• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Different Responses of Sea Surface Temperature in the North Pacific to Greenhouse Gas and Aerosol Forcing

    2015-04-01 01:57:14WANGLiyiandLIUQinyu
    Journal of Ocean University of China 2015年6期

    WANG Liyi, and LIU Qinyu

    ?

    Different Responses of Sea Surface Temperature in the North Pacific to Greenhouse Gas and Aerosol Forcing

    WANG Liyi, and LIU Qinyu*

    ,,266100,

    The responses of Sea Surface Temperature (SST) to greenhouse gas (GHG) and anthropogenic aerosol in the North Pa- cific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). During 1860–2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension (KE) region dur- ing 1950–2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre. Then the SST warming (cooling) lies on the zonal band of 40?N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG (aerosol) forcing simulations, corresponding to warming (cooling) SST in the KE region, the weakened (enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the re- sponses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.

    North Pacific; sea surface temperature; response; greenhouse gas; aerosol

    1 Introduction

    Increasing concentrations of the greenhouse gas (GHG) in the atmosphere are believed to be the major cause of global warming (Meehl, 2007). On the other hand, the climate influence of atmospheric aerosol is complex, including both direct radiative and indirect effects on cloud properties (Penner, 2001). Anthropogenic aerosol effect partly offsets the GHG warming effect, and the inclusion of aerosol effect in climate model can improve the agreement between model and observation (Donner, 2011).

    The surface air temperature (SAT) response to GHG and aerosol forcing shows some resemblance to each other despite their effect is opposite (Boer and Yu, 2003) due mostly to two patterns: stronger responses over land than over ocean, and the polar amplification (Xie, 2013). Based on the simulations with a coupled atmos- phere-slab ocean general circulation model, Ming(2011) examined the key characteristics of boreal winter extra-tropical circulation changes in response to anthro-pogenic aerosols. They pointed out that the circulation changes show strong zonal asymmetry, in particular, the cooling is more concentrated over the North Pacific (NP) than over the North Atlantic despite similar regional forcing. How about the Sea Surface Temperature (SST) response? Based on the climate model experiments, Xie(2010) found that although GHG increase is nearly uniform in space, pronounced spatial variations emerge in SST response and the magnitude of spatial deviations is as large as the tropical-mean value, because the ocean dynamic role is important to SST pattern formation. Us- ing a multi-model ensemble, Xie(2013) first showed that globe response patterns of the SST and precipitation are remarkably similar between GHG and aerosol forcing experiments, except in the mid-latitude NP. This suggests a global ocean-atmosphere mode with spatial patterns common to radiation-induced climate change and rela- tively insensitive to forcing distribution, except in the NP.

    Observation analysis reveals that the SST in the mid-latitude NP has decreased over the latter half of the twentieth century (Du and Xie, 2008). But in climate models, the response of SST to increased CO2features a warming pattern in the NP (Xie, 2010). Why is there SST cooling in the mid-latitude NP under warming cli- mate? Does the aerosol effect exceed the GHG effect on the SST in the NP? Coupled Model Intercomparison Pro- ject Phase 5 (CMIP5) Project recommended that the global mean atmospheric sulfate aerosol (SO4) concentra- tion had increased slowly since 1850, and accelerated in the latter half of the twentieth century. Especially, the SO4concentration increased sharply over Asia (70?E–150?E, 0?–60?N) since 1950s. Aerosol optical depth (AOD) over East Asia may have important impact on cloud and shortwave radiation inthe western NP, which in turn, may induce SST response (Bao, 2009).

    Therefore we wish to address the following unclear questions: How about SST response to GHG and aerosol forcing in the NP during the latter half of the twentieth century, and why the spatial patterns of the SST response to GHG and aerosol forcing are different in the NP. In the present study, using the outputs from historical all-forcing and single-forcing simulations from Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3), we investigate the aerosol cooling and GHG warming effect on the NP SST. We find that the aerosol cooling effect on SST exceeds the GHG warming effect in the Kuroshio Extension (KE) region, because of not only the ocean dynamic effect on SST, but also the posi- tive feedback process between the cold SST and the cloud in boreal summer.

    The rest of the paper is organized as follows. Section 2 briefly describes the model and simulations. Section 3 investigates the dominant mode of the SST change in the NP due to the aerosol and GHG forcing. Section 4 studies the possible physical process of the SST responses to dif- ferent forcing factors. Section 5 is summary and discus- sion.

