• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    復(fù)合二項(xiàng)對偶模型的最優(yōu)分紅問題

    2015-03-26 04:29:22鄧麗激揚(yáng)
    經(jīng)濟(jì)數(shù)學(xué) 2014年4期

    鄧麗 激揚(yáng)

    摘要研究復(fù)合二項(xiàng)對偶模型的最優(yōu)分紅問題, 通過分析HJB方程得到了最優(yōu)分紅策略和相應(yīng)的最優(yōu)值函數(shù)之間的關(guān)系以及最優(yōu)值函數(shù)的簡單計(jì)算方法. 通過討論最優(yōu)紅利策略的一些性質(zhì)得到了最優(yōu)值函數(shù)的可無限逼近的上界和下界.

    關(guān)鍵詞對偶模型;HJB方程;壓縮映射;最優(yōu)分紅策略

    中圖分類號O211.6 文獻(xiàn)標(biāo)識碼A

    AbstractThis paper discussed the problem of optimal dividendpayment in compound binomial dual model. The relationship between the optimal dividend strategy and the corresponding optimal value function was found by analysing the HJB equation, and a simple algorithm was obtained for calculating the optimal value function. From the properties of the optimal dividend strategy, an upper bound and a lower bound of the optimal value function were derived.

    Key wordsdual model; HJB equation; contraction mapping; optimal dividend strategy

    1引言

    分紅問題的提出可以追溯到De Finetti1在紐約第15屆國際精算師大會上發(fā)表的一篇文章,他認(rèn)為在風(fēng)險(xiǎn)模型中考慮分紅更切實(shí)際. 目前研究得最多的分紅策略有:Barrier策略2-4和Threshold策略5-9. 隨著金融管理、公司業(yè)務(wù)和保險(xiǎn)業(yè)務(wù)的發(fā)展,經(jīng)典風(fēng)險(xiǎn)模型的對偶模型越來越受到重視10-14, 討論相對較多的是連續(xù)時間經(jīng)典風(fēng)險(xiǎn)模型的最優(yōu)分紅問題,例如:Avanzi等10運(yùn)用拉普拉斯變換方法討論了復(fù)合Poisson對偶模型的最優(yōu)紅利Barrier的確定方法;Gerber等11討論了復(fù)合Poisson對偶模型的最優(yōu)紅利Barrier的一些近似方法. 然而離散時間的最優(yōu)分紅問題顯然還沒有得到足夠的重視,盡管De Finetti11最開始討論紅利問題就是在一個離散模型中. 對偶模型可描述為:

    本文研究復(fù)合二項(xiàng)對偶模型的最優(yōu)分紅問題,發(fā)現(xiàn)最優(yōu)值函數(shù)滿足一個離散的哈密頓-雅可比 -貝爾曼(HJB)方程,并運(yùn)用壓縮映射原理證明最優(yōu)值函數(shù)是這個方程的唯一解,從而得到了最優(yōu)分紅策略的計(jì)算方法. 通過討論最優(yōu)紅利策略的一些性質(zhì)本文構(gòu)造出了最優(yōu)值函數(shù)的可無限逼近的一個上界和一個下界,以便能運(yùn)用遞歸算法在Matlab中進(jìn)行數(shù)值計(jì)算.

    2基本模型假設(shè)

    參考文獻(xiàn)

    1.B DE FINETTI. Su un'impostazione alternativa della teoria collettiva delrischioJ.. Transactions of the XVth International Congress of Actuaries,1957(2):433-443.

    2.X S LIN, G E WILLMO, S DREKIC. The classical risk model with a constant dividend barrier: Analysis of the GerberShiu discounted penalty functionJ.. Insurance: Mathematics and Economic, 2003,33(3): 551-566.

    3.S LI, J GARRIDO. On a class of renewal risk models with a constant dividend barrierJ.. Insurance: Mathematics and Economics,2004,35(3):691-701.

    4.K C YUEN, G WANG, W K LI. The GerberShiu expected discounted penalty function for risk processes with interest and a constant dividend barrierJ.. Insurance: Mathematics and Economics, 2007,40(1):104-112.

    5.何慶國,何傳江. 閾值分紅策略下帶常利率的對偶風(fēng)險(xiǎn)模型J..經(jīng)濟(jì)數(shù)學(xué),2012, 29(4): 67-70.

    6.X S LIN, K P PAVLOVA. The compound Poisson risk model with a threshold dividend strategy J.. Insurance:Mathematics and Economics,2006,38(1):57-80.

    7.H U GERBER, E S W SHIU. On Optimal dividend strategies in the compound Poisson modelJ.. North American Actuarial Journal,2006,10(2):76-93.

    8.N WAN. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusionJ.. Insurance:Mathematics and Economics,2007, 40(3):509-523.

    9.S GAO, Z M LIU. The perturbed compound Poisson risk model with constant interest and a threshold dividend strategyJ.. Journal of Computational and Applied Mathematics,2010,233(9):2181-2188.

    10.B AVANZI, H U GERBER, E S W SHIU. Optimal dividends in the dual modelJ., Insurance: Mathematics and Economics,2007,41(1):111-123.

    11.H U GERBER, S NATHANIE. Optimal dividends with incomplete information in the dual modelJ.. Insurance:Mathematics and Economics,2008,43(2):227-233.

    12.C Y N ANDREW. On a dual model with a dividend thresholdJ.. Insurance:Mathematics and Economics, 2009,44(2):315-324.

    13.B LI, R WU. The dividend function in the jumpdiffusion dual model with barrier dividend strategyJ.. Appl Math Mech(English Edition),2008,29(9):1239-1279.

    14.B AVANZI, E C K CHEUNG, B WONG, JK WOO. On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvencyJ.. Insurance: Mathematics and Economics, 2013,52(1): 98-113.

    东海县| 阳春市| 林周县| 方城县| 孙吴县| 桐梓县| 合阳县| 乌鲁木齐市| 茶陵县| 德令哈市| 温宿县| 宜兰市| 金平| 鹤岗市| 义乌市| 杨浦区| 通化市| 曲靖市| 宾阳县| 榆林市| 阿坝县| 上高县| 张家界市| 美姑县| 英德市| 加查县| 封丘县| 岳阳市| 鹤壁市| 枣阳市| 惠东县| 宜昌市| 左权县| 绥阳县| 通州市| 正安县| 勐海县| 陈巴尔虎旗| 正宁县| 慈溪市| 六盘水市|