張超權(quán) 劉曉輝
摘要保險(xiǎn)公司作為負(fù)債經(jīng)營(yíng)的特殊企業(yè),其償付能力受到監(jiān)管部門的約束,本文以公司負(fù)債經(jīng)營(yíng)為前提研究其各種首次時(shí).考慮MAP風(fēng)險(xiǎn)過(guò)程,即存在一隨機(jī)背景Markov過(guò)程,索賠到達(dá)與索賠大小同時(shí)受這一背景過(guò)程影響,索賠到達(dá)為Markov到達(dá)點(diǎn)過(guò)程(MAP),索賠大小對(duì)于不同的背景狀態(tài)具有不同的分布.本文給出首達(dá)時(shí)滿足的積分微分方程,通過(guò)求解帶邊界條件的積分微分方程,給出了盈余過(guò)程從初始盈余水平到達(dá)某一給定盈余水平的首達(dá)時(shí)的Laplace變換的矩陣表示式,并由此推得了盈余過(guò)程到達(dá)指定水平的若干首達(dá)事件概率.
關(guān)鍵詞風(fēng)險(xiǎn)過(guò)程;首達(dá)時(shí);Laplace變換;積分微分方程
中圖分類號(hào)0211.9 文獻(xiàn)標(biāo)識(shí)碼A
AbstractAs a special enterprise allow deficit, an insurance company's solvency is constrained by the supervision department. In this paper, we studied the various First Passage Times (FPTs) of the insurance company allow deficit. We described a MAP risk model in stochastic environment, in which, the claims arrive according to a Markovian Arrival Process (MAP), and the distributions of the claim sizes are modulated by the background Markov process. A system of integro-differential equations with boundary conditions was derived and solved. We obtained the matrix expressions for the Laplace transforms of some first times that the surplus process reaches a given threshold from the initial level, and the expressions of the probabilities that the surplus process reaches a given threshold from the initial level were also derived.
Key wordsrisk process; first passage times; Laplace transform; integrodifferential equation
1引言
在風(fēng)險(xiǎn)理論研究中,學(xué)者多致力對(duì)各種風(fēng)險(xiǎn)過(guò)程的破產(chǎn)概率的研究1-4. 在實(shí)務(wù)中,即使有足夠資金實(shí)力的保險(xiǎn)公司對(duì)于偶爾大額索賠也會(huì)造成赤字.同時(shí),對(duì)于保險(xiǎn)公司的一些分公司,總公司從市場(chǎng)占有角度及發(fā)展規(guī)模前景而言,是允許公司在某一赤字底線上負(fù)債經(jīng)營(yíng)的.因此,在這種情況下,對(duì)于保險(xiǎn)公司的最大赤字,赤字的恢復(fù),公司的最大負(fù)債及最大盈余等的研究顯得尤為重要.
對(duì)于外界隨機(jī)環(huán)境,如周期性氣候因素、相關(guān)政策法規(guī)的出臺(tái)、經(jīng)營(yíng)環(huán)境的突變等,這些因素對(duì)保險(xiǎn)業(yè)的運(yùn)營(yíng)及管理的影響日益突出,這一現(xiàn)象已引起眾多學(xué)者的注意及研究,基于上述考慮,保險(xiǎn)公司作為負(fù)債經(jīng)營(yíng)的特殊企業(yè),其償付能力受到監(jiān)管部門的約束,本文研究以公司負(fù)債經(jīng)營(yíng)為前提,在風(fēng)險(xiǎn)過(guò)程中引入隨機(jī)環(huán)境,即考慮一類索賠頻率及大小同時(shí)受外界因素影響的風(fēng)險(xiǎn)過(guò)程.
盈余水平重新恢復(fù)為0,且此時(shí)環(huán)境狀態(tài)為j,此過(guò)程最大盈余及的最大赤字的聯(lián)合分布.
3結(jié)束語(yǔ)
本文分析了MAP風(fēng)險(xiǎn)過(guò)程的若干首達(dá)時(shí),以公司負(fù)債經(jīng)營(yíng)為前提,研究這種情況下的若干首達(dá)時(shí)Laplace變換的表達(dá)式及相應(yīng)首達(dá)事件的發(fā)生概率,這些量對(duì)保險(xiǎn)公司的運(yùn)營(yíng)管理,風(fēng)險(xiǎn)規(guī)避以及建立相應(yīng)的預(yù)警系統(tǒng),評(píng)估公司運(yùn)營(yíng)環(huán)境、合理防范外界風(fēng)險(xiǎn)具有十分重要意義.
參考文獻(xiàn)
1.唐勝達(dá),杜文忠. 多項(xiàng)式風(fēng)險(xiǎn)的期望貼現(xiàn)懲罰函數(shù)J.. 統(tǒng)計(jì)與決策,2010(1):151-153.
2.唐勝達(dá),秦永松.markov隨機(jī)環(huán)境過(guò)程驅(qū)動(dòng)的風(fēng)險(xiǎn)過(guò)程J.. 廣西師范大學(xué)學(xué)報(bào):自然科學(xué)版, 2012, 30(1): 35-39.
3.于莉,詹曉琳,傅瀚洋. 利率服從AR(m)離散時(shí)間風(fēng)險(xiǎn)模型的破產(chǎn)分布J.. 經(jīng)濟(jì)數(shù)學(xué), 2013, 30(4): 90-93.
4.呂東東,趙明清,李發(fā)高. 一類推廣的復(fù)合poissongeometric相依風(fēng)險(xiǎn)模型的破產(chǎn)概率J.. 經(jīng)濟(jì)數(shù)學(xué),2013,30(4):71-75.
5.G LATOUCHE, V RAMASWAMI. Introduction to matrix analytic methods in stochastic modelingM.. Phladelphia:ASA SIAM,1999.
6.A L BADESCU, D LANDRIAULT. Applications of fluid flow matrix analytic methods in ruin theorya reviewJ.. RACSAMRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2009, 103(2): 353-372.endprint
7.S LI, J GARRIDO. On a general class of renewal risk process: analysis of the GerberShiu functionJ.. Advances in Applied Probability, 2005, 37(3): 836-856.
8.D DICKSON, S DREKIC. The joint distribution of the surplus prior to ruin and the deficit at ruin in some Sparre Andersen modelsJ.. Insurance: Mathematics and Economics, 2004, 34(1): 97-107.
9.H U GERBER, E S W SHIU. The time value of ruin in a Sparre Andersen modelJ.. North American Actuarial Journal, 2005, 9(2): 49-69.
10.L SUN, H Yang. On the joint distributions of surplus immediately before ruin and the deficit at ruin for Erlang (2) risk processesJ.. Insurance: Mathematics and Economics, 2004, 34(1): 121-125.
11.H U GERBER, E S W SHIU. On the time value of ruinJ.. North American Actuarial Journal, 1998, 2(1): 48-72.
12.H ALBRECHER, O J BOXMA. On the discounted penalty function in a Markov-dependent risk modelJ.. Insurance: Mathematics and Economics, 2005, 37(3): 650-672.
13.E C K CHEUNG, D LANDRIAULT. A generalized penalty function with the maximum surplus prior to ruin in a MAP risk modelJ.. Insurance: Mathematics and Economics, 2010, 46(1): 127-134.endprint
經(jīng)濟(jì)數(shù)學(xué)2014年4期