    2 Model and Simulations

    This study uses the outputs from the National Oceanic and Atmospheric Administration (NOAA) GFDL CM3 model, which is one of the primary models from GFDL contributed to the IPCC Fifth Assessment Report (AR5). The GFDL CM3 model is formulated effectively with the same ocean and sea ice components as the earlier CM2.1, and includes extensive developments made to the atmos- phere and land model components (Griffies, 2011). Especially, physically based treatments of aerosol-cloud interactions are included in GFDL CM3 as documented by Donner(2011). The atmospheric component AM3 employs a cubed-sphere implementation of a finite-vol- ume dynamical core with horizontal resolution of ap- proximately 200km. The ocean component MOM4 has a horizontal resolution of 1.0?×1.0? and 50 vertical layers, 22 of which are in the upper 220m. In the meridional direction the resolution increases toward the equator to 1/3? between 30?S and 30?N.

    A number of integrations of CM3 were performed fol- lowing the CMIP5 protocol (Taylor, 2012), include- ing pre-industrial control, historical ensemble of 5 mem- bers, and 4 future scenarios experiments. Detection and attribution simulations were conducted to examine the model’s response to a subset of historical single forcing (GHG forcing, natural forcing, aerosol forcing, and an- thropogenic forcing), each consisting of 3 runs. Historical single and all-forcing simulations employ evolution of forcing agents during 1860–2005, and each ensemble member is initialized 50 years or 100 years apart from the pre-industrial control experiment, which runs for 800 years with time-invariant radiation forcing agents fixed at 1860 values.

    The outputs of GHG forcing, aerosol forcing and his- torical all-forcing simulations are used in the present study. The outputs are processed into long-term and en- semble means of each simulation from 3 members. The combined ensemble and time means allow for a robust signal out of natural variability presented in individual ensemble member. In CM3 aerosol forcing simulations, there are both aerosol direct and indirect effects, and their impact on SST might be different. In this paper we will discuss the total aerosol effect.

    3 Dominant Modes of SST Responses to GHG and Aerosol Forcing

    Previous studies indicated that the aerosol forcing peaks in the mid-latitudes Northern Hemisphere (NH) and decays to vanishing levels in the Antarctic. By contrast, GHG radiation forcing is more uniform in the meridional direction except near the poles. But the globe response patterns of the SST and precipitation are remarkably similar between GHG and aerosol experiments, except in the mid-latitude NP (Xie, 2013).

    In order to discover the specific feature of the SST evolution in the NP, we first compared the leading EOF patterns of the SST anomaly in the NP and their time se- ries between single GHG and aerosol forcing simulations (1860–2005) (Fig.1). The SST response to increased GHG (aerosol) is warming (cooling) in the NP during 1860–2005, and features a robust rising trend that accel- erates around 1960; but the GHG (aerosol) warming (cooling) time series (PC1) tendency is leveling off and looks different from each other after 1990 (Fig.1c), likely associated with the continuously increased GHG and quickly reduced aerosol after 1990. Spatial patterns of leading mode for GHG and aerosol forcing are similar to each other with the maximum anomaly center located in the KE region (Fig.1a, Fig.1b), because the ocean heat advection effect on the long-term SST change is dominant in the KE region (Kelly and Dong, 2004). Although the anomaly centers of the leading SST modes are both lo- cated in the mid-latitude NP, distinct differences between the GHG and aerosol forcing runs can be seen. The GHG forcing induces two warming centers: one is around the KE and the other is to the east of the KE (Fig.1a). How- ever, the aerosol forcing induces only one cooling center around the KE (Fig.1b). This suggests that the ocean-at- mosphere interaction processes may be different under the GHG and aerosol forcing simulations. As a result of GHG (aerosol) forcing, explained variance of the NP SST EOF leading mode is only 37.2% (27.2%) (Fig.1), but it is 97.1% (91.1%) for the globe SST EOF leading mode (Xie, 2013). This suggests that, in addition to the responses to external forcing, there should be other natu- ral variations such as the Pacific Decadal Oscillation. This SST cooling trend response to aerosol forcing in the NP is similar to the observed SST trend (Du and Xie, 2008). Based on the EOF analysis, the main features of SST responses to GHG and aerosol forcing are opposite to each other, but show similar spatial pattern and robust rising trend.

    Fig.1 Leading EOF patterns of SST anomaly (unit: ℃) with explained variance noted at the upper right in the GHG (a) and aerosol (b) forcing simulations and corre- sponding time series (c).

    4 Comparison of Responses to Different Forcing

    In order to understand why there are similarities and differences between GHG and aerosol forcing patterns, and as far as possible to remove the natural variability effect, the climatology mean changes (1950–2004 minus 1860–1914) of the ensemble mean from each single forc- ing and historical all-forcing simulations are shown in Figs.2–5. The climatology derived from 55 years of SST can effectively eliminate the main decadal variability with 20–50 years period.

