• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Absorption of CO2in a novel ternary deep eutectic solvent

    2015-04-01 11:54:34LIGuihuaSHANHaifangAINingDENGDongshun
    化工學(xué)報(bào) 2015年1期

    LI Guihua, SHAN Haifang, AI Ning, DENG Dongshun

    (Zhejiang Province Key Laboratory of Biofuel,College of Chemical Engineering,Zhejiang University of Technology,Hangzhou310014,Zhejiang,China)

    Introduction

    As main greenhouse gas, the increasing concentration of CO2from the industrial expansion tends to raise the temperature of earth surface[1].Numerous technologies were utilized to control andreduce CO2emissions, especially aqueous alkanolamine solutions absorption[2-3]. However, the inherit disadvantages including equipment corrosion,intensive energy consumption and secondary pollution made it necessary to explore more environmental alternatives.

    Ionic liquids (ILs), another class of solvent, have been selected to overcome obstacles of traditional absorbents due to their non-volatility, thermal stability,and tunable physiochemical properties[4-9]. Many efforts were focused on measuring solubility of CO2in various ILs because of these favorable characteristics[10-16]. On the other hand, the high production cost and uncertain toxicity limited their industrial applications[17-19].

    Recently, a new type of ionic liquids named deep eutectic solvents (DESs) have been widely used in CO2absorption owing to their low cost and interesting properties consistent with conventional ILs such as negligible vapor pressure, wide liquid range, high thermal and chemical stabilities, non-flammability[20].DESs are made by mixing a substituted quaternary ammonium salt and a metal halide, amide or carboxylic acid. In previous work, Liet al.[21]reported the solubilities of CO2in choline chloride-urea mixture at temperature ranging from 313.15 K to 333.15 K under pressures up to 13 MPa. Leronet al.[22-23]compared the absorption capacity of CO2in DESs combined choline chloride with ethylene glycol or glycerol. In the ways of carboxylic acids, Franciscoet al.[24]prepared a new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid and studied the solubility of CO2in LTTM. In our previous study, we discussed the effects of DESs synthesized by choline chloride and dihydric alcohols in CO2absorption[25]. That work investigated the ability of different kinds of dihydric DESs in the separation of CO2. Researches of CO2in ternary deep eutectic solvents (TDESs) are absent, although Liuet al.[26]founded lower freezing point TDESs formed by alkylimidazolium halides ([BMIM]X, X = Cl, Br),zinc halides (ZnX2, X = Cl, Br) and amides in appropriate molar ratios, which can be applied in organic reactions as solvents or catalyst.

    In present work, we developed a series of novel low price TDESs containingN,N-dimethyl acetamide (DMA), choline chloride (CC) and ethylene glycol or glycerol with different mole ratios (nDMA:nCC:nethyleneglycol=1:1:3,1:1:4,nDMA:nCC:nglycerol=1:1:3,1:1:4). Experiment measurements were completed by isochoric saturation method in the temperature rangeT=293.15—323.15 K with 10℃intervals under pressures ranging from 0 to 600.0 kPa.Henry constants were determined from solubility data.Thermodynamics of CO2absorption including enthalpy, entropy, Gibbs free energy were also calculated.

    1 Experimental

    1.1 Materials

    The TDESs were synthized byN,N-dimethyl acetamide (DMA), choline chloride (CC) and ethylene glycol or glycerol with different ratios(nDMA:nCC:nethyleneglycol=1:1:3, 1:1:4,nDMA:nCC:nglycerol=1:1:3, 1:1:4) atT=363.15 K. And then, they were used after drying for 24 h under vacuum at 350 K to remove volatile impurities. Choline chloride (>98.5%)was produced by Jinan Hualing Pharmaceutical Co.,Ltd.N,N-dimethyl acetamide (DMA) (≥99.0%),ethylene glycol (≥99.0%) and glycerol (≥99.0%)were all produced by Sinopharm Chemical Reagent Co., Ltd. Densities of the TDESs at atmospheric pressure were carefully measured using a(5.567±0.004)cm3pycnometer in the temperature range 293.15 K to 323.15 K at 10℃ intervals. The pycnometer was immersed in an oil-bath and previously calibrated using double distilled water at 303.15 K. CO2with the mass fraction of more than 0.99995 was supplied by Jingong Special Gas Co., Ltd.The summary of the chemical used, their purities, and sources were listed in Table 1.

    1.2 Apparatus

    The stainless apparatus was an upgrade version on the basis of our previous glass apparatus[27]and illustrated in Fig.1. It was mainly composed of a CO2cylinder (1), two water baths (2, 5), CO2gas equilibrium cell (EC, 4) with magnetic stirrer, gas reservoir (GR, 3) and pressure transmitters (6,7). Thevolumes of EC and GR were determined using the previous method[28]with the results of 141.61 cm3and 370.99 cm3, respectively. The temperatures of water baths were carefully controlled with a precision of±0.05 K. The pressures were monitored using pressure transmitter (Fujian WIDEPLUS Precision Instruments Co., Ltd., WIDEPLUS-8, 0 to 600.0 k Pa,with an accuracy of 0.1 % full scale).

