• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Different Responses of Sea Surface Temperature in the North Pacific to Greenhouse Gas and Aerosol Forcing

    2015-04-01 01:57:14WANGLiyiandLIUQinyu
    Journal of Ocean University of China 2015年6期

    WANG Liyi, and LIU Qinyu

    ?

    Different Responses of Sea Surface Temperature in the North Pacific to Greenhouse Gas and Aerosol Forcing

    WANG Liyi, and LIU Qinyu*

    ,,266100,

    The responses of Sea Surface Temperature (SST) to greenhouse gas (GHG) and anthropogenic aerosol in the North Pa- cific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). During 1860–2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension (KE) region dur- ing 1950–2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre. Then the SST warming (cooling) lies on the zonal band of 40?N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG (aerosol) forcing simulations, corresponding to warming (cooling) SST in the KE region, the weakened (enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the re- sponses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.

    North Pacific; sea surface temperature; response; greenhouse gas; aerosol

    1 Introduction

    Increasing concentrations of the greenhouse gas (GHG) in the atmosphere are believed to be the major cause of global warming (Meehl, 2007). On the other hand, the climate influence of atmospheric aerosol is complex, including both direct radiative and indirect effects on cloud properties (Penner, 2001). Anthropogenic aerosol effect partly offsets the GHG warming effect, and the inclusion of aerosol effect in climate model can improve the agreement between model and observation (Donner, 2011).

    The surface air temperature (SAT) response to GHG and aerosol forcing shows some resemblance to each other despite their effect is opposite (Boer and Yu, 2003) due mostly to two patterns: stronger responses over land than over ocean, and the polar amplification (Xie, 2013). Based on the simulations with a coupled atmos- phere-slab ocean general circulation model, Ming(2011) examined the key characteristics of boreal winter extra-tropical circulation changes in response to anthro-pogenic aerosols. They pointed out that the circulation changes show strong zonal asymmetry, in particular, the cooling is more concentrated over the North Pacific (NP) than over the North Atlantic despite similar regional forcing. How about the Sea Surface Temperature (SST) response? Based on the climate model experiments, Xie(2010) found that although GHG increase is nearly uniform in space, pronounced spatial variations emerge in SST response and the magnitude of spatial deviations is as large as the tropical-mean value, because the ocean dynamic role is important to SST pattern formation. Us- ing a multi-model ensemble, Xie(2013) first showed that globe response patterns of the SST and precipitation are remarkably similar between GHG and aerosol forcing experiments, except in the mid-latitude NP. This suggests a global ocean-atmosphere mode with spatial patterns common to radiation-induced climate change and rela- tively insensitive to forcing distribution, except in the NP.

    Observation analysis reveals that the SST in the mid-latitude NP has decreased over the latter half of the twentieth century (Du and Xie, 2008). But in climate models, the response of SST to increased CO2features a warming pattern in the NP (Xie, 2010). Why is there SST cooling in the mid-latitude NP under warming cli- mate? Does the aerosol effect exceed the GHG effect on the SST in the NP? Coupled Model Intercomparison Pro- ject Phase 5 (CMIP5) Project recommended that the global mean atmospheric sulfate aerosol (SO4) concentra- tion had increased slowly since 1850, and accelerated in the latter half of the twentieth century. Especially, the SO4concentration increased sharply over Asia (70?E–150?E, 0?–60?N) since 1950s. Aerosol optical depth (AOD) over East Asia may have important impact on cloud and shortwave radiation inthe western NP, which in turn, may induce SST response (Bao, 2009).

    Therefore we wish to address the following unclear questions: How about SST response to GHG and aerosol forcing in the NP during the latter half of the twentieth century, and why the spatial patterns of the SST response to GHG and aerosol forcing are different in the NP. In the present study, using the outputs from historical all-forcing and single-forcing simulations from Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3), we investigate the aerosol cooling and GHG warming effect on the NP SST. We find that the aerosol cooling effect on SST exceeds the GHG warming effect in the Kuroshio Extension (KE) region, because of not only the ocean dynamic effect on SST, but also the posi- tive feedback process between the cold SST and the cloud in boreal summer.

    The rest of the paper is organized as follows. Section 2 briefly describes the model and simulations. Section 3 investigates the dominant mode of the SST change in the NP due to the aerosol and GHG forcing. Section 4 studies the possible physical process of the SST responses to dif- ferent forcing factors. Section 5 is summary and discus- sion.