    4.1 Atmosphere and Ocean Dynamic Process Responses

    As response to GHG forcing, the maximum SST warm- ing (about 1.2℃) appears north of 45?N (Fig.2a), because the SAT is polar amplified (Fig.1b in Xie, 2013) and the net surface heat flux is positive (atmosphere heating ocean). Besides the maximum SST warming in high lati- tudes, there are also other obvious warming areas, such as the KE region, where the ocean heats atmosphere (nega- tive heat flux change) (Fig.2a). But as response to aerosol forcing, the maximum cooling (about ?1.2℃) and corre- sponding positive net heat flux are present in the mid-latitude NP (KE region, zonal band of 40?N) (Fig.2b). The aerosol forcing cools SST by reducing shortwave radiation (negative net heat flux anomaly) over almost all the NP except for the KE region, where the ocean gains heat from atmosphere (Fig.2b). In the historical all-forc- ing simulations, due to the two opposite effects on SST from the GHG and aerosol forcing, the SST change is almost zero over most of the NP except for the KE region, because net heat flux with sign reversed represents the ocean heat transport effect on SST (Xie, 2010) and a common set of ocean-atmospheric feedback is involved in spatial pattern formation (Xie, 2013). However, in the KE region, the aerosol cooling effect exceeds the GHG warming effect and causes a net cooling. Therefore, including the aerosol effect in the model is quite impor- tant for simulating SST as observed in the mid-latitude NP, especially in the KE region. In addition, the magni- tude of surface cooling from observations is less than that from historical simulations (Wu, 2012).

    Why did the aerosol cooling effect exceed the GHG warming effect in the KE region during the latter half of last century? We checked all the changes (1950–2004 minus 1860–1914) of the climatology mean SSH, stream function diagnosed from SSH, Sea Level Pressure (SLP) and Sea Surface Wind (SSW) in the NP from each single forcing and historical all-forcing simulations (Fig.3 left). It shows clearly that the response of ocean circulation in mid-latitude to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre, especially in the KE area, and the weakened amplitude is larger than the enhanced amplitude (Fig 3a and Fig.3c). The SST warming (cooling) lies on the zonal band of 40?N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing runs, and the cooling effect will surpass the warming effect in the historical all-forcing runs. Thus the increased (reduced) warm advection of the KE is an im- portant mechanism for the SST response. Corresponding to the warming (cooling) SST anomaly in the KE region, there is weakened (enhanced) AleutianLow in the North- east Pacific (Fig.3b and Fig.3d). This feature about the atmospheric response to SST anomaly in the KE area has been proved in the observation analysis and via the nu- merical experiments of atmospheric model (Liu, 2006; Liu, 2007).

    In the historical all-forcing runs, the changed patterns of the SSH, stream function, SLP and SSW (Fig.3e and Fig.3f) are similar to those in the aerosol forcing (Fig.3c and Fig.3d),, enhanced Subtropical Gyre and AleutianLow; but their magnitudes are gentler (about 50% in aerosol run) because the aerosol effect is partly cancelled out by the GHG effect. The AOD over East Asia may have important impact on cloud and shortwave radiation overthe western NP (Bao, 2009). So we hypothe- size that there is a special feedback process between SST and cloud in the aerosol forcing simulations.

    Fig.3 Climatology mean change (1950–2004 minus 1860–1914) of SSH (color; unit: cm) and stream function diag- nosed from SSH (stream) in the North Pacific in the GHG (a), aerosol (c) and historical (e) forcing simulations. The (b), (d) and (f) is similar to the (a), (b) and (c) respectively but response of climatology mean SLP (color; unit: hPa) and sea surface wind (vector; unit: ms?1).

    4.2 Feedback Process Between SST and Cloud

    In order to find out whether there is a feedback process between SST and cloud, the annual cycle change (1950–2004 minus 1860–1914) of zonal mean (140?E–140?W) SST and total cloud fraction in different forcing simula- tions are shown in Fig.4. From Fig.4b a new feedback process (SST-cloud) has been found in the aerosol forcing runs: the maximum SST change appears around 40?N north of the maximum cloud change in boreal summer (JAS). But in the GHG forcing runs, the cloud change is almost negative north of 20?N and the maximum SST warming center seems have no relation to the cloud change (Fig.4a).

    In the aerosol forcing runs, the increased cloud fraction appears south of the cooling SST center in boreal summer. It is because the weakened Subtropical Gyre could induce SST front of KE to move southwards and the more warm and moist air will meet the KE SST front, then more cloud appears south of the KE SST front. The increased cloud fraction (about 5%) could induce less shortwave radiation (about ?12Wm?2) (Fig.5) and cool SST in the boreal summer when the mixed layer is the shallowest of the year, and the net heat flux change dominates the SST change. This positive feedback process between the cold SST and cloud in summer is another important mecha- nism to amplify the cooling role in the KE region besides the ocean dynamic effect. In the KE region, since the aerosol effect exceeds the GHG effect, the corresponding relationship between the cold SST and the increased cloud still exists in the historical all-forcing simulations (Fig.4c).

