• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高振動(dòng)激發(fā)K2與CO2間弱碰撞和強(qiáng)碰撞的分支比

    2015-03-23 05:04:28王淑英阿拜艾力哈孜沈異凡
    關(guān)鍵詞:能量轉(zhuǎn)移角動(dòng)量彈性

    王淑英, 阿拜·艾力哈孜, 2, 戴 康, 沈異凡

    (1.新疆大學(xué)物理科學(xué)與技術(shù)學(xué)院, 烏魯木齊 830046; 2. 西安交通大學(xué)理學(xué)院, 西安 710049)

    高振動(dòng)激發(fā)K2與CO2間弱碰撞和強(qiáng)碰撞的分支比

    王淑英1, 阿拜·艾力哈孜1, 2, 戴 康1, 沈異凡1

    (1.新疆大學(xué)物理科學(xué)與技術(shù)學(xué)院, 烏魯木齊 830046; 2. 西安交通大學(xué)理學(xué)院, 西安 710049)

    碰撞能量轉(zhuǎn)移; 弱碰撞和強(qiáng)碰撞; 受激發(fā)射泵浦; 速率系數(shù); 角動(dòng)量改變; K2(v″)+CO2

    1 引 言

    從分子碰撞實(shí)驗(yàn)中得到的能量轉(zhuǎn)移分布函數(shù)表明了弱碰撞遠(yuǎn)多于強(qiáng)碰撞的發(fā)生,這里的“弱”和“強(qiáng)”指在碰撞中能量轉(zhuǎn)移量的相對(duì)大小.因?yàn)槿跖鲎矁H引起分子小的能量和量子態(tài)的改變,在實(shí)驗(yàn)上區(qū)分分子的初態(tài)和終態(tài)較困難.舉一個(gè)例子,某分子的高振動(dòng)態(tài)與CO2碰撞,強(qiáng)碰撞使CO2(0000)高轉(zhuǎn)動(dòng)態(tài)得到布居,因?yàn)樵谂鲎睬埃碆oltzmann分布,在高轉(zhuǎn)動(dòng)態(tài)上基本無(wú)布居,故測(cè)得的布居全是由碰撞產(chǎn)生的[1,2].對(duì)于低位轉(zhuǎn)動(dòng)態(tài),碰撞前就有布居,碰撞后該態(tài)的布居是保留不變,轉(zhuǎn)移來(lái)和轉(zhuǎn)移出去的代數(shù)和區(qū)分這三部分布居是這類實(shí)驗(yàn)的難點(diǎn).

    Mullin等[3-5]利用高分辨率瞬時(shí)紅外吸收,研究了高振動(dòng)激發(fā)吡嗪(C4H4N2)分別與DCl和CO2之間的能量轉(zhuǎn)移,測(cè)量了初生轉(zhuǎn)動(dòng)態(tài)DCl(v=0,J=2-21)和CO2(0000,J=2-78)以及它們的平移能輪廓,得到了全部量子態(tài)分辨轉(zhuǎn)動(dòng)分布.CO2轉(zhuǎn)動(dòng)態(tài)分布呈雙指數(shù)結(jié)構(gòu),其中77%屬近彈性碰撞,23%為非彈性碰撞.高振動(dòng)態(tài)能量增加16%,J態(tài)的平移能增加50%.轉(zhuǎn)動(dòng)分布對(duì)碰撞能量是敏感的,但彈性與非彈性碰撞的分支比是相同的.碰撞能量對(duì)能量轉(zhuǎn)移速率系數(shù)影響較小,但與能量增益分布函數(shù)P(ΔE)有很大關(guān)系.

    本實(shí)驗(yàn)利用受激發(fā)射泵浦激發(fā)K2基電子態(tài)的高位振動(dòng)態(tài)v″=40,53,K2(v″)與CO2碰撞,利用瞬時(shí)泛頻LIF測(cè)量,研究不同碰撞能量對(duì)CO2轉(zhuǎn)動(dòng)態(tài)分布,弱碰撞與強(qiáng)碰撞分支比以及對(duì)能量轉(zhuǎn)移概率分布的影響.