    2 Model and Simulations

    This study uses the outputs from the National Oceanic and Atmospheric Administration (NOAA) GFDL CM3 model, which is one of the primary models from GFDL contributed to the IPCC Fifth Assessment Report (AR5). The GFDL CM3 model is formulated effectively with the same ocean and sea ice components as the earlier CM2.1, and includes extensive developments made to the atmos- phere and land model components (Griffies, 2011). Especially, physically based treatments of aerosol-cloud interactions are included in GFDL CM3 as documented by Donner(2011). The atmospheric component AM3 employs a cubed-sphere implementation of a finite-vol- ume dynamical core with horizontal resolution of ap- proximately 200km. The ocean component MOM4 has a horizontal resolution of 1.0?×1.0? and 50 vertical layers, 22 of which are in the upper 220m. In the meridional direction the resolution increases toward the equator to 1/3? between 30?S and 30?N.

    A number of integrations of CM3 were performed fol- lowing the CMIP5 protocol (Taylor, 2012), include- ing pre-industrial control, historical ensemble of 5 mem- bers, and 4 future scenarios experiments. Detection and attribution simulations were conducted to examine the model’s response to a subset of historical single forcing (GHG forcing, natural forcing, aerosol forcing, and an- thropogenic forcing), each consisting of 3 runs. Historical single and all-forcing simulations employ evolution of forcing agents during 1860–2005, and each ensemble member is initialized 50 years or 100 years apart from the pre-industrial control experiment, which runs for 800 years with time-invariant radiation forcing agents fixed at 1860 values.

    The outputs of GHG forcing, aerosol forcing and his- torical all-forcing simulations are used in the present study. The outputs are processed into long-term and en- semble means of each simulation from 3 members. The combined ensemble and time means allow for a robust signal out of natural variability presented in individual ensemble member. In CM3 aerosol forcing simulations, there are both aerosol direct and indirect effects, and their impact on SST might be different. In this paper we will discuss the total aerosol effect.

    3 Dominant Modes of SST Responses to GHG and Aerosol Forcing

    Previous studies indicated that the aerosol forcing peaks in the mid-latitudes Northern Hemisphere (NH) and decays to vanishing levels in the Antarctic. By contrast, GHG radiation forcing is more uniform in the meridional direction except near the poles. But the globe response patterns of the SST and precipitation are remarkably similar between GHG and aerosol experiments, except in the mid-latitude NP (Xie, 2013).

    In order to discover the specific feature of the SST evolution in the NP, we first compared the leading EOF patterns of the SST anomaly in the NP and their time se- ries between single GHG and aerosol forcing simulations (1860–2005) (Fig.1). The SST response to increased GHG (aerosol) is warming (cooling) in the NP during 1860–2005, and features a robust rising trend that accel- erates around 1960; but the GHG (aerosol) warming (cooling) time series (PC1) tendency is leveling off and looks different from each other after 1990 (Fig.1c), likely associated with the continuously increased GHG and quickly reduced aerosol after 1990. Spatial patterns of leading mode for GHG and aerosol forcing are similar to each other with the maximum anomaly center located in the KE region (Fig.1a, Fig.1b), because the ocean heat advection effect on the long-term SST change is dominant in the KE region (Kelly and Dong, 2004). Although the anomaly centers of the leading SST modes are both lo- cated in the mid-latitude NP, distinct differences between the GHG and aerosol forcing runs can be seen. The GHG forcing induces two warming centers: one is around the KE and the other is to the east of the KE (Fig.1a). How- ever, the aerosol forcing induces only one cooling center around the KE (Fig.1b). This suggests that the ocean-at- mosphere interaction processes may be different under the GHG and aerosol forcing simulations. As a result of GHG (aerosol) forcing, explained variance of the NP SST EOF leading mode is only 37.2% (27.2%) (Fig.1), but it is 97.1% (91.1%) for the globe SST EOF leading mode (Xie, 2013). This suggests that, in addition to the responses to external forcing, there should be other natu- ral variations such as the Pacific Decadal Oscillation. This SST cooling trend response to aerosol forcing in the NP is similar to the observed SST trend (Du and Xie, 2008). Based on the EOF analysis, the main features of SST responses to GHG and aerosol forcing are opposite to each other, but show similar spatial pattern and robust rising trend.

    Fig.1 Leading EOF patterns of SST anomaly (unit: ℃) with explained variance noted at the upper right in the GHG (a) and aerosol (b) forcing simulations and corre- sponding time series (c).

    4 Comparison of Responses to Different Forcing

    In order to understand why there are similarities and differences between GHG and aerosol forcing patterns, and as far as possible to remove the natural variability effect, the climatology mean changes (1950–2004 minus 1860–1914) of the ensemble mean from each single forc- ing and historical all-forcing simulations are shown in Figs.2–5. The climatology derived from 55 years of SST can effectively eliminate the main decadal variability with 20–50 years period.