    5 Summary and Discussion

    We have examined the responses of the SST in the NP to the GHG and aerosol forcing based on the outputs from single-forcing and historical all-forcing simulations of GFDL CM3. Although it is clear that there is decadal variation of SST in the NP, the leading EOF mode of SST anomaly still represents the long time persistent changes in the GHG and aerosol single forcing simulations. The NP SST warms in response to the GHG forcing, but cools in response to the aerosol forcing during 1860–2005. It is different from globe mean SST response: the NP SST responses to the GHG and aerosol forcing are distinctly different from each other.

    By comparison analysis, it is found that the aerosol cooling effect is stronger than the GHG warming effect in the mid-latitude NP, and the SST shows a net cooling in response to all-forcing in history. The reduced warm ad- vection of KE due to the weakened Subtropical Gyre un- der the aerosol forcing is an important mechanism for the especially strong SST cooling. In addition, the new feed- back process between cold SST and cloud in south KE SST front in boreal summer is another important mecha- nism for SST cooling in the KE region. Although under the GHG forcing the Kuroshio recirculation also becomes stronger and the warm SST appears in the KE region, the maximum SST warming still appears north of 45?N due to polar amplification. The different responses of ocean and atmosphere dynamic processes are the main reason for the different spatial patterns. Thus, the aerosol effect appears to be an important physical mechanism for the observed SST cooling in the NP, especially in the KE region during the past 55 years.

    Aerosols in the atmosphere are of short-life duration compared with GHG. In future projection, as the emission of aerosols reduces significantly, the atmosphere aerosols will decrease subsequently. Due to the predominance of GHG forcing, the aerosol cooling effect will become quite weaker than the GHG warming effect on the NP SST, opposite to what had happened during the past 55 years. The SST in the NP ought to show warm pattern since the GHG forcing will dominate. Moreover, as a result of the decreasing aerosol cooling effect, global warming may be more serious than predicted earlier. Therefore, further climate models are necessary to better simulate the responses to significant reduction of atmos- pheric aerosols.

    Acknowledgements

    We would like to thank Prof. Shang-Ping Xie and Mr. Hai Wang for their help and comments. This work is supported by the National Basic Research Program of China (2012CB955602) and Natural Science Foundation of China (41176006 and 41221063).

    Bao, Z., Wen, Z., and Wu, R.-G., 2009. Variability of aerosol optical depth over East Asia and its possible impacts., 114, D05203, DOI: 10.1029/2008JD010603.

    Boer, G. J., and Yu, B., 2003. Climate sensitivity and climate response., 20: 415-429.

    Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., and Zhao, M., 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3., 24 (13): 3484-3519.

    Du, Y., and Xie, S.-P., 2008. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models., 35, L08712, DOI: 10.1029/2008GL033631.

    Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., and Farneti, R., 2011. GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations., 24 (13): 3520-3544, DOI: 10.1175/2011JCLI3964.1.

    Kelly, K. A., and Dong, S., 2004. The relationship of western boundary current heat transport and storage to mid-latitude ocean-atmosphere interaction in earth’s climate.In:Wang, C.,, eds., American Geophysical Union Geophysical, Monograph 147, 347-363.

    Liu, Q., Wen, N., and Liu, Z., 2006. An observational study of the impact of the North Pacific SST on the atmosphere., 33, L18611, DOI: 10:1029/2006GL026082.

    Liu, Z., Liu, Y., Wu, L., and Jacob, R., 2007. Seasonal and long-term atmospheric responses to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment., 20: 955-980.

    Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C., 2007. Global climate projections. In:. Solomon, S.,, eds., Cambridge University Press, 747-845.

    Ming, Y., Ramaswamy, V., and Chen, G., 2011. A model investigation of aerosol-induced changes in boreal winter extra-tropical circulation., 24: 6077-6091.

    Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G., 2001. Aerosols, their direct and indirect effects.. Cambridge University Press, 289-348.

    Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design., 93 (4): 485-498, DOI: 10.1175/BAMS-D-11-00094.1.

    Wu, L. X., Cai, W. J., Zhang, L. P., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M. J., Alexander, M., Qiu, B., Visbeck, M., Chang, P., and Giese, B., 2012. Enhanced warming over the global subtropical western boundary currents., 2: 161-166.

    Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall.23: 966-986.

    Xie, S.-P., Lu, B., and Xiang, B., 2013. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes., 6: 828-832, DOI: 10.1038/ngeo1931.

