陳 琳, 陳永杰, 吳勝男, 楊 英, 耿秀娟
(沈陽化工大學 遼寧省稀土化學及應用重點實驗室, 遼寧 沈陽 110142)
白光熒光粉Ba1.3Ca0.7-y-z(AlxSi1-x)O4:yEu2+,zMn2+發(fā)光性能研究
陳 琳, 陳永杰, 吳勝男, 楊 英, 耿秀娟
(沈陽化工大學 遼寧省稀土化學及應用重點實驗室, 遼寧 沈陽 110142)
采用高溫固相反應在還原氣氛中合成Ba1.3Ca0.7-y-z(AlxSi1-x)O4:yEu2+,zMn2+白光熒光粉.研究硅鋁摩爾比變化對熒光粉晶體結(jié)構和光譜性能的影響.XRD結(jié)果表明:改變硅鋁摩爾比對熒光粉晶體結(jié)構基本無影響,晶相結(jié)構為Ba1.3Ca0.7SiO4;熒光光譜顯示在277 nm紫外光激發(fā)下,Eu2+,Mn2+共摻雜的熒光粉的發(fā)射光譜覆蓋425~550 nm藍綠光波帶和550~650 nm橙紅光波帶,最大發(fā)射峰位于454、593 nm,這兩個發(fā)射寬帶組合形成白光.
發(fā)光二級管; 白色熒光粉; 高溫固相反應; Ba1.3Ca0.7(AlxSi1-x)O4
白光LED是一類新型光源,其中以半導體化合物InGaN為基礎的白光LED有許多優(yōu)點:發(fā)光效率高、節(jié)能、穩(wěn)定性好、綠色環(huán)保和壽命長等,逐漸取代白熾燈和汞燈成為第四代照明光源[1-2].近年來,由于稀土離子和過渡金屬激活的堿土鋁硅酸鹽具有作為熒光材料的潛在利益而被廣泛研究[3-6].利用高溫固相反應,紫外芯片激發(fā)的硅鋁酸鹽熒光粉具有較穩(wěn)定的晶體結(jié)構、簡單的制備工藝、良好的物理化學穩(wěn)定性和原料豐富等優(yōu)點[7],被認為是稀土發(fā)光材料中一類有潛力的基質(zhì)材料.藍色熒光粉是合成白光LED不可缺少的成分,因此對藍色熒光粉的研發(fā)也成為熱點之一.通常情況下,Eu2+在Ba1.3Ca0.7SiO4基質(zhì)中的發(fā)光是由4f→5d能級躍遷引起的,以發(fā)射藍光為主,其中部分能量能夠傳遞給 Mn2+,使其發(fā)射紅光[8-9],因此藍光發(fā)射強度的強弱限制著白光熒光粉的發(fā)光強度.不同基質(zhì)對熒光粉發(fā)光的影響很大,所以基質(zhì)組成的任何變化都可能改變能量傳遞過程、晶場強度和共價性,進而最終影響發(fā)光材料的發(fā)光效率和發(fā)光特性.本文采用高溫固相反應合成六方晶系堿土硅鋁酸鹽白光LED用熒光粉Ba1.3Ca0.7-y-z(AlxSi1-x)O4:yEu2+,zMn2+.探討了Al3+取代Si4+的最佳摩爾比,以及共摻雜Eu2+-Mn2+對此體系熒光粉晶體結(jié)構、熒光性能的影響.
1.1 樣品的制備
采用高溫固相反應法制備白熒光粉Ba1.3Ca0.7-y-zAlxSi1-xO4:yEu2+,zMn2+,所用原料為BaCO3(A.R.),CaCO3(A.R.),Al2O3(A.R.),SiO2(A.R.),Eu2O3(4N),MnCO3(A.R.),BaCl2·2H2O(A.R.)作為助熔劑.按照所設計的化學式的化學計量比稱取原料,Al2O3摻雜的摩爾分數(shù)為0.01~0.06,Eu2O3和MnCO3摻雜的摩爾分數(shù)為0.01~0.08.將稱取的原料置于瑪瑙研缽中,用無水乙醇作為研磨介質(zhì)充分研磨15 min,在60 ℃真空干燥箱中干燥30 min后裝入瓷舟,在V(H2)/V(N2)=1∶9的氮氫還原氣體下,于1 000 ℃下保溫1.5 h,程序結(jié)束后令其自然冷卻至室溫,研磨即得樣品.