    4.1 Atmosphere and Ocean Dynamic Process Responses

    As response to GHG forcing, the maximum SST warm- ing (about 1.2℃) appears north of 45?N (Fig.2a), because the SAT is polar amplified (Fig.1b in Xie, 2013) and the net surface heat flux is positive (atmosphere heating ocean). Besides the maximum SST warming in high lati- tudes, there are also other obvious warming areas, such as the KE region, where the ocean heats atmosphere (nega- tive heat flux change) (Fig.2a). But as response to aerosol forcing, the maximum cooling (about ?1.2℃) and corre- sponding positive net heat flux are present in the mid-latitude NP (KE region, zonal band of 40?N) (Fig.2b). The aerosol forcing cools SST by reducing shortwave radiation (negative net heat flux anomaly) over almost all the NP except for the KE region, where the ocean gains heat from atmosphere (Fig.2b). In the historical all-forc- ing simulations, due to the two opposite effects on SST from the GHG and aerosol forcing, the SST change is almost zero over most of the NP except for the KE region, because net heat flux with sign reversed represents the ocean heat transport effect on SST (Xie, 2010) and a common set of ocean-atmospheric feedback is involved in spatial pattern formation (Xie, 2013). However, in the KE region, the aerosol cooling effect exceeds the GHG warming effect and causes a net cooling. Therefore, including the aerosol effect in the model is quite impor- tant for simulating SST as observed in the mid-latitude NP, especially in the KE region. In addition, the magni- tude of surface cooling from observations is less than that from historical simulations (Wu, 2012).

    Why did the aerosol cooling effect exceed the GHG warming effect in the KE region during the latter half of last century? We checked all the changes (1950–2004 minus 1860–1914) of the climatology mean SSH, stream function diagnosed from SSH, Sea Level Pressure (SLP) and Sea Surface Wind (SSW) in the NP from each single forcing and historical all-forcing simulations (Fig.3 left). It shows clearly that the response of ocean circulation in mid-latitude to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre, especially in the KE area, and the weakened amplitude is larger than the enhanced amplitude (Fig 3a and Fig.3c). The SST warming (cooling) lies on the zonal band of 40?N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing runs, and the cooling effect will surpass the warming effect in the historical all-forcing runs. Thus the increased (reduced) warm advection of the KE is an im- portant mechanism for the SST response. Corresponding to the warming (cooling) SST anomaly in the KE region, there is weakened (enhanced) AleutianLow in the North- east Pacific (Fig.3b and Fig.3d). This feature about the atmospheric response to SST anomaly in the KE area has been proved in the observation analysis and via the nu- merical experiments of atmospheric model (Liu, 2006; Liu, 2007).

    In the historical all-forcing runs, the changed patterns of the SSH, stream function, SLP and SSW (Fig.3e and Fig.3f) are similar to those in the aerosol forcing (Fig.3c and Fig.3d),, enhanced Subtropical Gyre and AleutianLow; but their magnitudes are gentler (about 50% in aerosol run) because the aerosol effect is partly cancelled out by the GHG effect. The AOD over East Asia may have important impact on cloud and shortwave radiation overthe western NP (Bao, 2009). So we hypothe- size that there is a special feedback process between SST and cloud in the aerosol forcing simulations.

    Fig.3 Climatology mean change (1950–2004 minus 1860–1914) of SSH (color; unit: cm) and stream function diag- nosed from SSH (stream) in the North Pacific in the GHG (a), aerosol (c) and historical (e) forcing simulations. The (b), (d) and (f) is similar to the (a), (b) and (c) respectively but response of climatology mean SLP (color; unit: hPa) and sea surface wind (vector; unit: ms?1).

    4.2 Feedback Process Between SST and Cloud

    In order to find out whether there is a feedback process between SST and cloud, the annual cycle change (1950–2004 minus 1860–1914) of zonal mean (140?E–140?W) SST and total cloud fraction in different forcing simula- tions are shown in Fig.4. From Fig.4b a new feedback process (SST-cloud) has been found in the aerosol forcing runs: the maximum SST change appears around 40?N north of the maximum cloud change in boreal summer (JAS). But in the GHG forcing runs, the cloud change is almost negative north of 20?N and the maximum SST warming center seems have no relation to the cloud change (Fig.4a).

    In the aerosol forcing runs, the increased cloud fraction appears south of the cooling SST center in boreal summer. It is because the weakened Subtropical Gyre could induce SST front of KE to move southwards and the more warm and moist air will meet the KE SST front, then more cloud appears south of the KE SST front. The increased cloud fraction (about 5%) could induce less shortwave radiation (about ?12Wm?2) (Fig.5) and cool SST in the boreal summer when the mixed layer is the shallowest of the year, and the net heat flux change dominates the SST change. This positive feedback process between the cold SST and cloud in summer is another important mecha- nism to amplify the cooling role in the KE region besides the ocean dynamic effect. In the KE region, since the aerosol effect exceeds the GHG effect, the corresponding relationship between the cold SST and the increased cloud still exists in the historical all-forcing simulations (Fig.4c).