    (Edited by Xie Jun)

    DOI 10.1007/s11802-015-2535-y

    ISSN 1672-5182, 2015 14 (6): 951-956

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    (November 17, 2013; revised January 16, 2014; accepted October 1, 2015)

    * Corresponding author. Tel: 0086-532-66782556 E-mail: liuqy@ouc.edu.cn

    欧美国产精品一级二级三级| 人人妻人人澡人人看| 成人国语在线视频| av电影中文网址| 婷婷色av中文字幕| 亚洲国产精品999| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 亚洲成人手机| 侵犯人妻中文字幕一二三四区| 亚洲伊人色综图| 亚洲成av片中文字幕在线观看| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 久久热在线av| 精品少妇一区二区三区视频日本电影 | av网站免费在线观看视频| 免费不卡黄色视频| netflix在线观看网站| 黄色视频在线播放观看不卡| 一区二区日韩欧美中文字幕| 母亲3免费完整高清在线观看| 日本午夜av视频| 国产男人的电影天堂91| 搡老乐熟女国产| xxxhd国产人妻xxx| 中国三级夫妇交换| 狂野欧美激情性xxxx| 亚洲美女视频黄频| 日韩大片免费观看网站| 国产精品亚洲av一区麻豆 | 精品亚洲乱码少妇综合久久| 在线观看一区二区三区激情| 午夜福利一区二区在线看| 亚洲第一青青草原| 国产爽快片一区二区三区| 18禁观看日本| 精品亚洲成国产av| 秋霞伦理黄片| 在线观看免费视频网站a站| 乱人伦中国视频| 日韩 欧美 亚洲 中文字幕| 人妻 亚洲 视频| 亚洲国产日韩一区二区| 亚洲精品一二三| 欧美激情极品国产一区二区三区| 国产日韩欧美在线精品| 国产免费又黄又爽又色| 18禁国产床啪视频网站| 女人久久www免费人成看片| 亚洲一码二码三码区别大吗| 只有这里有精品99| 欧美人与性动交α欧美精品济南到| 亚洲七黄色美女视频| av网站免费在线观看视频| 亚洲av欧美aⅴ国产| 亚洲精品久久久久久婷婷小说| 日韩av在线免费看完整版不卡| 亚洲精品,欧美精品| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久蜜臀av无| 两个人看的免费小视频| 精品第一国产精品| 久久影院123| 免费女性裸体啪啪无遮挡网站| 国产无遮挡羞羞视频在线观看| 欧美在线黄色| 纯流量卡能插随身wifi吗| 另类亚洲欧美激情| 1024香蕉在线观看| 天天操日日干夜夜撸| 久久精品亚洲av国产电影网| 日韩制服骚丝袜av| 亚洲av福利一区| 嫩草影院入口| 老司机靠b影院| 十八禁高潮呻吟视频| 国产精品麻豆人妻色哟哟久久| 赤兔流量卡办理| 在线天堂中文资源库| 大话2 男鬼变身卡| 亚洲精品,欧美精品| 极品人妻少妇av视频| 中国三级夫妇交换| 黑人欧美特级aaaaaa片| av卡一久久| 不卡av一区二区三区| 国产无遮挡羞羞视频在线观看| 狠狠精品人妻久久久久久综合| 男人舔女人的私密视频| 乱人伦中国视频| 丝瓜视频免费看黄片| 亚洲成人免费av在线播放| 在线观看免费视频网站a站| 日本黄色日本黄色录像| 免费女性裸体啪啪无遮挡网站| 汤姆久久久久久久影院中文字幕| 人人妻人人澡人人看| 黄色怎么调成土黄色| 久久久久网色| 婷婷成人精品国产| 天天影视国产精品| 99re6热这里在线精品视频| 看十八女毛片水多多多| 亚洲激情五月婷婷啪啪| 如日韩欧美国产精品一区二区三区| av片东京热男人的天堂| 我的亚洲天堂| 色婷婷久久久亚洲欧美| 亚洲av综合色区一区| 国产成人系列免费观看| 大香蕉久久网| 一级毛片 在线播放| 亚洲精品国产av成人精品| 亚洲图色成人| 成年美女黄网站色视频大全免费| 少妇的丰满在线观看| 国产片特级美女逼逼视频| 青春草视频在线免费观看| 中文天堂在线官网| 青春草亚洲视频在线观看| 国产精品国产三级国产专区5o| 亚洲精品久久成人aⅴ小说| 19禁男女啪啪无遮挡网站| 亚洲精品在线美女| 曰老女人黄片| 婷婷成人精品国产| 国产又爽黄色视频| 美女高潮到喷水免费观看| 久久精品国产亚洲av高清一级| 婷婷色综合大香蕉| 欧美另类一区| 亚洲自偷自拍图片 自拍| 老司机靠b影院| 80岁老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| 国产精品人妻久久久影院| 免费观看性生交大片5| 最近的中文字幕免费完整| 嫩草影视91久久| 亚洲国产精品999| 国产免费视频播放在线视频| a级毛片黄视频| 午夜免费男女啪啪视频观看| 操出白浆在线播放| 国产片特级美女逼逼视频| 国产一卡二卡三卡精品 | 欧美精品av麻豆av| 亚洲精品在线美女| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 777久久人妻少妇嫩草av网站| 国产不卡av网站在线观看| 在线观看免费午夜福利视频| a级毛片黄视频| 尾随美女入室| 色吧在线观看| 黄色视频在线播放观看不卡| av有码第一页| 亚洲免费av在线视频| 老司机在亚洲福利影院| 国产精品.