    2 實(shí)驗(yàn)方法

    圖1 受激發(fā)射泵浦能級(jí)圖Fig.1 Energy diagram for Pump-Dump and Probe scheme

    高激發(fā)K2(v″)與CO2強(qiáng)碰撞,使CO2的高轉(zhuǎn)動(dòng)態(tài)出現(xiàn)(appearence)布居,而對(duì)于K2(v″)與CO2的弱碰撞,則可使CO2低位轉(zhuǎn)動(dòng)態(tài)出現(xiàn)或部分倒空(depletion)布居.轉(zhuǎn)動(dòng)能級(jí)上原生態(tài)的布居由高分辨率瞬時(shí)泛頻(1005,J+1)-(0000,J)LIF強(qiáng)度測(cè)量[6],泛頻波長(zhǎng)約為790 nm[7].利用光纖將收集到的泛頻熒光傳送到門(mén)光子計(jì)數(shù)器.與OPO激光反向平行通過(guò)樣品池的Ti寶石激光既作為高位K2(v″)態(tài)的檢測(cè)光,也作為原生態(tài)CO2(0000,J)態(tài)的泛頻檢測(cè)光.熒光記錄時(shí)間為1μs.

    延遲脈沖發(fā)生器(DG535)使OPO延遲染料激光20ns,以避免二色多光子激發(fā)的產(chǎn)生.在本實(shí)驗(yàn)條件下,K2(v″)與CO2碰撞間隔平均約為4 μs[1],門(mén)光子計(jì)數(shù)器延遲OPO1 μs,以滿足一次碰撞條件.

    一個(gè)5臂交叉熱管爐作為樣品池,4條臂平面交叉,與4臂垂直的第5小臂中存放金屬K.在樣品池的真空度達(dá)到10-4Pa時(shí)充入CO2,CO2的氣壓為2 Pa.用電熱器加熱樣品池,樣品池溫度控制在450-850 K之間,由置于樣品池中的熱電偶測(cè)量.

    濾光片把Ti寶石激光減至約0.1 μW.用光學(xué)吸收法[8]測(cè)量不同池溫時(shí)K2高振動(dòng)態(tài)的分子密度.本實(shí)驗(yàn)條件下,K2(v″=40,53)的分子密度在1010-1011cm-3之間.

    3 結(jié)果與討論

    3.1 弱,強(qiáng)碰撞分支比

    (1)

    [CO2(J)]t=0由Boltzmann分布確定

    [CO2(J)]t=0=[CO2]0(B/kT)

    (2J+1)exp[-BJ(J+1)/kT]

    (2)

    上式中B=0.394cm-1是CO2的轉(zhuǎn)動(dòng)常數(shù),[CO2]0為CO2密度,本實(shí)驗(yàn)中為5.2×1014cm-3,T為池溫,從而由(1)式得到J態(tài)密度.

    圖2為池溫600 K時(shí)K2(v″=40)與CO2碰撞后CO2(0000,J)的初生態(tài)分布,NJ為J態(tài)密度.該分布可用二個(gè)獨(dú)立的指數(shù)函數(shù)擬合[5].

    NJ=(2J+1)[I1exp(-EJ/kT1)+

    I2exp(-EJ/kT2)]

    (3)

    其中EJ為轉(zhuǎn)動(dòng)能,T1和T2是二個(gè)不同的轉(zhuǎn)動(dòng)溫度,I1和I2為相對(duì)強(qiáng)度.由圖2的實(shí)驗(yàn)數(shù)據(jù),對(duì)于K2(v″=40)+CO2,得到T1=581±70 K的低能分布和T2=1395±167 K的高能分布.對(duì)于K2(v″=53)+CO2,作類似分析,得到T1=621±76 K和T2=1556±187 K.因此低J態(tài)主要發(fā)生近彈性的弱碰撞,高J態(tài)則發(fā)生非彈性的強(qiáng)碰撞.