    Table 1 Description of chemicals used in this study

    Fig. 1 Schematic diagram of CO2solubility apparatus

    1.3 Methods

    The measurement of CO2solubility was performed using isochoric saturation method[28]. The mass of TDES was measured using electronic balance(Mettler-Toledo AL204) with an uncertainty of 2×10-4g. During experiments, temperatures were controlled by two water-bathes. About 15—40 g TDES dried 24 h under vacuum at 350 K were loaded into EC and degassed under vacuum at 343.15 K while stirring for 1 h. After cooling, the whole system was controlled at a specified oven temperature with water-bathes and evacuated to pressuresp1for 1 h.And then, CO2was fed from gas cylinder into GR until the pressure reached scheduled valuep2.When the valve was opened between EC and GR, CO2was brought into EC and was absorbed by TDESs. A magnetic stirring was used to facilitate the CO2absorption. It was assumed that the equilibrium was reached until the pressure of EC constant for 4 h. The final pressures of EC and GR were recorded asp3,p4,respectively. The amounts of absorbed gas were calculated from a difference between the total amount of gas in GR and residual amount in GR as well as in EC. The next measurement at the same equilibrium temperature was carried out by introducing further amount CO2into the EC from GR with the similar procedure. The measurement was repeated until the pressure between GR and EC was equal.

    2 Results and discussion

    2.1 Density

    Density measurements of TDESs at atmospheric pressure were carefully made using a (5.567±0.004)cm3pycnometer in the temperature range 293.15—323.15 K at 10℃ intervals. The pycnometer was immersed in an oil-bath and previously calibrated using double distilled water at 303.15 K. As shown in Table 2, densities increased with decreasing of temperatures.

    Table 2 Densities of TDESs

    2.2 Solubility data of CO2in TDESs

    In Table 3, solubility data of CO2in TDESs under pressures ranging from 0 to 600.0 kPa at temperatures(T=293.15 K, 303.15 K, 313.15 K, 323.15 K) were summed up.

    The calculation of CO2solubilities are based on mole fractionxCO2and molalitymCO2of CO2in liquids phase as well as gas phase CO2equilibrium pressurepabove the liquid absorbent. The mole fraction and molality of CO2were obtained by the following equations

    Table 3 Experimental CO2mole fraction (xCO2) and molality (mCO2) in solutions at different temperature and equilibrium pressure

    nTDESsis the mole quantity of absorbent which was obtained according to the mass (wTDESs) used and molar mass of TDESs (MW).

    The gas phase composition was regarded as pure CO2because of the negligibly low vapor pressure of TDESs. The amount of CO2absorbed in TDESs can be calculated by the following equation

    WherenCO2is the amount of CO2absorbed by TDESs.nandn1are the initial and residual amounts of CO2in GR, respectively.n2represents the amount of gaseous CO2in EC at equilibrium. The various amounts of CO2can be calculated from experimental PVT data at different conditions using Soave-Redlich-Kwong (SRK) equation. The volume of liquid solution in EC is directly obtained from the mass and density of TDESs at different temperatures.The volume expansion of the liquid in EC because of the dissolution of CO2is very small.

    The dependence of the solubility on temperatures and pressures were shown in Fig.2 and Fig.3, respectively. It can be known that the solubility of CO2in the liquids increased linearly with increasing pressure and decreased with increasing temperature at all the pressures.Moreover, it is clear that the solubility of CO2in TDESs (nDMA:nCC:nethyleneglycol=1:1:3) is higher than others at 303.15 K and present lower molality value with increasing temperature. Such solubility phenomena may indicate that the capture of CO2is physical dissolution process[29].

    2.3 Henry’s constants

    Henry’s constants of TDESs fitted from solubility data of CO2were listed in Table 4. Henry’s constants includingHxbased on mole fraction andHmbased on molarity. Henry’s constants are key physical property that means the solubility of solute in the absorbent[30]. To evaluate Henry’s constants, it is necessary to estimate the fugacity coefficient of CO2in the TDESs at the system temperature and pressure.In our experiments, the gaseous phase can be assumed to be pure CO2and the fugacity of gas was approximately equal to equilibrium pressure of CO2[31-32]because of the relative low equilibrium pressure and non-volatility of TDESs. As shown in Fig.2, the isothermal CO2solubility in TDESs at temperatureT=303.15 K increased with increasing pressure. Thus, the Henry’s constantsHx(Hm) were determined from the slope of the isotherm created from linear fit of CO2mole fraction (molarity)versusequilibrium pressure.