    5 Summary and Discussion

    We have examined the responses of the SST in the NP to the GHG and aerosol forcing based on the outputs from single-forcing and historical all-forcing simulations of GFDL CM3. Although it is clear that there is decadal variation of SST in the NP, the leading EOF mode of SST anomaly still represents the long time persistent changes in the GHG and aerosol single forcing simulations. The NP SST warms in response to the GHG forcing, but cools in response to the aerosol forcing during 1860–2005. It is different from globe mean SST response: the NP SST responses to the GHG and aerosol forcing are distinctly different from each other.

    By comparison analysis, it is found that the aerosol cooling effect is stronger than the GHG warming effect in the mid-latitude NP, and the SST shows a net cooling in response to all-forcing in history. The reduced warm ad- vection of KE due to the weakened Subtropical Gyre un- der the aerosol forcing is an important mechanism for the especially strong SST cooling. In addition, the new feed- back process between cold SST and cloud in south KE SST front in boreal summer is another important mecha- nism for SST cooling in the KE region. Although under the GHG forcing the Kuroshio recirculation also becomes stronger and the warm SST appears in the KE region, the maximum SST warming still appears north of 45?N due to polar amplification. The different responses of ocean and atmosphere dynamic processes are the main reason for the different spatial patterns. Thus, the aerosol effect appears to be an important physical mechanism for the observed SST cooling in the NP, especially in the KE region during the past 55 years.

    Aerosols in the atmosphere are of short-life duration compared with GHG. In future projection, as the emission of aerosols reduces significantly, the atmosphere aerosols will decrease subsequently. Due to the predominance of GHG forcing, the aerosol cooling effect will become quite weaker than the GHG warming effect on the NP SST, opposite to what had happened during the past 55 years. The SST in the NP ought to show warm pattern since the GHG forcing will dominate. Moreover, as a result of the decreasing aerosol cooling effect, global warming may be more serious than predicted earlier. Therefore, further climate models are necessary to better simulate the responses to significant reduction of atmos- pheric aerosols.

    Acknowledgements

    We would like to thank Prof. Shang-Ping Xie and Mr. Hai Wang for their help and comments. This work is supported by the National Basic Research Program of China (2012CB955602) and Natural Science Foundation of China (41176006 and 41221063).

    Bao, Z., Wen, Z., and Wu, R.-G., 2009. Variability of aerosol optical depth over East Asia and its possible impacts., 114, D05203, DOI: 10.1029/2008JD010603.

    Boer, G. J., and Yu, B., 2003. Climate sensitivity and climate response., 20: 415-429.

    Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., and Zhao, M., 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3., 24 (13): 3484-3519.

    Du, Y., and Xie, S.-P., 2008. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models., 35, L08712, DOI: 10.1029/2008GL033631.

    Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., and Farneti, R., 2011. GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations., 24 (13): 3520-3544, DOI: 10.1175/2011JCLI3964.1.

    Kelly, K. A., and Dong, S., 2004. The relationship of western boundary current heat transport and storage to mid-latitude ocean-atmosphere interaction in earth’s climate.In:Wang, C.,, eds., American Geophysical Union Geophysical, Monograph 147, 347-363.

    Liu, Q., Wen, N., and Liu, Z., 2006. An observational study of the impact of the North Pacific SST on the atmosphere., 33, L18611, DOI: 10:1029/2006GL026082.

    Liu, Z., Liu, Y., Wu, L., and Jacob, R., 2007. Seasonal and long-term atmospheric responses to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment., 20: 955-980.

    Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C., 2007. Global climate projections. In:. Solomon, S.,, eds., Cambridge University Press, 747-845.

    Ming, Y., Ramaswamy, V., and Chen, G., 2011. A model investigation of aerosol-induced changes in boreal winter extra-tropical circulation., 24: 6077-6091.

    Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G., 2001. Aerosols, their direct and indirect effects.. Cambridge University Press, 289-348.

    Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design., 93 (4): 485-498, DOI: 10.1175/BAMS-D-11-00094.1.

    Wu, L. X., Cai, W. J., Zhang, L. P., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M. J., Alexander, M., Qiu, B., Visbeck, M., Chang, P., and Giese, B., 2012. Enhanced warming over the global subtropical western boundary currents., 2: 161-166.

    Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall.23: 966-986.

    Xie, S.-P., Lu, B., and Xiang, B., 2013. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes., 6: 828-832, DOI: 10.1038/ngeo1931.