    圖2 CO2(0000)與K2(v″=40)碰撞后的初生態(tài)半對(duì)數(shù)描述Fig. 2 Semilog plot of the nascent rotational distribution of scattered CO2(0000) from collisions with K2(v″=40) showing the existence of a bimodal product state distribution

    圖3(a)為K2(v″=40,53)二個(gè)高位振動(dòng)態(tài)分別與CO2弱碰撞后CO2轉(zhuǎn)動(dòng)分布的比較,(b)為強(qiáng)碰撞后轉(zhuǎn)動(dòng)分布的比較,隨K2(v″)能量的增加,弱碰撞和強(qiáng)碰撞的能量轉(zhuǎn)移都增加了(布居分布向高轉(zhuǎn)動(dòng)能轉(zhuǎn)移),但弱,強(qiáng)碰撞產(chǎn)生的布居分支比對(duì)K2(v″)能量不敏感,均約為5:1.

    圖3 弱碰撞(a)與強(qiáng)碰撞(b)轉(zhuǎn)動(dòng)分布的比較Fig. 3 Comparison of the (a) weak and (b) strong collision rotational distributions

    3.2 能量轉(zhuǎn)移速率系數(shù)測(cè)量

    (4)

    [K2(v″)]0是未發(fā)生碰撞時(shí)K2(v″)的密度.因碰撞而倒空(deplete)J態(tài)布居的速率系數(shù)為kdep

    Δ[CO2(0000,J)]dep=

    -kdepz(J)[K2(v″)]0[CO2]Δt

    (5)

    z(J)為J態(tài)分子在全部CO2分子中的占比,由Boltzmann分布決定,Δt取1μs.從(4)和(5)式得到

    (6)

    上式中,z(J)-1=[CO2]/[CO2(J)]=(B/kT(2J+1)exp[-BJ(J+1)/kT])-1,T為池溫.(Δ[CO2(J)]app+Δ[CO2(J)]dep)/[CO2(J)]是在碰撞1μs后J態(tài)布居的相對(duì)變化,可用瞬時(shí)泛頻LIF強(qiáng)度的相對(duì)變化表示,故(6)可改寫(xiě)為

    (7)

    圖4 K2(v″=40)與CO2碰撞時(shí)和kdep的導(dǎo)出Fig. 4 ″=40) and CO2 collisions

    K2(v″=40)K2(v″=53)JkJapp(10-12cm3molecule-1s-1)JkJapp(10-12cm3molecule-1s-1)214.4±3.9217.2±4.6827.7±7.5832.2±8.71648.1±13.01652.7±14.22620.8±5.62624.9±6.73410.3±2.83411.4±3.1468.2±2.2469.6±2.6544.3±1.2545.1±1.4622.1±0.6622.5±0.7701.9±0.5702.2±0.6781.1±0.3781.3±0.4

    3.3 振動(dòng)-轉(zhuǎn)動(dòng),平動(dòng)(V-RT)能量轉(zhuǎn)移中的角動(dòng)量改變

    圖5 CO2 P48泛頻躍遷線的Doppler輪廓Fig. 5 Doppler broadened overtone transition line profile for CO2 P48 collected at t=1 μs following excitation of K2(v″=40) (T=600 K)

    表2 CO2(0000,J=44-78)各態(tài)的角動(dòng)量改變和反沖速度

    Table 2 Angular momentum changes and recoil velocities for various states of CO2(0000,J=44-78) through collisions with K2(v″=53) (T=600 K)

    J<ΔJ>Tapp(K)(ms-1)(ms-1)<Δvrel>(ms-1)4433.9760±80654±421020±112406±454839.0782±82664±431036±114422±465243.8826±87761±491187±131573±635446.2851±89784±501223±135609±676053.1878±92809±561262±139648±716457.5895±94825±571287±142673±746659.8915±96843±581315±145701±776862.0967±102891±611390±153776±857266.31025±108945±651474±162860±957872.81129±1191041±711624±1791010±111

    圖6描繪了<Δvrel>作為<ΔJ>的函數(shù)的變化情況,<Δvrel>隨<ΔJ>的增加而單調(diào)增大,且隨<ΔJ>增大,<Δvrel>加速增大,這與McCaffery等[10-12]的碰撞能量轉(zhuǎn)移的角動(dòng)量模型的結(jié)論是一致的.對(duì)于v″=40和53,<Δvrel>的趨向是相似的,而v″=53有較大的<Δvrel>.K2能量以3069 cm-1增加到3828 cm-1,能量增加25%,而反沖速度增加約47%.