    Table 4 Experimentally determined Henry’s constants of CO2in solutions at various temperatures

    Fig.2 CO2solubility as a function of CO2equilibrium pressure(p) atT=303.15 K

    Fig.3 Solubilities of CO2in TDES(nDMA:nCC:nethyleneglycol=1:1:3)

    With the increasing of temperature, the Henry’s constantsHx(Hm) increased and the solubility of CO2decreased for all systems. We can find that solubility of CO2in TDES obtained from DMA, CC and ethylene glycol with mole ratio 1:1:3 showed the lowest value of 2.174 MPa·kg·mol-1at 293.15 K,which is consistent with results in Fig.2 and Fig.3.Moreover, our work can compare with existing binary systems by stainless apparatus using isochoric saturation method. As listed in Table 5, it is noted that the solubility of CO2in TDESs(nDMA:nCC:nethyleneglycol=1:1:3) based onHmis higher than DESs composed of CC and urea or glycols but lower than DESs combined from CC and lactic acid or phenol.

    2.4 Thermodynamics

    The behavior of Henry’s constants as a function of temperature was correlated using an empirical equation as following

    The optimized coefficients,Bi, obtained using a linear regression of multiple-variables calculation, were listed in Table 6. Thermodynamic properties of dissolutions of CO2in TDESs can be calculated by relating to the Henry’s constants as follows

    Table 5 Hmof CO2in different solutions at 313.15 K

    Table 6 Values of coefficientsB0,B1, andB2for equation

    In which ΔdisG, ΔdisH, ΔdisSare the standard Gibbs free energy, enthalpy and entropy changes of CO2solution at the standard state pressure ofp0=0.1 MPa,respectively. The enthalpy of solution is an important parameter of the system because it is related with strength of interaction between the liquids and the gas,and ΔdisSshows the degree of ordering of the liquid/gas mixture. The thermodynamic properties changes at 303.15 K and 0.1 MPa were shown in Table 7.

    At all the conditions, the negative value of ΔdisHindicates that the process is exothermic, which means that the dissolution of CO2in TDESs is favorable enthalpically. The absolute value of ΔdisHbased onHxof TDES (nDMA:nCC:nethyleneglycol=1:1:3) is the largestat 293.15 K and indicates stronger TDES /CO2interactions. From the molecular points, the ΔdisSis largely related to the TDESs organization surrounding the soluble CO2[34]. A larger negative entropy of TDES/ CO2indicates stronger interactions, while stronger order in the TDES /CO2mixture correlates to larger negative value of the entropy. As a result, the ΔdisGshows positive value.

    Table 7 Calculated Gibbs free energy, enthalpy and entropy of solution at 0.1 MPa and 303.15K

    3 Conclusions

    In this work, solubility data of CO2in different TDESs were determined at temperatures (T=293.15 K,303.15 K, 313.15 K, 323.15 K) under pressures ranging from 0 to 600.0 kPa using the isochoric saturation method. The results replied that the solubility of CO2in the liquids increased linearly with increasing pressure and decreased with increasing temperature. Moreover, it was found that solubility of CO2in TDESs (nDMA:nCC:nethyleneglycol=1:1:3) based onHmis higher than DESs composed of CC and urea or glycols but lower than DESs combined from CC and lactic acid or phenol at the same conditions. Henry’s constants as a function of temperature were also calculated and TDESs obtained from DMA, CC and ethylene glycol with mole ratio 1:1:3 showing the lowest value 2.174 MPa·kg·mol-1at 293.15 K.Thermodynamics of CO2absorption including enthalpy, entropy, Gibbs free energy were also reported. The negative enthalpy demonstrated that the process was exothermic.

    [1] Paul S, Ghoshal A K, Mandal B. Theoretical studies on separation of CO2by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC) [J].Chemical Engineering Journal, 2008, 144(3):352-360.

    [2] Jamal A, Meisen A, Lim C J. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novelhemispherical contactor(Ⅱ):Experimental results and parameter estimation [J].Chemical Engineering Science, 2006, 61(19):6590-6603.

    [3] Kim I, Hoff K A, Hessen E T, Warberg T H, Svendsen H F. Enthalpy of absorption of CO2with alkanolamine solutions predicted from reaction equilibrium constants [J].Chemical Engineering Science,2009, 64(9):2027-2038.

    [4] Aparicio S, Atilhan M. Computational study of hexamethylguanidinium lactate ionic liquid:a candidate for natural gas sweetening [J].Energy Fuels, 2010, 24(9):4989-5001.

    [5] Revelli A L, Mutelet F, Jaubert J N. Prediction of partition coefficients of organic compounds in ionic liquids:use of a linear solvation energy relationship with parameters calculated through a group contribution method [J].Ind. Eng. Chem. Res., 2010, 49(8):3883-3892.