1.2 樣品的表征
采用Bruker D8型X射線衍射(XRD)儀測定樣品的粉末衍射圖(輻射源為Cu靶,管電壓40 kV,工作電流40 mA,λ=0.154 06 nm).樣品的熒光光譜采用Hitachi F-4600型熒光分光光度計(Fluoroscence Spectrophotometer)測定(狹縫2.5 nm,工作電壓400 V,掃描速度1 200 nm/min).使用PMS-50型紫外-可見-近紅外光譜(Ultraviolet-visible-near Infrared Spectroscopy)分析系統(tǒng)對樣品進行色溫(Tc)、顯色指數(shù)(Ra)和色坐標(CIE)測試(掃描步長為5 nm,激發(fā)波長為365 nm).所有測量均在室溫下進行.
2.1 晶相分析
制備的Ba1.3Ca0.68Al0.025Si0.975O4:0.02Eu2+和Ba1.3Ca0.65Al0.025Si0.975O4:0.02Eu2+,0.03Mn2+熒光粉的XRD圖譜如圖1所示.與X射線衍射標準數(shù)據(jù)庫《Powder Diffraction File》的標準化合物Ba1.3Ca0.7SiO4(JCPDS#48-0210)數(shù)據(jù)對比發(fā)現(xiàn),所制樣品的XRD衍射峰的數(shù)據(jù)與標準卡片數(shù)據(jù)基本一致,說明少量Al3+,Eu2+,Mn2+的摻雜沒有產(chǎn)生雜相.
圖1 Ba1.3Ca0.68Al0.025Si0.975O4:0.02Eu2+和Ba1.3Ca0.65Al0.025Si0.975O4:0.02Eu2+,0.03Mn2+的XRD圖譜
2.2 光譜分析
2.2.1 硅鋁摩爾比對Ba1.3Ca0.68AlxSi1-xO4:0.02Eu2+熒光粉光譜性能的影響
為探討B(tài)a1.3Ca0.68AlxSi1-xO4:0.02Eu2+熒光粉中硅鋁摩爾比對其發(fā)光性質(zhì)的影響及找出合適的硅鋁摩爾比,合成一系列硅鋁摩爾比為0.99/0.01,0.975/0.025,0.96/0.04,0.94/0.06,0.92/0.08的Ba1.3Ca0.68AlxSi1-xO4:0.02Eu2+熒光粉,其發(fā)射光譜如圖2所示,插圖為發(fā)射峰(456 nm)強度與摻雜離子摻雜量關系圖.由圖2可以看出:發(fā)射光譜覆蓋430~590 nm的寬帶,最大峰值位于456 nm處,隨著增加Al3+取代Si4+的含量,熒光粉發(fā)射光譜形狀沒有明顯的改變,但屬于Eu2+的特征發(fā)射峰(456 nm)強度逐漸增大,這可能是因為Al3+取代Si4+在體系中造成局部缺陷結(jié)構,在某種程度上這些缺陷結(jié)構能夠提高發(fā)光中心離子的躍遷幾率,從而增強體系的發(fā)光性能[10],它們的增強機理有待于進一步研究.當硅鋁摩爾比為0.975/0.025時,熒光粉的發(fā)射強度最大.因此選用0.025/0.975的鋁硅配比較為合理,確定熒光粉的組成是Ba1.3Ca0.68Al0.025Si0.975O4:0.02Eu2+.
