| 免费在线观看影片大全网站| 国产单亲对白刺激| 欧美激情 高清一区二区三区| 国产成人免费无遮挡视频| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 欧美精品一区二区免费开放| 嫩草影视91久久| 狂野欧美激情性xxxx| 午夜福利一区二区在线看| 久久久久久久久免费视频了| 精品国产一区二区三区久久久樱花| 在线 av 中文字幕| 男人操女人黄网站| 亚洲国产毛片av蜜桃av| 9色porny在线观看| 国产精品av久久久久免费| 亚洲欧美精品综合一区二区三区| 男人操女人黄网站| 欧美精品高潮呻吟av久久| 久久午夜综合久久蜜桃| 天天添夜夜摸| 亚洲色图av天堂| 欧美成狂野欧美在线观看| 女人高潮潮喷娇喘18禁视频| 伦理电影免费视频| 色94色欧美一区二区| 欧美精品啪啪一区二区三区| 制服诱惑二区| 免费看a级黄色片| 黄色丝袜av网址大全| 国产精品.久久久| 一边摸一边抽搐一进一出视频| 国产av又大| av天堂在线播放| av一本久久久久| 美女高潮到喷水免费观看| 亚洲自偷自拍图片 自拍| 欧美亚洲 丝袜 人妻 在线| 国产精品影院久久| 亚洲精品国产色婷婷电影| 亚洲精品粉嫩美女一区| 在线 av 中文字幕| 中文字幕人妻熟女乱码| 精品一区二区三卡| 午夜免费鲁丝| 51午夜福利影视在线观看| 丰满饥渴人妻一区二区三| 一区二区av电影网| 另类亚洲欧美激情| 色综合婷婷激情| 久久天躁狠狠躁夜夜2o2o| 成人av一区二区三区在线看| 亚洲第一欧美日韩一区二区三区 | 欧美一级毛片孕妇| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区久久| 99riav亚洲国产免费| 精品亚洲乱码少妇综合久久| 国产高清国产精品国产三级| 性高湖久久久久久久久免费观看| 757午夜福利合集在线观看| 国产熟女午夜一区二区三区| 99re在线观看精品视频| 丁香六月欧美| 亚洲精华国产精华精| 日韩欧美国产一区二区入口| 欧美精品av麻豆av| 亚洲九九香蕉| 国产亚洲一区二区精品| 国产精品亚洲av一区麻豆| 高清视频免费观看一区二区| av不卡在线播放| 国产欧美日韩一区二区精品| 男女无遮挡免费网站观看| 精品少妇久久久久久888优播| 男女免费视频国产| 丝袜在线中文字幕| 精品午夜福利视频在线观看一区 | 免费av中文字幕在线| 一个人免费在线观看的高清视频| 女同久久另类99精品国产91| 欧美黄色淫秽网站| 老汉色av国产亚洲站长工具| 亚洲午夜精品一区,二区,三区| 精品国产乱码久久久久久小说| 精品国产一区二区三区四区第35| 中文字幕av电影在线播放| 高清黄色对白视频在线免费看| 午夜两性在线视频| 操出白浆在线播放| 丝瓜视频免费看黄片| 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 美女视频免费永久观看网站| 两性夫妻黄色片| 亚洲全国av大片| 激情视频va一区二区三区| 最新的欧美精品一区二区| 亚洲熟女毛片儿| 99精品久久久久人妻精品| 韩国精品一区二区三区| 男人操女人黄网站| 乱人伦中国视频| 亚洲国产av新网站| 国产又爽黄色视频| 国产人伦9x9x在线观看| 久久久欧美国产精品| 国精品久久久久久国模美| 国产男女超爽视频在线观看| av电影中文网址| 日本a在线网址| 欧美国产精品va在线观看不卡| 少妇裸体淫交视频免费看高清 | 热re99久久国产66热| 午夜两性在线视频| 18在线观看网站| 亚洲国产欧美日韩在线播放| 国产麻豆69| 国产又爽黄色视频| 欧美精品av麻豆av| 女人久久www免费人成看片| 91九色精品人成在线观看| 性色av乱码一区二区三区2| 777久久人妻少妇嫩草av网站| 大香蕉久久成人网| 伊人久久大香线蕉亚洲五| 亚洲精品乱久久久久久| 丁香欧美五月| 中文字幕最新亚洲高清| 日本黄色日本黄色录像| 女人久久www免费人成看片| 亚洲中文日韩欧美视频| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 男女之事视频高清在线观看| 中文亚洲av片在线观看爽 | 老司机午夜福利在线观看视频 | 一区二区三区精品91| 久久久久久久大尺度免费视频| 一本色道久久久久久精品综合| 一进一出好大好爽视频| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 九色亚洲精品在线播放| 亚洲一卡2卡3卡4卡5卡精品中文|