    [6] Mutelet F, Revelli A L, Jaubert J N, Sprunger L M, Acree W E, Baker G A. Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography [J].J. Chem. Eng. Data, 2010, 55(1):234-242.

    [7] Revelli A L, Mutelet F, Jaubert J N, Martinez M G, Sprunger L M,Acree W E, Baker G A. Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography[J].J. Chem. Eng. Data, 2010, 55(7):2434-2443.

    [8] Revelli A L, Mutelet F, Jaubert J N. High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether [J].J. Phys. Chem. B, 2010,114(40):12908-12913.

    [9] Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L,Noble R D. Guide to CO2separations in imidazolium-based roomtemperature ionic liquids [J].Ind. Eng. Chem. Res., 2009, 48(6):2739-2751.

    [10] Pennline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources [J].Fuel Process Technol., 2008, 89(9):897-907.

    [11] Goodrich B F, Fuente J C, Gurkan B E, Zadigian D J, Price E A,Huang Y, Brennecke J F. Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide[J].Ind. Eng. Chem. Res., 2011, 50(1):111-118.

    [12] Bates E D, Mayton R D, Ntai I, Davis J H. CO2capture by a task-specific ionic liquid [J].J. Am. Chem. Soc., 2002, 124(6):926-927.

    [13] Cui Y H, Chen Y F, Deng D S, Ai N, Zhao Y. Difference for the absorption of SO2and CO2on [Pnnnm][Tetz] (n=1,m=2, and 4) ionic liquids:a density functional theory investigation [J].Journal of Molecular Liquids,2014, 199:7-14.

    [14] Makino T, Kanakubo M, Masuda Y, Umecky T, Suzuki A. CO2absorption properties, densities, viscosities, and electrical conductivities of ethylimidazolium and 1-ethyl-3- methylimidazoliumionic liquids [J].Fluid Phase Equilibria, 2014, 362:300- 306.

    [15] Kume?an J, Tuma D, Kamps A P, Maurer G. Solubility of CO2in the ionic liquids [bmim][CH3SO4] and [bmim][PF6] [J].J. Chem. Eng.Data, 2006, 51(5):1802-1807.

    [16] Wang M, Zhang L Q, Liu H, Zhang J Y, Zheng C G. Studies on CO2absorption performance by imidazole-based ionic liquid mixtures [J].J. Fuel Chem. Technol., 2012, 40(10):1264-1268.

    [17] Bernot R J, Kennedy E A, Lamberti G A. Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail [J].Environ. Toxicol. Chem., 2005, 24(7):1759-1765.

    [18] Latala A, Stepnowski P, Nedzi M, Mrozik W. Marine toxicity assessment of imidazolium ionic liquids:acute effects on the baltic algaeo ocystis submarina and cyclotella meneghiniana Aquat [J].Toxicol., 2005, 73(1):91-98.

    [19] Couling D J, Bernot R J, Docherty K M, Dixon J K, Maginn E J.Assessing the factors responsible for ionic liquid toxicity to aquatic organismsviaquantitative structure-property relationship modeling[J].Green Chem., 2006, 8(1):82-90.

    [20] Siongco K R, Leron R B, Li M H. Densities, refractive indices, and viscosities ofN,N-diethylethanol ammonium chloride- glycerol or-ethylene glycol deep eutectic solvents and their aqueous solutions[J]. J. Chem. Thermodynamics, 2013, 65:65-72.

    [21] Li X Y, Hou M Q, Han B X, Wang X L, Zou L Z. Solubility of CO2in a choline chloride + urea eutectic mixture [J].J. Chem. Eng. Data,2008, 53(2):548-550.

    [22] Leron R B, Li M H. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent [J].Thermochimica Acta, 2013, 551:14-19.

    [23] Leron R B, Li M H. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures [J].J. Chem.Thermodynamics, 2013, 57:131-136.

    [24] María F, Adriaan V D B, Lawien F Z, Cor J P, Maaike C K. A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid:characterization as solvent for CO2capture [J].Fluid Phase Equilibria, 2013, 340:77-84.

    [25] Chen Y F, Ai N, Li G H, Shan H F, Cui Y H, Deng D S.Solubilities of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols [J].J. Chem. Eng. Data, 2014,59(4):1247-1253.

    [26] Liu Y T, Chen Y A, Xing Y J. Synthesis and characterization of novel ternary deep eutectic solvents [J].Chinese Chemical Letters, 2014,25(1):104-106.

    [27] Deng D S, Cui Y H, Chen D, Ai N. Solubility of CO2in amide-based br?nsted acidic ionic liquids [J].J. Chem. Thermodyn., 2013, 57:355-359.

    [28] Jacquemin J, Costa Gomes M F, Husson P, Majer V. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon,and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric [J].J. Chem. Thermodyn., 2006, 38(4):490-502.