    (Edited by Xie Jun)

    DOI 10.1007/s11802-015-2535-y

    ISSN 1672-5182, 2015 14 (6): 951-956

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    (November 17, 2013; revised January 16, 2014; accepted October 1, 2015)

    * Corresponding author. Tel: 0086-532-66782556 E-mail: liuqy@ouc.edu.cn

    精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av涩爱 | 97超视频在线观看视频| 一个人看的www免费观看视频| 直男gayav资源| 亚洲欧美清纯卡通| 国产精品免费一区二区三区在线| 国产毛片a区久久久久| 国产69精品久久久久777片| av黄色大香蕉| 久久九九热精品免费| 精品久久国产蜜桃| 国产三级中文精品| 久久香蕉精品热| 成人欧美大片| 内地一区二区视频在线| 美女 人体艺术 gogo| 日韩亚洲欧美综合| 欧美性猛交╳xxx乱大交人| 日韩欧美三级三区| 久久国产乱子免费精品| 欧美日韩黄片免| 欧美潮喷喷水| 极品教师在线视频| 禁无遮挡网站| 国产精品久久视频播放| 亚洲最大成人av| 久久久久久久午夜电影| 少妇丰满av| 在线观看av片永久免费下载| 成人毛片a级毛片在线播放| 在线观看舔阴道视频| 久久人妻av系列| 别揉我奶头 嗯啊视频| 欧美成狂野欧美在线观看| а√天堂www在线а√下载| 亚洲精品粉嫩美女一区| 国产高清激情床上av| 麻豆成人av在线观看| 欧美+日韩+精品| 亚洲一区二区三区不卡视频| 国产精品一区二区免费欧美| 一级黄片播放器| 男人和女人高潮做爰伦理| 97热精品久久久久久| www日本黄色视频网| 色哟哟哟哟哟哟| 国产毛片a区久久久久| 波多野结衣巨乳人妻| 久久久久精品国产欧美久久久| 成年免费大片在线观看| 午夜老司机福利剧场| 国产精品爽爽va在线观看网站| 国产精品久久久久久精品电影| 午夜影院日韩av| 国产一级毛片七仙女欲春2| 国产成+人综合+亚洲专区| 尤物成人国产欧美一区二区三区| 老司机午夜福利在线观看视频| 日本 欧美在线| 90打野战视频偷拍视频| 久久久久久久久久黄片| 久久久久亚洲av毛片大全| 一个人看的www免费观看视频| 国产精品乱码一区二三区的特点| 波多野结衣巨乳人妻| 高清在线国产一区| 色av中文字幕| 桃色一区二区三区在线观看| 日本黄色片子视频| 最近在线观看免费完整版| 天天躁日日操中文字幕| 国产精品精品国产色婷婷| 欧美黑人欧美精品刺激| 久久这里只有精品中国| 2021天堂中文幕一二区在线观| 亚洲精品在线美女| 欧美日韩瑟瑟在线播放| 国产免费男女视频| 午夜视频国产福利| 久久久精品大字幕| 老女人水多毛片| 亚洲成a人片在线一区二区| 久99久视频精品免费| 国产美女午夜福利| 国产精品久久久久久久久免 | 国产一区二区三区在线臀色熟女| 久久99热这里只有精品18| 免费看a级黄色片| 午夜福利在线观看免费完整高清在 | 亚洲专区国产一区二区| 欧美乱色亚洲激情| 18+在线观看网站| 国产高清三级在线| 久久精品国产亚洲av天美| 欧美黄色淫秽网站| 免费黄网站久久成人精品 | 内射极品少妇av片p| 欧美潮喷喷水| 日韩大尺度精品在线看网址| 中文字幕免费在线视频6| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线| 免费观看的影片在线观看| 亚洲七黄色美女视频| 久久久久久大精品| 琪琪午夜伦伦电影理论片6080| 亚洲熟妇中文字幕五十中出| 日韩欧美一区二区三区在线观看| 五月伊人婷婷丁香| 最好的美女福利视频网| 91午夜精品亚洲一区二区三区 | 亚洲无线观看免费| 看片在线看免费视频| 久久人妻av系列| 一级av片app| bbb黄色大片| 久久久国产成人免费| 偷拍熟女少妇极品色| 亚洲av成人av| 国产精品久久久久久精品电影| 亚洲精品成人久久久久久| 婷婷精品国产亚洲av在线| ponron亚洲| 99视频精品全部免费 在线| 少妇高潮的动态图| 久久这里只有精品中国| 搡老岳熟女国产| 日本五十路高清| 久久久久久九九精品二区国产| 国产极品精品免费视频能看的| 老熟妇仑乱视频hdxx| 日韩免费av在线播放| 精品一区二区三区人妻视频| 国产极品精品免费视频能看的| 在线天堂最新版资源| 日韩人妻高清精品专区| 国产野战对白在线观看| 欧美bdsm另类| 亚洲自偷自拍三级| 欧美日韩乱码在线| 性色avwww在线观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲欧美98| 欧美成人免费av一区二区三区| 亚洲avbb在线观看| 九色国产91popny在线| 国产午夜精品论理片| 一级黄色大片毛片| 此物有八面人人有两片| 久久精品国产亚洲av香蕉五月| 丰满人妻一区二区三区视频av| 国产国拍精品亚洲av在线观看| 国产一区二区三区在线臀色熟女| а√天堂www在线а√下载| 精品久久久久久久末码| 日本一二三区视频观看| 一级作爱视频免费观看| 国产日本99.