    圖6 角動(dòng)量平均變化與反沖速度平均變化的關(guān)系 Fig. 6 Correlation between the average change in angular momentum of CO2 and the average change of recoil velocity <Δvrel> from K2(v″)/CO2 collisions

    3.4 能量轉(zhuǎn)移概率分布函數(shù)

    在K2(v″)與CO2碰撞中,利用轉(zhuǎn)動(dòng)線的Doppler增寬和能量轉(zhuǎn)移速率系數(shù),由文獻(xiàn)[13,5]的方法得到的能量轉(zhuǎn)移概率分布函數(shù)PJ(ΔE),用來(lái)表示CO2中各轉(zhuǎn)動(dòng)態(tài)的能量分布,完全的能量轉(zhuǎn)移分布函數(shù)P(ΔE)是所有PJ(ΔE)之和.圖7給出了v″=40和53兩個(gè)不同能量的P(ΔE)曲線.

    圖7 P(ΔE)與K2(v″)能量關(guān)系Fig. 7 K2(v″) energy-dependence of the energy transfer probability distribution function P(ΔE) for K2(v″)/CO2 collisions

    由二參量單指數(shù)衰變模型[14]

    (8)

    式中α表示K2(v″)的能量損失-<ΔE>down,A為歸一化常數(shù).擬合實(shí)驗(yàn)數(shù)據(jù)得到-<ΔE>down=293 cm-1(對(duì)v″=40)和-<ΔE>down=450 cm-1(對(duì)v″=53),可以看到P(ΔE)對(duì)高振動(dòng)態(tài)能量變化是敏感的.

    4 結(jié) 論

    實(shí)驗(yàn)研究了高振動(dòng)K2(v″=40,53)與CO2碰撞后CO2J態(tài)分布,量子態(tài)分辨測(cè)量表明了V-RT軌道是主要的能量轉(zhuǎn)移途徑.由雙指數(shù)轉(zhuǎn)動(dòng)分布得到約有83%的碰撞屬弱碰撞,而17%屬非彈性強(qiáng)碰撞.對(duì)于強(qiáng)碰撞,CO2J態(tài)的角動(dòng)量和反沖速度都有大的增加.隨K2能量的增加,能量轉(zhuǎn)移分布P(ΔE)迅速增寬.

    [1] Yuan L, Du J, Mullin A S. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20390 and 38580 cm-1) with CO2[J].J.Chem.Phys., 2008, 129(1): 014303.

    [2] Johnson J A, Duffin A M, Hom B J,etal. Quenching of highly vibrationally excited pyrimidine by collisions with CO4[J].J.Chem.Phys., 2008, 128: 054304.

    [3] Du J, Yuan L, Hsieh S,etal. Dynamics of weak and strong collisions: Highly vibrationally excited pyrazine (E=37900 cm-1) with DCl[J].J.Phys.Chem. A, 2008, 112(39): 9396.

    [4] Havey D K, Du J, Liu Q,etal. Full state-resolved energy gain profiles of CO2(J=2-80) from collisions of highly vibrationally excited molecules. 1. Relaxation of pyrazine (E=37900 cm-1)[J].J.Phys.Chem. A, 2010, 114(3): 1569.

    [5] Du J, Sassin N A, Havey D K,etal. Full state-resolved energy gain profiles of CO2from collisions with highly vibrationally excited molecules. II. energy-dependent pyrazine (E=32700 and 37900 cm-1) relaxation [J].J.Phys.Chem. A, 2013, 117(46): 12104.

    [6] Zhu Y L, Zhong C Y, Yolwas A,etal. Energy dependence of collision transfer of CO2with highly vibrationally excited RbH(X1Σ+,v"≥15) [J].J.At.Mol.Phys., 2012, 29(6): 1035(in Chinese) [朱永樂(lè), 仲崇玉, 阿布都艾尼·由力瓦斯, 等. 高位振動(dòng)態(tài)RbH(X1Σ+, v"≥15)與CO2碰撞轉(zhuǎn)移中的能量相關(guān)性 [J]. 原子與分子物理學(xué)報(bào), 2012, 29(6): 1035]

    [7] Lu Y, Liu A W, Pan H,etal. High sensitivity cavity ring down spectroscopy of13C16O2overtone bands near 806nm [J].JQSRT, 2012, 113: 2197.