    [29] Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2capture-development and progress [J].Chem. Eng. Process., 2010,49(4):313-322.

    [30] Zhang N, Zhang J B, Zhang Y F, Bai J, Wei X. H. Solubility and Henry’s law constant of sulfur dioxide in aqueous polyethylene glycol 300 solution at different temperatures and pressures [J].Fluid Phase Equilibria, 2013, 348:9-16.

    [31] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F,Maginn E J. Why is CO2so soluble in imidazolium-based ionic liquids? [J].J. Am. Chem. Soc., 2004, 126(16):5300-5308.

    [32] Smith J M, van Ness H C, Abbott M M. Introduction to themical engineering thermodynamics (seventh edition) [R]. New York:Mc-Graw Hill, 2005.

    [33] Li G H, Deng D S, Chen Y F, Shan H F, Ai N. Solubilities and thermodynamic properties of CO2in choline-chloride based deep eutectic solvents [J].J. Chem. Thermodynamics, 2014, 75:58-62.

    [34] Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [J].J. Phys.Chem. B, 2002, 106(29):7315-7320.

    亚洲天堂av无毛| 精品酒店卫生间| 免费看光身美女| 九草在线视频观看| 亚洲欧美精品自产自拍| freevideosex欧美| 菩萨蛮人人尽说江南好唐韦庄| 国产精品人妻久久久影院| 男女国产视频网站| 人人妻人人添人人爽欧美一区卜 | 大话2 男鬼变身卡| 亚洲精品日韩在线中文字幕| 高清日韩中文字幕在线| 亚洲av电影在线观看一区二区三区| 日韩成人av中文字幕在线观看| 欧美成人一区二区免费高清观看| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品古装| 亚洲av在线观看美女高潮| 精品视频人人做人人爽| 女人久久www免费人成看片| 欧美xxⅹ黑人| 亚洲色图av天堂| 亚洲av日韩在线播放| 两个人的视频大全免费| 五月伊人婷婷丁香| 伦理电影免费视频| 一本久久精品| 蜜桃亚洲精品一区二区三区| 日韩视频在线欧美| 亚洲中文av在线| 身体一侧抽搐| 哪个播放器可以免费观看大片| 国产精品国产三级国产av玫瑰| 国产男人的电影天堂91| 91精品国产国语对白视频| 国产精品嫩草影院av在线观看| 亚洲欧美日韩另类电影网站 | 国产精品不卡视频一区二区| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 成人国产av品久久久| 一级二级三级毛片免费看| 国产免费视频播放在线视频| 嘟嘟电影网在线观看| 国产精品麻豆人妻色哟哟久久| 欧美老熟妇乱子伦牲交| 日韩欧美 国产精品| 亚洲精品日韩av片在线观看| 久久久精品94久久精品| 啦啦啦视频在线资源免费观看| 国产在视频线精品| 嘟嘟电影网在线观看| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载| av免费在线看不卡| 免费观看的影片在线观看| 中文字幕人妻熟人妻熟丝袜美| h日本视频在线播放| 3wmmmm亚洲av在线观看| av国产久精品久网站免费入址| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 七月丁香在线播放| 最近手机中文字幕大全| 最近最新中文字幕大全电影3| 成人午夜精彩视频在线观看| 亚洲经典国产精华液单| 国产欧美亚洲国产| 两个人的视频大全免费| 成人国产av品久久久| 精品久久久久久久末码| 91精品国产九色| 国产精品伦人一区二区| 国产在线男女| 亚洲av日韩在线播放| 看非洲黑人一级黄片| 精品久久久久久久久av| 亚洲av免费高清在线观看| 国产一级毛片在线| 国产在线男女| 国产av码专区亚洲av| 久久久亚洲精品成人影院| 草草在线视频免费看| 91久久精品国产一区二区三区| 好男人视频免费观看在线| 久久久久性生活片| 夜夜爽夜夜爽视频| 在线播放无遮挡| 国产精品久久久久久久电影| 男人舔奶头视频| 国产精品av视频在线免费观看| 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 午夜精品国产一区二区电影| 欧美人与善性xxx| 在线看a的网站| 