久久久| 少妇人妻 视频| 国产成人免费无遮挡视频| 人人妻,人人澡人人爽秒播 | 如日韩欧美国产精品一区二区三区| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 久久这里只有精品19| 老司机深夜福利视频在线观看 | 韩国精品一区二区三区| 国产精品久久久人人做人人爽| 国产免费又黄又爽又色| 午夜免费鲁丝| 久久青草综合色| 青春草亚洲视频在线观看| 久久久精品94久久精品| 欧美日韩国产mv在线观看视频| www日本在线高清视频| 男女下面插进去视频免费观看| 人人妻,人人澡人人爽秒播 | 午夜福利一区二区在线看| 国产欧美亚洲国产| 最新的欧美精品一区二区| 日本vs欧美在线观看视频| 国产精品欧美亚洲77777| 国产精品熟女久久久久浪| 在线观看人妻少妇| 波野结衣二区三区在线| 亚洲欧洲国产日韩| 两个人看的免费小视频| 99热全是精品| 熟女av电影| 欧美精品一区二区大全| www.精华液| 国产免费视频播放在线视频| 午夜久久久在线观看| 亚洲成人手机| 亚洲精品国产av蜜桃| 十八禁网站网址无遮挡| 制服丝袜香蕉在线| 成人国语在线视频| 成年人午夜在线观看视频| 日韩视频在线欧美| 美女大奶头黄色视频| 激情五月婷婷亚洲| 美女国产高潮福利片在线看| 十八禁高潮呻吟视频| 美女高潮到喷水免费观看| 日本午夜av视频| 欧美日韩视频高清一区二区三区二| 少妇 在线观看| 精品一品国产午夜福利视频| 国产av精品麻豆| e午夜精品久久久久久久| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 亚洲久久久国产精品| 免费人妻精品一区二区三区视频| 在线观看国产h片| 久久人人爽人人片av| 日本欧美视频一区| 亚洲第一区二区三区不卡| 桃花免费在线播放| 免费日韩欧美在线观看| 久久久久久人妻| 看十八女毛片水多多多| 日韩精品有码人妻一区| av国产精品久久久久影院| 亚洲少妇的诱惑av| 国产精品偷伦视频观看了| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 久久久久国产一级毛片高清牌| 国产精品久久久久久久久免| 亚洲激情五月婷婷啪啪| www日本在线高清视频| 在线精品无人区一区二区三| 午夜激情久久久久久久| 久久人人爽人人片av| 国产男女超爽视频在线观看| 久久影院123| videos熟女内射| 国产精品国产三级专区第一集| 亚洲国产最新在线播放| 在线亚洲精品国产二区图片欧美| avwww免费| 天堂俺去俺来也www色官网| 高清在线视频一区二区三区| 日本黄色日本黄色录像| 少妇被粗大猛烈的视频| 国产男女内射视频| 亚洲av男天堂| 成人国产av品久久久| 精品亚洲乱码少妇综合久久| 亚洲成人av在线免费| 可以免费在线观看a视频的电影网站 | 91精品伊人久久大香线蕉| 亚洲精品第二区| 一本一本久久a久久精品综合妖精| 欧美乱码精品一区二区三区| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 精品一区二区三区四区五区乱码 | 精品少妇内射三级| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 十分钟在线观看高清视频www| 国产一级毛片在线| 999精品在线视频| 日韩人妻精品一区2区三区| 一级片'在线观看视频| av线在线观看网站| 男女边摸边吃奶| 天美传媒精品一区二区| 亚洲成人国产一区在线观看 | 日韩一卡2卡3卡4卡2021年| 国产免费一区二区三区四区乱码| 久久精品人人爽人人爽视色| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 精品人妻一区二区三区麻豆| 制服诱惑二区| 妹子高潮喷水视频| 亚洲欧美色中文字幕在线| 亚洲美女视频黄频| 九九爱精品视频在线观看| 亚洲第一青青草原| 亚洲精品乱久久久久久| 亚洲四区av| 成人午夜精彩视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 亚洲 欧美在线| 九九爱精品视频在线观看| 免费观看人在逋| 啦啦啦在线观看免费高清www| 少妇人妻久久综合中文| 国产片内射在线| 亚洲美女黄色视频免费看| 国产亚洲最大av| 免费在线观看视频国产中文字幕亚洲 | 国精品久久久久久国模美| 中国国产av一级| 老司机影院成人| 国产亚洲精品第一综合不卡| 欧美日韩一区二区视频在线观看视频在线| 在线天堂最新版资源| 51午夜福利影视在线观看| 亚洲免费av在线视频| 国产精品免费视频内射| 亚洲精品第二区| www.