    [8] Cui X H, Mu B X, Shen Y F,etal. Vibrational relaxation and vibration-rotation energy transfer between highly vibrationally excited KH (X1Σ+,v=14-21) and CO2[J].JQSRT, 2012, 113: 2081.

    [9] McCaffery A J, Osborne M A, Marsh R J,etal. The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics [J].J.Chem.Phys., 2004, 121: 169.

    [10] McCaffery A J, Alwahabi Z T, Osborne M A,etal. Rotational transfer, an angular momentum model [J].J.Chem.Phys., 1993, 98: 4586.

    [11] Marsh R J, McCaffery A J. Quantitative prediction of collision-induced vibration-rotation distributions from physical data [J].J.Phys. B, 2003, 36: 1363.

    [12] McCaffery A J, Marsh R J. Modeling disequilibrium in gas ensembles: How quantum state populations evolve under multicollision conditions; CO*+Ar, CO, O2, and N2[J].J.Chem.Phys., 2010, 132: 074304.

    [13] Michaels C A, Flynn G W. Connecting quantum state resolved scattering data directly to chemical kinetics: Energy transfer distribution functions for the collisional relaxation of highly vibrationally excited molecules from state resolved probes of the bath [J].J.Chem.Phys., 1997, 106: 3558.

    [14] Miller L A, Barker J R. Collisional deactivation of highly vibrationally excited pyrazine [J].J.Chem.Phys., 1996, 105: 1383.

    Branching ratios of weak and strong collisions:highly vibrationally excited K2(v″) with CO2

    WANG Shu-Ying1, ABAI Alghazi1, 2, DAI Kang1, SHEN Yi-Fan1

    (1. School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China;2.School of Sciences, Xi′an Jiaotong University, Xi′an 710049, China)

    Collisional energy transfer; Weak and strong collision; Stimulated emission pumping; Rate constant; Angular momentum change; K2(v″)+CO2

    2015-04-24

    國(guó)家自然科學(xué)基金(11364042)

    王淑英(1977—),女,博士,副教授,主要從事激光光譜及原子與分子物理等方面的研究.E-mail: wsysmilerr@sina.com

    103969/j.issn.1000-0364.2015.10.014

    O561.5

    A

    1000-0364(2015)05-0805-06

    猜你喜歡
    能量轉(zhuǎn)移角動(dòng)量彈性
    對(duì)經(jīng)典力學(xué)中的軌道角動(dòng)量和自轉(zhuǎn)角動(dòng)量的探討
    為什么橡膠有彈性?
    軍事文摘(2021年18期)2021-12-02 01:28:12
    為什么橡膠有彈性?
    基于角動(dòng)量模型的流場(chǎng)渦旋提取方法
    注重低頻的細(xì)節(jié)與彈性 KEF KF92
    彈性?shī)A箍折彎模的改進(jìn)
    模具制造(2019年4期)2019-06-24 03:36:40
    用角動(dòng)量的方法解決并推廣一個(gè)功能關(guān)系問(wèn)題
    夏季角動(dòng)量輸送變化與中國(guó)東部降水的關(guān)系
    基于納米金與納米銀簇間表面等離子增強(qiáng)能量轉(zhuǎn)移效應(yīng)特異性檢測(cè)microRNA
    能量轉(zhuǎn)移型鋰電池組均衡電路的設(shè)計(jì)與研究
    博客| 正蓝旗| 同江市| 安阳市| 墨竹工卡县| 海晏县| 山丹县| 枣强县| 齐齐哈尔市| 普宁市| 菏泽市| 孟津县| 玉溪市| 马关县| 日喀则市| 天等县| 开封市| 浪卡子县| 剑阁县| 南昌市| 德惠市| 临漳县| 班玛县| 祁阳县| 黔西县| 太康县| 花垣县| 慈利县| 临汾市| 彭州市| 阳江市| 台前县| 米易县| 商洛市| 鄂托克前旗| 株洲县| 孝义市| 玛沁县| 岳西县| 都昌县| 盐津县|