欧美xxⅹ黑人| 亚洲国产精品专区欧美| 国精品久久久久久国模美| 国产成人aa在线观看| 乱码一卡2卡4卡精品| 久久鲁丝午夜福利片| 在线观看av片永久免费下载| 九九久久精品国产亚洲av麻豆| 一级a做视频免费观看| 18禁在线无遮挡免费观看视频| 三级国产精品片| 99热网站在线观看| 99久久综合免费| 免费看av在线观看网站| 99久久精品一区二区三区| 久久女婷五月综合色啪小说| 国产精品秋霞免费鲁丝片| 青春草亚洲视频在线观看| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 赤兔流量卡办理| 高清午夜精品一区二区三区| 久久久久久伊人网av| 欧美日韩视频高清一区二区三区二| 久久午夜福利片| 人人妻人人添人人爽欧美一区卜 | 国产亚洲最大av| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 九草在线视频观看| 国产黄频视频在线观看| xxx大片免费视频| 久久影院123| 成年人午夜在线观看视频| av线在线观看网站| 国产高清不卡午夜福利| 日韩制服骚丝袜av| 亚洲成人手机| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 交换朋友夫妻互换小说| 亚洲精品色激情综合| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 人妻 亚洲 视频| 亚洲电影在线观看av| 99热国产这里只有精品6| 中国国产av一级| 男人爽女人下面视频在线观看| 99热全是精品| 亚洲人成网站在线观看播放| 久久热精品热| 国产男女内射视频| 在线免费十八禁| 亚洲av成人精品一区久久| 亚洲色图av天堂| 久久人妻熟女aⅴ| 99热网站在线观看| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 国产精品.久久久| 国产精品国产三级专区第一集| 国产亚洲91精品色在线| 国产在视频线精品| av线在线观看网站| 日本-黄色视频高清免费观看| 国产成人91sexporn| 久久97久久精品| 麻豆精品久久久久久蜜桃| 干丝袜人妻中文字幕| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站| 一本色道久久久久久精品综合| 亚洲av福利一区| 大香蕉97超碰在线| 成人美女网站在线观看视频| 联通29元200g的流量卡| av在线app专区| .国产精品久久| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | 在线免费观看不下载黄p国产| h视频一区二区三区| 亚洲欧美精品自产自拍| 国产一区亚洲一区在线观看| 亚洲成人手机| 丝袜喷水一区| 欧美日韩综合久久久久久| 午夜福利网站1000一区二区三区| 久久久精品94久久精品| 极品教师在线视频| 国产精品.久久久| 国产精品成人在线| 嫩草影院新地址| 99热这里只有是精品在线观看| 欧美高清成人免费视频www| 日韩av不卡免费在线播放| 一级a做视频免费观看| 观看美女的网站| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 在线观看免费日韩欧美大片 | 免费黄网站久久成人精品| 亚洲中文av在线| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 久久久久久久国产电影| h视频一区二区三区| 男女免费视频国产| 精品久久国产蜜桃| 国产视频内射| 高清视频免费观看一区二区| 你懂的网址亚洲精品在线观看| 久久久久久伊人网av| 一区二区三区乱码不卡18| 国产美女午夜福利| 亚洲精华国产精华液的使用体验| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 一区二区三区乱码不卡18| 晚上一个人看的免费电影| 中文字幕人妻熟人妻熟丝袜美| 中文资源天堂在线| 深夜a级毛片| 卡戴珊不雅视频在线播放| 老熟女久久久| .国产精品久久| 日韩伦理黄色片| 亚洲婷婷狠狠爱综合网| 中文字幕人妻熟人妻熟丝袜美| 1000部很黄的大片| 精品久久国产蜜桃| 日韩一区二区三区影片| 久久久久久久久久成人| 深夜a级毛片| 美女福利国产在线 | 秋霞在线观看毛片| 国产免费又黄又爽又色| 亚洲国产日韩一区二区| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 蜜桃在线观看..| 99热网站在线观看| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 亚洲人与动物交配视频| av天堂中文字幕网| 综合色丁香网| 国产在线男女| 一级片'在线观看视频| 亚洲国产成人一精品久久久| av播播在线观看一区| 我要看黄色一级片免费的| 欧美+日韩+精品| 精品午夜福利在线看| 特大巨黑吊av在线直播| 2022亚洲国产成人精品| 精品一区二区三区视频在线| 日本免费在线观看一区| 久久午夜福利片| 亚洲,欧美,日韩| 亚洲av福利一区| 亚洲精品乱码久久久v下载方式| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 亚洲成人av在线免费| 视频中文字幕在线观看| 国产午夜精品一二区理论片| 麻豆国产97在线/欧美| 国产乱人偷精品视频| 在线观看免费日韩欧美大片 | 王馨瑶露胸无遮挡在线观看| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 夜夜爽夜夜爽视频| 久久久久视频综合| 久久精品国产鲁丝片午夜精品| 国产真实伦视频高清在线观看| 女性被躁到高潮视频| 国产精品.