免费观看| 国产视频内射| 亚洲一区高清亚洲精品| 中文在线观看免费www的网站| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 熟女电影av网| 日韩免费av在线播放| 亚洲国产精品999在线| 搡女人真爽免费视频火全软件 | 国产精华一区二区三区| 国产精品嫩草影院av在线观看 | 九九久久精品国产亚洲av麻豆| 免费av毛片视频| 亚洲av免费在线观看| 床上黄色一级片| 色哟哟·www| a级毛片免费高清观看在线播放| 露出奶头的视频| 国内毛片毛片毛片毛片毛片| 午夜亚洲福利在线播放| 欧美激情在线99| 亚洲成av人片免费观看| 能在线免费观看的黄片| xxxwww97欧美| 中文字幕久久专区| 亚洲av中文字字幕乱码综合| 免费一级毛片在线播放高清视频| 国产白丝娇喘喷水9色精品| 中文资源天堂在线| 日本熟妇午夜| .国产精品久久| 国产极品精品免费视频能看的| 午夜福利高清视频| 久久精品人妻少妇| 人人妻人人澡欧美一区二区| 少妇丰满av| 99热只有精品国产| 99久久精品热视频| 搡女人真爽免费视频火全软件 | 长腿黑丝高跟| 舔av片在线| 夜夜爽天天搞| 真人一进一出gif抽搐免费| 51国产日韩欧美| 女人被狂操c到高潮| 精品人妻一区二区三区麻豆 | 熟女电影av网| 香蕉av资源在线| 日日干狠狠操夜夜爽| 一本久久中文字幕| 欧美xxxx性猛交bbbb| 国产精品亚洲av一区麻豆| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 亚洲午夜理论影院| 757午夜福利合集在线观看| 永久网站在线| 日本五十路高清| 88av欧美| 欧美激情在线99| 国产视频内射| 天堂网av新在线| 熟妇人妻久久中文字幕3abv| 日本黄色视频三级网站网址| 日本五十路高清| 久久久久久久久大av| 日韩欧美三级三区| 69人妻影院| 欧美色视频一区免费| 特大巨黑吊av在线直播| 国产精品一区二区免费欧美| 国产成+人综合+亚洲专区| 精品国产亚洲在线| 国产三级在线视频| 日韩欧美三级三区| 日日干狠狠操夜夜爽| 日韩亚洲欧美综合| 精品午夜福利视频在线观看一区| 国产av一区在线观看免费| 亚洲av中文字字幕乱码综合| 又黄又爽又免费观看的视频| 国产精品一区二区性色av| 精品人妻视频免费看| 97超视频在线观看视频| 美女xxoo啪啪120秒动态图 | 欧美日韩国产亚洲二区| 变态另类成人亚洲欧美熟女| 久久精品91蜜桃| 久久国产乱子伦精品免费另类| 国产欧美日韩一区二区三| 久久精品综合一区二区三区| 女人十人毛片免费观看3o分钟| 久久性视频一级片| 首页视频小说图片口味搜索| av黄色大香蕉| 国产精品不卡视频一区二区 | 美女xxoo啪啪120秒动态图 | 国内精品一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看| 自拍偷自拍亚洲精品老妇| 丰满人妻一区二区三区视频av| 乱人视频在线观看| 日本一二三区视频观看| 欧美丝袜亚洲另类 | 美女 人体艺术 gogo| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 国产精品一及| a在线观看视频网站| 三级毛片av免费| 国产aⅴ精品一区二区三区波| 韩国av一区二区三区四区| 久久精品久久久久久噜噜老黄 | 在线看三级毛片| www.熟女人妻精品国产| 国产熟女xx| 中文亚洲av片在线观看爽| 国产三级在线视频| 变态另类丝袜制服| 最近最新免费中文字幕在线| 欧美黄色淫秽网站| 看免费av毛片| 一级黄色大片毛片| eeuss影院久久| 久久久久久久午夜电影| 日韩高清综合在线| 国产精品伦人一区二区| 99精品在免费线老司机午夜| 亚洲专区国产一区二区| 亚洲国产精品999在线| 变态另类丝袜制服| 国模一区二区三区四区视频| 亚洲第一欧美日韩一区二区三区| 精品国内亚洲2022精品成人| 中文亚洲av片在线观看爽| 美女免费视频网站| 国产一区二区激情短视频| 午夜老司机福利剧场| 又爽又黄无遮挡网站| 欧美性猛交黑人性爽| 最近最新免费中文字幕在线| 欧美3d第一页| 少妇的逼水好多| 两个人的视频大全免费| www.