圖2 Ba1.3Ca0.68AlxSi1-xO4:0.02Eu2+(x=0,0.01,0.025,0.04,0.06)的發(fā)射光譜
2.2.2 Ba1.3Ca0.7-y-zAl0.025Si0.975O4:yEu2+,zMn2+的光譜性能
圖3為熒光粉Ba1.3Ca0.68-yAl0.025Si0.975O4:yEu2+,0.02Mn2+(y=0,0.01,0.02,0.03,0.04,0.06,0.08)的發(fā)射光譜(277 nm激發(fā)).當y=0時,Ba1.3Ca0.68Al0.025Si0.975O4:0.02Mn2+發(fā)射帶沒有發(fā)射峰,說明單摻雜Mn2+的熒光粉不發(fā)光;當y=0.01~0.08時,在590 nm附近出現(xiàn)了紅光發(fā)射峰,這是因為Eu2+的一部分能量傳遞給Mn2+的結(jié)果,從而形成Mn2+的能級躍遷.發(fā)射帶由425~550 nm的藍綠光波帶和550~650 nm的橙紅光波帶組成,最大峰值位于454、590 nm.從圖3可以看到:固定Mn2+的摩爾分數(shù)為0.02時,Eu2+的變化對發(fā)射光譜的形狀沒有產(chǎn)生明顯的影響,但是隨著Eu2+摻雜量的增加,一定程度上改變了藍綠光和紅光的發(fā)光強度.當Eu2+摩爾分數(shù)為0.02時,其藍綠光和紅光的發(fā)光強度均較強.其中,藍綠光波帶為Eu2+取代Ca格位的5d→4f能級躍遷的特征發(fā)射,紅光波帶可歸屬于Mn2+取代與其半徑相近的Ca格位的4T1—6A1躍遷發(fā)射[11-12].
圖3 Ba1.3Ca0.68Al0.025Si0.975O4:yEu2+,0.02Mn2+(y=0,0.01,0.02,0.03,0.04,0.06,0.08)的發(fā)射光譜
圖4為熒光粉Ba1.3Ca0.68Al0.025Si0.975O4:0.02Eu2+,zMn2+(z=0,0.01,0.02,0.03,0.04,0.06,0.08)的發(fā)射光譜(277 nm激發(fā)下).由圖4可知:不同含量的Mn2+對熒光粉的發(fā)射光譜具有較大的影響.當摻雜的Mn2+含量較少時,藍光帶的發(fā)光強度較強,紅光發(fā)射帶較弱.隨著Mn2+含量的增加,由Eu2+傳遞給Mn2+的能量增加,使得Eu2+的425~550 nm藍綠光發(fā)射強度逐漸降低,Mn2+的550~700 nm紅光強度逐漸增強.當Mn2+的摩爾分數(shù)為0.03時,藍綠光波帶較強.
圖4 Ba1.3Ca0.68Al0.025Si0.975O4:0.02Eu2+,zMn2+(z=0,0.01,0.02,0.03,0.04,0.06,0.08)的發(fā)射光譜
2.3 光色參數(shù)分析
Ba1.3Ca0.68-yAl0.025Si0.975O4:yEu2+,0.02Mn2+(y=0.01~0.08)和Ba1.3Ca0.7-yAl0.025Si0.975O4:yEu2+,zMn2+(z=0.01~0.08)熒光粉的光色參數(shù)分別如表1、表2所示.