久久久| 欧美性感艳星| 熟女av电影| 国产男人的电影天堂91| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 亚洲人成网站在线播| 免费人妻精品一区二区三区视频| 午夜激情福利司机影院| 午夜福利网站1000一区二区三区| 热99国产精品久久久久久7| 国产精品一区二区三区四区免费观看| 免费观看性生交大片5| 国产又色又爽无遮挡免| 一级a做视频免费观看| 观看免费一级毛片| 一级毛片 在线播放| 国产v大片淫在线免费观看| freevideosex欧美| 亚洲精品第二区| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 网址你懂的国产日韩在线| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看 | 亚洲四区av| 波野结衣二区三区在线| 99久久综合免费| 亚洲最大成人中文| 欧美日韩视频高清一区二区三区二| 久久久精品免费免费高清| 亚洲自偷自拍三级| 国产日韩欧美在线精品| 亚洲国产欧美在线一区| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 麻豆乱淫一区二区| 亚洲精品自拍成人| 99热6这里只有精品| 中文天堂在线官网| 国产精品99久久99久久久不卡 | 国产成人a区在线观看| 日韩不卡一区二区三区视频在线| 久久久久久久大尺度免费视频| 国产精品福利在线免费观看| 国产69精品久久久久777片| 久久热精品热| 久久精品夜色国产| 亚洲精品视频女| a 毛片基地| 天堂中文最新版在线下载| 一级毛片我不卡| 亚洲中文av在线| 嫩草影院新地址| 人人妻人人爽人人添夜夜欢视频 | 天天躁日日操中文字幕| 少妇高潮的动态图| 嫩草影院入口| 亚洲经典国产精华液单| 一区二区三区四区激情视频| 日韩国内少妇激情av| 激情 狠狠 欧美| h视频一区二区三区| 中文精品一卡2卡3卡4更新| tube8黄色片| 久久久成人免费电影| 亚洲美女搞黄在线观看| 日本vs欧美在线观看视频 | 女性生殖器流出的白浆| 久久青草综合色| 国产伦理片在线播放av一区| 一级二级三级毛片免费看| kizo精华| 少妇裸体淫交视频免费看高清| 国产又色又爽无遮挡免| 偷拍熟女少妇极品色| 尾随美女入室| 久久人人爽av亚洲精品天堂 | 亚洲成人手机| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 国产熟女欧美一区二区| 精品久久久久久久末码| 一级毛片黄色毛片免费观看视频| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 偷拍熟女少妇极品色| 91狼人影院| 中国国产av一级| 熟女av电影| 欧美性感艳星| 国产欧美亚洲国产| 久久韩国三级中文字幕| 国产精品99久久久久久久久| 亚洲av福利一区| 亚洲四区av| 国产高清有码在线观看视频| av在线app专区| 身体一侧抽搐| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| av福利片在线观看| 又粗又硬又长又爽又黄的视频| 久久久色成人| 内射极品少妇av片p| 国产精品无大码| 亚洲欧美中文字幕日韩二区| 国产伦在线观看视频一区| 菩萨蛮人人尽说江南好唐韦庄| 99热6这里只有精品| 高清午夜精品一区二区三区| 中国国产av一级| tube8黄色片| 亚洲精品久久久久久婷婷小说| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看| 最近最新中文字幕免费大全7| 久久人人爽人人片av| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 中文资源天堂在线| 日韩强制内射视频| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 亚洲人成网站高清观看| 久久久久久伊人网av| 欧美高清性xxxxhd video| 午夜福利在线在线| 免费在线观看成人毛片| 美女主播在线视频| 新久久久久国产一级毛片| 七月丁香在线播放| 久久精品熟女亚洲av麻豆精品| 黑人猛操日本美女一级片| av视频免费观看在线观看| av一本久久久久| 蜜桃在线观看..