自偷自拍.com| 少妇被粗大的猛进出69影院| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 999精品在线视频| 操美女的视频在线观看| 狂野欧美激情性xxxx| 久久97久久精品| 国产精品国产三级国产专区5o| 中文字幕制服av| 精品少妇黑人巨大在线播放| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 亚洲美女黄色视频免费看| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久午夜乱码| 自线自在国产av| 热99久久久久精品小说推荐| 最近最新中文字幕大全免费视频 | 国产一卡二卡三卡精品 | 亚洲熟女精品中文字幕| 国产精品久久久久久精品电影小说| 看十八女毛片水多多多| 成人影院久久| 精品视频人人做人人爽| 欧美国产精品一级二级三级| 日韩制服丝袜自拍偷拍| 国产精品秋霞免费鲁丝片| 久久精品国产综合久久久| kizo精华| 别揉我奶头~嗯~啊~动态视频 | 人妻 亚洲 视频| 亚洲国产欧美一区二区综合| 人妻人人澡人人爽人人| 久久国产精品大桥未久av| 国产日韩一区二区三区精品不卡| 久久狼人影院| 久久99精品国语久久久| 欧美日韩av久久| www.自偷自拍.com| 亚洲成av片中文字幕在线观看| 建设人人有责人人尽责人人享有的| 婷婷成人精品国产| 国产精品.久久久| 国产av精品麻豆| 最新在线观看一区二区三区 | 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 自线自在国产av| av线在线观看网站| 亚洲中文av在线| 久久久久久久精品精品| 男男h啪啪无遮挡| 成年av动漫网址| 久久天堂一区二区三区四区| 国产黄色免费在线视频| 国产精品亚洲av一区麻豆 | 亚洲av福利一区| 大片免费播放器 马上看| 久久韩国三级中文字幕| 纯流量卡能插随身wifi吗| 亚洲国产日韩一区二区| 国产一区二区三区av在线| 国产一区亚洲一区在线观看| 国产成人免费无遮挡视频| 亚洲第一av免费看| av视频免费观看在线观看| 精品免费久久久久久久清纯 | 69精品国产乱码久久久| 久久韩国三级中文字幕| www.自偷自拍.com| 亚洲,欧美,日韩| 精品国产一区二区久久| 少妇 在线观看| 十八禁人妻一区二区| 日日摸夜夜添夜夜爱| h视频一区二区三区| 国产精品无大码| 1024视频免费在线观看| 午夜免费观看性视频| 亚洲国产日韩一区二区| 一级,二级,三级黄色视频| av片东京热男人的天堂| 不卡av一区二区三区| 亚洲人成网站在线观看播放| 老鸭窝网址在线观看| 午夜激情久久久久久久| 性色av一级| 精品酒店卫生间| 日本午夜av视频| 老司机深夜福利视频在线观看 | 亚洲五月色婷婷综合| 午夜福利乱码中文字幕| 美女主播在线视频| 丰满乱子伦码专区| 十八禁高潮呻吟视频| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 国产一区二区 视频在线| 无遮挡黄片免费观看| 人体艺术视频欧美日本| 国产男人的电影天堂91| 啦啦啦 在线观看视频| 美女午夜性视频免费| 晚上一个人看的免费电影| 国产在线视频一区二区| 两个人免费观看高清视频| 国产精品秋霞免费鲁丝片| 97人妻天天添夜夜摸| 欧美成人午夜精品| 国产亚洲av片在线观看秒播厂| 精品人妻熟女毛片av久久网站| 69精品国产乱码久久久| 亚洲精品国产色婷婷电影| 女的被弄到高潮叫床怎么办| 人体艺术视频欧美日本| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 啦啦啦 在线观看视频| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 十八禁高潮呻吟视频| 在线观看人妻少妇| 日本vs欧美在线观看视频| 如何舔出高潮| 国产探花极品一区二区| 午夜激情久久久久久久| 免费少妇av软件| 十分钟在线观看高清视频www| 国产淫语在线视频| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 国产精品一国产av| www日本在线高清视频| 最近中文字幕2019免费版| 老司机影院成人| 欧美成人精品欧美一级黄| 在线观看免费日韩欧美大片| 国产爽快片一区二区三区| 亚洲精品一二三| 国产片内射在线| 丁香六月天网| 国产有黄有色有爽视频| 欧美日韩亚洲综合一区二区三区_| 搡老岳熟女国产| 最近最新中文字幕大全免费视频 | 欧美日韩精品网址| 男女之事视频高清在线观看 | 久久久久久久久久久久大奶| 午夜老司机福利片| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 