表1 Ba1.3Ca0.68-yAl0.025Si0.975O4:yEu2+,0.02Mn2+(y=0.01~0.08)的光色參數(shù)
Table 1 The light and color parameters of Ba1.3Ca0.68-yAl0.025Si0.975O4:yEu2+,0.02Mn2+(y=0.01~0.08)
y(x,y)Tc/KRa0 01(0 2829,0 2991)923685 70 02(0 3009,0 3232)724884 50 03(0 3159,0 3342)630084 10 04(0 3287,0 3629)565182 20 06(0 3533,0 3819)482680 60 08(0 3451,0 3744)506781 6
表2 Ba1.3Ca0.68-zAl0.025Si0.975O4:0.02Eu2+,zMn2+(z=0.01~0.08)的光色參數(shù)
Table 2 The light and color parameters of Ba1.3Ca0.68-zAl0.025Si0.975O4:0.02Eu2+,zMn2+(z=0.01~0.08)
z(x,y)Tc/KRa0 01(0 2667,0 3063)1045782 60 02(0 3009,0 3232)724884 50 03(0 3226,0 3290)598483 60 04(0 3379,0 3446)526782 60 06(0 3538,0 3527)468181 50 08(0 3758,0 3480)390079 4
由上可知,Eu2+在Ba1.3Ca0.7-y-zAl0.025Si0.975O4:yEu2+,zMn2+體系中作為發(fā)光中心,發(fā)射藍綠光,同時激活Mn2+使其發(fā)射紅光.當固定Mn2+含量為0.02時,由表1、表2可知:當增加Eu2+和Mn2+的摻雜量時,熒光粉的色溫向著低色溫規(guī)律性變化.已知標準白光的光譜性質(zhì)參數(shù)的色坐標是(0.33,0.33),Tc=6 430 K,Ra=76,當x(Eu2+)=0.02,x(Mn2+)=0.03時,熒光粉的色坐標(x,y)=(0.322 6,0.329 0),Tc= 5 984 K,Ra=83.6,明顯優(yōu)于標準白光的光譜參數(shù),發(fā)光效果較好.綜合考慮,Ba1.3Ca0.65Al0.025Si0.975O4:0.02Eu2+,0.03Mn2+為此系列最佳熒光粉.
總之,改變Eu2+和Mn2+的摻雜比例能對Ba1.3Ca0.7-y-zAl0.025Si0.975O4:yEu2+,zMn2+系列熒光粉的發(fā)光顏色起到調(diào)節(jié)作用.
采用高溫固相反應合成了白光熒光粉Ba1.3Ca0.65(Al0.025Si0.975)O4:0.02Eu2+,0.03Mn2+.XRD結(jié)果表明:少量Al2+,Eu2+,Mn2+的摻雜沒有使晶體產(chǎn)生雜相,晶體結(jié)構為Ba1.3Ca0.7SiO4.熒光光譜表明:在體系中Al3+取代Si4+可能會造成局部的缺陷結(jié)構,這些缺陷結(jié)構能夠提高發(fā)光中心離子的躍遷幾率,從而增強體系的發(fā)光強度;共摻雜Eu2+-Mn2+熒光粉的激發(fā)光譜激發(fā)主峰位于277 nm左右,在220~450 nm之間均有較強吸收,發(fā)射光譜由425~550 nm的藍綠光波帶和550~650 nm的紅橙光波帶組成,其分別屬于Eu2+的5d→4f能級躍遷的特征發(fā)射和Mn2+的4T1—6A1躍遷發(fā)射.光色參數(shù)結(jié)果表明:Eu2+-Mn2+比例變化對此體系熒光粉的發(fā)光顏色能夠起到調(diào)節(jié)作用.因此,可調(diào)節(jié)的白光熒光粉Ba1.3Ca0.65(Al0.025Si0.975)O4:0.02Eu2+,0.03Mn2+在白光LED領域具有應用潛力.
[1] Marc D,Nadarajah N,Andrew B,et al.Impact of Dimming White LEDs:Chromaticity Shifts Due to Different Dimming Methods[J].Proceedings of SPIE,2005(5941):291-299.
[2] Narendran N,Deng L,Pysar R M,et al.Performance Characteristics of High-power Light-emitting Diodes[J].Proceedings of SPIE,2004(5187):267-275.
[3] 陳立松,柏朝暉,李金偉,等.白光LED用SrAl2Si2O8:Eu2+熒光粉的制備與發(fā)光性能研究[J].無機化學學報,2010,26(8):1409-1414.