色视频.com| 高清毛片免费观看视频网站| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 国产真实伦视频高清在线观看 | 全区人妻精品视频| 少妇被粗大猛烈的视频| 国产精品日韩av在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 老司机午夜十八禁免费视频| 高潮久久久久久久久久久不卡| 波野结衣二区三区在线| 男女下面进入的视频免费午夜| 69人妻影院| 国产精品久久久久久久久免 | 日韩国内少妇激情av| 精品人妻偷拍中文字幕| 精品久久国产蜜桃| 日韩亚洲欧美综合| 免费黄网站久久成人精品 | 国产精品av视频在线免费观看| 黄色视频,在线免费观看| 久久性视频一级片| 日本一本二区三区精品| 免费在线观看影片大全网站| 国产欧美日韩一区二区三| 国产高清有码在线观看视频| 国产视频内射| 久久久久久久久中文| 亚洲第一区二区三区不卡| 亚洲av.av天堂| 18美女黄网站色大片免费观看| 亚洲avbb在线观看| 日韩国内少妇激情av| 一进一出抽搐gif免费好疼| 亚洲片人在线观看| 日日干狠狠操夜夜爽| 97超级碰碰碰精品色视频在线观看| 窝窝影院91人妻| 一进一出抽搐gif免费好疼| 亚州av有码| 国产精品嫩草影院av在线观看 | 日本 av在线| 国产精品精品国产色婷婷| 一级作爱视频免费观看| 直男gayav资源| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 97热精品久久久久久| 淫妇啪啪啪对白视频| 99久久久亚洲精品蜜臀av| www.999成人在线观看| 精品人妻熟女av久视频| 中文字幕高清在线视频| 午夜福利高清视频| 中文字幕熟女人妻在线| aaaaa片日本免费| 欧美+日韩+精品| av国产免费在线观看| 丝袜美腿在线中文| 中文在线观看免费www的网站| 日韩中文字幕欧美一区二区| 女生性感内裤真人,穿戴方法视频| bbb黄色大片| 搡老熟女国产l中国老女人| 一级a爱片免费观看的视频| 制服丝袜大香蕉在线| 欧美日韩亚洲国产一区二区在线观看| 天堂av国产一区二区熟女人妻| 男人舔奶头视频| 美女xxoo啪啪120秒动态图 | 欧美三级亚洲精品| 99在线人妻在线中文字幕| 国产淫片久久久久久久久 | 12—13女人毛片做爰片一| 露出奶头的视频| 亚洲av电影不卡..在线观看| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| 内地一区二区视频在线| 亚洲成人免费电影在线观看| 亚洲国产欧洲综合997久久,| 在线观看午夜福利视频| 看片在线看免费视频| 神马国产精品三级电影在线观看| 欧美性猛交╳xxx乱大交人| 精品日产1卡2卡| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 色视频www国产| 欧美日韩综合久久久久久 | 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 亚洲电影在线观看av| 色综合站精品国产| 如何舔出高潮| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| bbb黄色大片| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 国产精品国产高清国产av| 亚洲自偷自拍三级| 成人性生交大片免费视频hd| 在线播放无遮挡| 国产免费av片在线观看野外av| 国产精华一区二区三区| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 午夜a级毛片| 99精品久久久久人妻精品| 内射极品少妇av片p| 在线观看舔阴道视频| 又粗又爽又猛毛片免费看| 俄罗斯特黄特色一大片| 天堂影院成人在线观看| 亚洲精品亚洲一区二区| 精品免费久久久久久久清纯| 99热这里只有是精品50| 深夜a级毛片| 国产成人影院久久av| 亚洲午夜理论影院| 亚洲精品色激情综合| 很黄的视频免费| 国产毛片a区久久久久| 亚洲av成人av| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 亚洲七黄色美女视频| 成人精品一区二区免费| 深夜a级毛片| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 亚洲欧美日韩卡通动漫| 免费在线观看日本一区| 美女免费视频网站| 一本一本综合久久| 日本熟妇午夜| 五月玫瑰六月丁香| 男人狂女人下面高潮的视频| 女同久久另类99精品国产91| 嫩草影院精品99| 国产综合懂色| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 国产毛片a区久久久久| 