老司机靠b影院| 亚洲 欧美一区二区三区| 国产精品一区二区在线不卡| 熟妇人妻不卡中文字幕| 国产一区二区激情短视频 | 中文字幕人妻丝袜制服| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 久久人人爽人人片av| 精品免费久久久久久久清纯 | 一级毛片 在线播放| 视频在线观看一区二区三区| 欧美少妇被猛烈插入视频| 国产老妇伦熟女老妇高清| 国产精品av久久久久免费| 卡戴珊不雅视频在线播放| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 成人漫画全彩无遮挡| 久久久欧美国产精品| 男女边吃奶边做爰视频| 久久婷婷青草| 亚洲欧洲日产国产| 美女中出高潮动态图| 自拍欧美九色日韩亚洲蝌蚪91| 日韩制服丝袜自拍偷拍| 日本午夜av视频| 国产乱人偷精品视频| 欧美黑人精品巨大| 国产麻豆69| 成人漫画全彩无遮挡| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 色网站视频免费| 国产极品天堂在线| 欧美激情高清一区二区三区 | 国产成人一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费一区二区三区四区乱码| e午夜精品久久久久久久| 成人亚洲精品一区在线观看| 久久久久久久久久久久大奶| 亚洲av日韩在线播放| 成人影院久久| av在线app专区| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 少妇人妻精品综合一区二区| 中文字幕人妻丝袜制服| 观看美女的网站| 精品人妻在线不人妻| 2021少妇久久久久久久久久久| 美国免费a级毛片| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 激情视频va一区二区三区| 精品一区二区三卡| 国产精品麻豆人妻色哟哟久久| av天堂久久9| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av | 久久热在线av| 超碰97精品在线观看| 亚洲人成网站在线观看播放| 天天添夜夜摸| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成电影观看| 国产爽快片一区二区三区| 美女午夜性视频免费| 久久国产精品大桥未久av| 免费高清在线观看视频在线观看| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲高清精品| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 久久久久久免费高清国产稀缺| 一区二区三区精品91| videos熟女内射| 爱豆传媒免费全集在线观看| 午夜福利,免费看| 久久av网站| 天堂8中文在线网| 国产在线视频一区二区| 91精品三级在线观看| 欧美变态另类bdsm刘玥| 成人漫画全彩无遮挡| 国产黄频视频在线观看| 国产免费视频播放在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 99精国产麻豆久久婷婷| 人人澡人人妻人| 欧美精品高潮呻吟av久久| 亚洲欧美精品自产自拍| 欧美日韩亚洲国产一区二区在线观看 | 欧美国产精品一级二级三级| 午夜免费观看性视频| 亚洲成国产人片在线观看| 侵犯人妻中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 人人妻人人澡人人爽人人夜夜| 国产精品亚洲av一区麻豆 | 菩萨蛮人人尽说江南好唐韦庄| 超碰成人久久| 午夜av观看不卡| 国产毛片在线视频| 日本vs欧美在线观看视频| 水蜜桃什么品种好| 中文天堂在线官网| 成人漫画全彩无遮挡| 捣出白浆h1v1| 最近手机中文字幕大全| 九草在线视频观看| 欧美日韩亚洲国产一区二区在线观看 | 久久97久久精品| 捣出白浆h1v1| 国产成人欧美在线观看 | av在线app专区| 久久久久人妻精品一区果冻| 最近中文字幕2019免费版| 亚洲精品第二区| 老司机在亚洲福利影院| bbb黄色大片| 久久毛片免费看一区二区三区| 亚洲美女黄色视频免费看| 丝袜喷水一区| 中文字幕人妻熟女乱码| 波野结衣二区三区在线| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 国产99久久九九免费精品| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区黑人| 国产免费一区二区三区四区乱码| 少妇精品久久久久久久| svipshipincom国产片| 久久亚洲国产成人精品v| 国产视频首页在线观看| 日日啪夜夜爽| 久久久精品94久久精品| 90打野战视频偷拍视频| 国产乱来视频区| 国产精品一国产av| 最近手机中文字幕大全| 9热在线视频观看99| 啦啦啦 在线观看视频|