[4] Zhang Q,Wang J,Zhang M,et al.Tunable Bluish Green to Yellowish Green Ca2(1-x)Sr2xAl2SiO7:Eu2+Phosphors for Potential LED Application[J].Applied Physics B,2008,92(2):195-198.
[5] Kuang J Y,Liu Y L,Zhang J X.Effects of RE3+as a Co-dopant in Blue-emitting Long-lasting Phosphors,Sr3Al10SiO20:Eu2+[J].Journal of Materials Science,2006,41(17):5500-5503.
[6] Denis G,Rocquefelte X,Deniard P,et al.Site Preference of Eu2+Dopants in the(Ba,Sr)13-xAl22-2xSi10+2xO66Phosphor and Its Effect on the Luminescence Properties:A Density Functional Investigation[J].Journal of Materials Chemistry,2009,19(48):9170-9175.
[7] Jüstel T,Nikol H,Ronda C.New Developments in the Field of Luminescent Materials for Lighting and Displays[J].Angewandte Chemie International Edition,1998,37(22):3084-3103.
[8] Xiao F,Xue Y N,Ma Y Y,et al.Ba2Ca(B3O6)2:Eu2+,Mn2+:A Potential Tunable Blue-white-red Phosphors for White Light-emitting Diodes[J].Physical B:Condensed Matter,2010,405(3):891-895.
[9] 丁振瑞,王鳳和,楊志平,等.KNaCa2(PO4)2中Eu2+的發(fā)光及Eu2+對Mn2+的能量傳遞[J].中國稀土學報,2010,28(3):266-269.
[10]徐敘瑢,蘇勉曾.發(fā)光學與發(fā)光材料[M].北京:化學工業(yè)出版社,2004:74-79.
[11]Park K,Choi N,Kim J,et al.Temperature and Excitation Power-resistant White-light Emission of the T-phase(Ba,Ca)2SiO4:Eu2+,Mn2+Phosphor[J].Solid State Communications,2010,150(7/8):329-332.
[12]Choi N S,Park K W,Park B W,et al.Eu2+-Mn2+Energy Transfer in White-light-emitting T-phase(Ba,Ca)2SiO4:Eu2+,Mn2+Phosphor[J].Journal of Luminescence,2010,130(4):560-566.
Luminescent Properties of White Light Phosphors Ba1.3Ca0.7-y-z(AlxSi1-x)O4:yEu2+,zMn2+
CHEN Lin, CHEN Yong-jie, WU Sheng-nan, YANG Ying, GENG Xiu-juan
(Shenyang University of Chemical Technology, Shenyang 110142, China)
The white light phosphor Ba1.3Ca0.7(AlxSi1-x)O4:Eu2+,Mn2+were synthesized by high-temperature solid-state reaction under the reducing atmosphere.The effect of silicon/aluminum ratio(the molar ratio)changing on crystal structure and spectral properties of the phosphors were investigated.The XRD result indicates that there is no influence on the crystal structure of sample when we change the silicon/aluminum ratio,the crystal structure is Ba1.3Ca0.7SiO4.The luminescence spectrum shows,under the UV light excitation at 277 nm,the emission spectrum of Eu2+-Mn2+co-doped phosphor covers the blue-green wave band of 420~550 nm and orange-red wave band of 550~650 nm,and the maximum emission peaks are at 454 and 593 nm,and two emitting bands can be combined into a white light.
light-emitting diode; white color phosphor; high-temperature solid-state reaction Ba1.3Ca0.7(AlxSi1-x)O4
2013-12-19
遼寧省自然科學基金項目(LS201102174)
陳琳(1988-),女,遼寧錦州人,碩士研究生在讀,國家獎學金獲得者,主要從事稀土發(fā)光材料方面的研究.
陳永杰(1963-),女,遼寧本溪人,教授,博士,主要從事稀土發(fā)光材料和精細化工方面的研究.
2095-2198(2015)04-0289-04
10.3969/j.issn.2095-2198.2015.04.001
TQ422;TQ630.6
A