十八禁网站免费在线| 色视频www国产| 欧美不卡视频在线免费观看| 深夜精品福利| 欧美色欧美亚洲另类二区| 成人特级黄色片久久久久久久| 国产黄色小视频在线观看| 国产探花在线观看一区二区| 欧美在线黄色| 亚洲人与动物交配视频| av福利片在线观看| av在线天堂中文字幕| 国产又黄又爽又无遮挡在线| 久久国产乱子伦精品免费另类| 成人无遮挡网站| 免费av观看视频| 88av欧美| 色av中文字幕| 日韩人妻高清精品专区| 久久久久久久亚洲中文字幕 | 亚洲最大成人av| 天堂网av新在线| 色综合亚洲欧美另类图片| 性欧美人与动物交配| 不卡一级毛片| 男女视频在线观看网站免费| 欧美日本视频| 99在线人妻在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 村上凉子中文字幕在线| 国产美女午夜福利| 国产高清视频在线播放一区| 91久久精品国产一区二区成人| 久久久久久久久中文| 国产成年人精品一区二区| 内地一区二区视频在线| 日本与韩国留学比较| 麻豆国产av国片精品| 看十八女毛片水多多多| 欧美性感艳星| 日日夜夜操网爽| 91麻豆精品激情在线观看国产| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区人妻视频| 久久久久九九精品影院| 亚洲av五月六月丁香网| 18禁在线播放成人免费| 国产在线男女| 亚洲内射少妇av| 男女那种视频在线观看| 国产精品一及| 欧美高清性xxxxhd video| 日韩欧美精品v在线| 亚洲国产色片| 精品国产亚洲在线| 午夜老司机福利剧场| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 国产成人欧美在线观看| 无遮挡黄片免费观看| 精品一区二区三区视频在线| 亚洲一区二区三区色噜噜| 国产精品久久视频播放| 亚洲av五月六月丁香网| 少妇裸体淫交视频免费看高清| 久久久久久久久中文| 九色成人免费人妻av| 国产又黄又爽又无遮挡在线| 一a级毛片在线观看| 美女高潮的动态| av中文乱码字幕在线| 亚洲人与动物交配视频| 99久久久亚洲精品蜜臀av| 日本一二三区视频观看| 欧美最新免费一区二区三区 | 国产真实乱freesex| 亚洲av五月六月丁香网| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 久久人人爽人人爽人人片va | 亚洲av二区三区四区| 欧美成人a在线观看| 在线十欧美十亚洲十日本专区| 我要看日韩黄色一级片| 可以在线观看毛片的网站| 深夜精品福利| 99久久成人亚洲精品观看| 最新中文字幕久久久久| 欧美另类亚洲清纯唯美| 亚洲精品成人久久久久久| 最新在线观看一区二区三区| 好男人电影高清在线观看| 国产精品嫩草影院av在线观看 | 欧美国产日韩亚洲一区| 少妇被粗大猛烈的视频| 久久久国产成人精品二区| 精品人妻视频免费看| 女人被狂操c到高潮| 午夜影院日韩av| 欧美丝袜亚洲另类 | 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 国产熟女xx| 最近视频中文字幕2019在线8| 少妇的逼水好多| 久久久久久久午夜电影| 免费一级毛片在线播放高清视频| 亚洲自偷自拍三级| 日本一本二区三区精品| 男女床上黄色一级片免费看| 亚洲在线观看片| 国产精品一及| 国产又黄又爽又无遮挡在线| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3| 91麻豆av在线| 亚洲成人久久性| 精品欧美国产一区二区三| 亚洲中文字幕一区二区三区有码在线看| 18禁裸乳无遮挡免费网站照片| 亚洲精品一卡2卡三卡4卡5卡| 免费搜索国产男女视频| 日韩国内少妇激情av| 日本a在线网址| 免费看光身美女| 男女之事视频高清在线观看| 日韩国内少妇激情av| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| av视频在线观看入口| 亚洲欧美日韩东京热| 两个人视频免费观看高清| 激情在线观看视频在线高清| 一夜夜www| 日韩精品中文字幕看吧| 欧美成人性av电影在线观看| 国产精品99久久久久久久久| 免费观看人在逋| 国产毛片a区久久久久| 精品久久久久久久末码| 亚洲中文字幕日韩| 午夜精品在线福利| 亚洲中文字幕一区二区三区有码在线看| 嫁个100分男人电影在线观看| 久久香蕉精品热| 久久久色成人| 老熟妇仑乱视频hdxx| 久99久视频精品免费| 欧美+亚洲+日韩+国产| 51国产日韩欧美| 久久久久亚洲av毛片大全| 欧美色欧美亚洲另类二区| 午夜福利在线在线| 夜夜夜夜夜久久久久| 18禁黄网站禁片免费观看直播| 色综合欧美亚洲国产小说| 日本 av在线| 国产精品一区二区免费欧美|