| 人人妻人人添人人爽欧美一区卜 | 色婷婷av一区二区三区视频| 亚洲三级黄色毛片| 男女国产视频网站| 日韩,欧美,国产一区二区三区| 男男h啪啪无遮挡| 国产有黄有色有爽视频| 精品人妻熟女av久视频| 亚洲真实伦在线观看| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 老师上课跳d突然被开到最大视频| 亚洲国产欧美在线一区| 国产成人午夜福利电影在线观看| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美成人一区二区免费高清观看| 亚洲精品aⅴ在线观看| 水蜜桃什么品种好| 亚洲熟女精品中文字幕| 涩涩av久久男人的天堂| 夫妻午夜视频| 欧美人与善性xxx| 在线观看免费高清a一片| 熟女电影av网| 欧美xxxx性猛交bbbb| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| 免费播放大片免费观看视频在线观看| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 午夜视频国产福利| 亚洲色图综合在线观看| 最近中文字幕2019免费版| 亚洲四区av| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人看人人澡| av国产精品久久久久影院| 99精国产麻豆久久婷婷| 国产黄色视频一区二区在线观看| 五月伊人婷婷丁香| 亚洲国产毛片av蜜桃av| 在线观看国产h片| 色综合色国产| 大香蕉97超碰在线| 只有这里有精品99| 成年av动漫网址| 日韩大片免费观看网站| 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 青青草视频在线视频观看| 国产毛片在线视频| 国模一区二区三区四区视频| 22中文网久久字幕| 免费看日本二区| 草草在线视频免费看| 黄色欧美视频在线观看| 少妇裸体淫交视频免费看高清| 国产精品.久久久| 毛片女人毛片| 亚洲精品,欧美精品| 亚洲美女搞黄在线观看| 麻豆国产97在线/欧美| 国产精品99久久久久久久久| 插阴视频在线观看视频| 日日啪夜夜撸| av线在线观看网站| 男女边吃奶边做爰视频| 欧美激情极品国产一区二区三区 | 亚洲精品久久久久久婷婷小说| 欧美极品一区二区三区四区| 久久久久久伊人网av| 成年女人在线观看亚洲视频| 天堂8中文在线网| 久久女婷五月综合色啪小说| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| av线在线观看网站| 亚洲自偷自拍三级| 久久久久久久久久成人| 99久久精品国产国产毛片| 国产亚洲5aaaaa淫片| 99热全是精品| 婷婷色综合大香蕉| 中文在线观看免费www的网站| 男女国产视频网站| 黄色配什么色好看| 热99国产精品久久久久久7| 日本与韩国留学比较| 中文字幕人妻熟人妻熟丝袜美| 男女国产视频网站| 日韩国内少妇激情av| 我要看黄色一级片免费的| 亚洲精品自拍成人| 亚洲图色成人| 色哟哟·www| 国产成人精品福利久久| 色婷婷久久久亚洲欧美| 亚洲av中文av极速乱| 精品99又大又爽又粗少妇毛片| 久久久国产一区二区| 国产在线视频一区二区| 亚洲精品日本国产第一区| 一区在线观看完整版| 免费少妇av软件| 日韩成人av中文字幕在线观看| 免费观看av网站的网址| 亚洲成人一二三区av| 爱豆传媒免费全集在线观看| 麻豆成人av视频| 性色avwww在线观看| 高清黄色对白视频在线免费看 | 伦精品一区二区三区| 亚洲欧美清纯卡通| 欧美日韩在线观看h| 国产 一区 欧美 日韩| 成人影院久久| 老司机影院毛片| 99热全是精品| 最近最新中文字幕免费大全7| 久久av网站| 午夜老司机福利剧场| 一区二区三区精品91| 尤物成人国产欧美一区二区三区| 丰满乱子伦码专区| 网址你懂的国产日韩在线| 欧美xxxx性猛交bbbb| 精品久久久久久电影网| 久久亚洲国产成人精品v| 日韩免费高清中文字幕av| 亚洲欧美精品专区久久| 老女人水多毛片| 综合色丁香网| 天堂中文最新版在线下载| 国产一级毛片在线| 九色成人免费人妻av| 久久久久国产网址| 99久国产av精品国产电影| 亚洲成人中文字幕在线播放| 亚洲丝袜综合中文字幕| 啦啦啦视频在线资源免费观看| 22中文网久久字幕| 亚洲国产精品国产精品| 狂野欧美激情性xxxx在线观看| 99视频精品全部免费 在线| 国产69精品久久久久777片| 精品午夜福利在线看| 黄色配什么色好看| 久久精品夜色国产| 一级毛片 在线播放| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 婷婷色综合大香蕉| 久久久精品免费免费高清| 97热精品久久久久久| 汤姆久久久久久久影院中文字幕| 国产色爽女视频免费观看| 久久精品久久精品一区二区三区| 午夜福利高清视频| 日日啪夜夜爽| 亚洲av电影在线观看一区二区三区| 亚洲第一区二区三区不卡| 美女高潮的动态| 大片电影免费在线观看免费| 少妇高潮的动态图| 秋霞在线观看毛片| 国产欧美另类精品又又久久亚洲欧美| 欧美激情极品国产一区二区三区 | 亚洲怡红院男人天堂| 日日摸夜夜添夜夜添av毛片| 久久久色成人| 草草在线视频免费看| 免费看不卡的av| 2021少妇久久久久久久久久久| 哪个播放器可以免费观看大片| 久久这里有精品视频免费| 99久久综合免费| 欧美精品一区二区免费开放| 一级毛片aaaaaa免费看小| 男男h啪啪无遮挡| 亚洲精品,欧美精品| 日韩电影二区| 能在线免费看毛片的网站| 哪个播放器可以免费观看大片| 国产av一区二区精品久久 | 性高湖久久久久久久久免费观看| 最近2019中文字幕mv第一页| 美女国产视频在线观看| 国产伦在线观看视频一区| 国产人妻一区二区三区在| 精品久久久久久电影网| 久久精品国产亚洲av涩爱| 欧美xxxx性猛交bbbb| 免费不卡的大黄色大毛片视频在线观看| 免费看光身美女| 亚洲精品成人av观看孕妇|