孫 麗,夏日煒,殷學(xué)梅,喻禮懷,朱國強(qiáng),吳圣龍,包文斌*
(1.揚(yáng)州大學(xué)動(dòng)物科學(xué)與技術(shù)學(xué)院,江蘇省動(dòng)物遺傳繁育與分子設(shè)計(jì)重點(diǎn)實(shí)驗(yàn)室,揚(yáng)州 225009;2.揚(yáng)州大學(xué)獸醫(yī)學(xué)院,揚(yáng)州 225009)
LPS誘導(dǎo)條件下豬小腸上皮細(xì)胞TLR4及其信號(hào)通路基因表達(dá)變化分析
孫 麗1,夏日煒1,殷學(xué)梅1,喻禮懷1,朱國強(qiáng)2,吳圣龍1,包文斌1*
(1.揚(yáng)州大學(xué)動(dòng)物科學(xué)與技術(shù)學(xué)院,江蘇省動(dòng)物遺傳繁育與分子設(shè)計(jì)重點(diǎn)實(shí)驗(yàn)室,揚(yáng)州 225009;2.揚(yáng)州大學(xué)獸醫(yī)學(xué)院,揚(yáng)州 225009)
本試驗(yàn)通過0.1和1 μg·mL-1濃度的LPS誘導(dǎo)處理豬小腸上皮細(xì)胞(IPEC-J2),分別在2、4、6 h時(shí)利用實(shí)時(shí)熒光定量PCR方法檢測(cè)TLR4及其信號(hào)通路相關(guān)基因(CD14、MyD88、TNF-α、IL-1β和IFN-α)mRNA水平相對(duì)表達(dá)量,初步探討豬小腸上皮細(xì)胞受到產(chǎn)腸毒素大腸桿菌侵?jǐn)_發(fā)生炎癥反應(yīng)的相關(guān)分子反應(yīng)機(jī)理。結(jié)果發(fā)現(xiàn),兩種濃度的LPS均使得所檢測(cè)的TLR4及其信號(hào)通路相關(guān)基因表達(dá)量上調(diào),誘導(dǎo)后4~6 h的表達(dá)量急速上升,且高濃度的LPS誘導(dǎo)處理后各基因表達(dá)量上調(diào)倍數(shù)明顯高于低濃度LPS誘導(dǎo)時(shí)各基因表達(dá)量上調(diào)倍數(shù),高濃度的LPS對(duì)機(jī)體腸道的刺激引起了更為強(qiáng)烈的免疫反應(yīng),使正常機(jī)體更快地產(chǎn)生炎癥反應(yīng)。由此推測(cè),大腸桿菌侵染豬腸道后將釋放LPS,TLR4作為LPS的受體,受LPS誘導(dǎo)其表達(dá)量上調(diào),進(jìn)而引起TLR4信號(hào)途徑的信號(hào)傳遞,傳遞過程中由于MyD88的依賴機(jī)制,MyD88表達(dá)量上調(diào)相對(duì)穩(wěn)定,再經(jīng)過級(jí)聯(lián)免疫放大效應(yīng),大量的促炎細(xì)胞因子釋放,導(dǎo)致炎癥及腹瀉水腫病的產(chǎn)生。
豬;TLR4基因;信號(hào)通路;細(xì)胞因子
Toll樣受體基因家族(Toll like receptors,TLRs)均屬于I型跨膜蛋白受體,在機(jī)體組織細(xì)胞如胃腸道和呼吸道等組織中廣泛分布,在機(jī)體防御病原體感染中發(fā)揮重要作用。在TLRs龐大家族中,TLR4是LPS識(shí)別的主要受體[1]。LPS對(duì)哺乳動(dòng)物細(xì)胞的刺激除了TLR4參與外,需要多種蛋白的協(xié)同參與,如LPS結(jié)合蛋白(LPS binding protein,LBP)、白細(xì)胞分化抗原14(Cluster of differentiation antigen 14,CD14)、髓樣分化蛋白-2(Myeloid differentiation protein 2,MD-2)等。其中,CD14是LPS的高親和受體,存在LPS特異識(shí)別位點(diǎn),LPS在LBP的促進(jìn)作用下結(jié)合到CD14,從而CD14將其傳遞給TLR4受體復(fù)合物[2-3]。
目前發(fā)現(xiàn),TLRs信號(hào)途徑的接頭蛋白有3種,分別為髓樣分化因子(Myeloid differentiaion factor 88,MyD88)、TIR功能區(qū)的接頭蛋白(TIR domain-containing adaptor protein,TIRAP或MyD88-adaptor-like,Mal)和β干擾素TIR結(jié)構(gòu)域銜接蛋白(TIR domain-containing adaptor inducing IFN-β,TRIF)。經(jīng)過MyD88轉(zhuǎn)導(dǎo)的信號(hào)途徑稱MyD88依賴途徑(MyD88-dependent pathway),其他則稱作MyD88非依賴途徑(MyD88-independent pathway)[4-5],其分別經(jīng)過一系列信號(hào)轉(zhuǎn)導(dǎo)鏈,最后活化核轉(zhuǎn)錄因子(Nuclear factor κb,NF-κB)[6],活化的NF-κB將信號(hào)迅速傳至核內(nèi),增強(qiáng)TNF-α和IL-1β的基因轉(zhuǎn)錄,進(jìn)一步激活核轉(zhuǎn)錄因子,使IL-6、IL-8等促炎性細(xì)胞因子和I型干擾素(IFN-α,IFN-β)的分泌釋放增多,導(dǎo)致最初的炎癥信號(hào)進(jìn)一步放大,調(diào)控相關(guān)細(xì)胞因子表達(dá),激活中性粒細(xì)胞、淋巴細(xì)胞、巨噬細(xì)胞,產(chǎn)生細(xì)胞因子級(jí)聯(lián)放大效應(yīng),誘發(fā)炎癥反應(yīng)[7-8]。
產(chǎn)腸毒素大腸桿菌(EnterotoxigenicEscherichiacoli,ETEC)屬于革蘭陰性菌,可以引起斷奶仔豬腹瀉(Post-weaning diarrhea,PWD)和水腫病(Edema disease,ED)。ETEC首先黏附到小腸上皮細(xì)胞(Intestinal epithelial cell,IEC)并定居于特定腸段,大量繁殖后產(chǎn)生并釋放的腸毒素(Enterotoxin)和內(nèi)毒素(Lipopolysaccharide,LPS)發(fā)揮病理效應(yīng)[9]。本試驗(yàn)基于TLR4信號(hào)通路傳遞模式及其重要的生理功能,利用LPS誘導(dǎo)處理豬腸上皮細(xì)胞系(IPEC-J2),檢測(cè)TLR4及其信號(hào)通路相關(guān)基因(CD14、MyD88、TNF-α、IL-1β、IFN-α)mRNA水平相對(duì)表達(dá)量,分析LPS誘導(dǎo)條件下TLR4及其信號(hào)通路基因的表達(dá)變化規(guī)律,探討豬腸上皮細(xì)胞受到產(chǎn)腸毒素大腸桿菌侵染發(fā)生炎癥反應(yīng)的相關(guān)分子機(jī)理,為今后利用調(diào)控TLR4及其信號(hào)通路的表達(dá)水平來提升仔豬抗大腸桿菌侵染能力提供理論依據(jù)。
1.1 細(xì)胞培養(yǎng)及LPS處理
完全培養(yǎng)液(DMEM培養(yǎng)基與F12培養(yǎng)基1∶1混合,含10%胎牛血清;DMEM培養(yǎng)基、F12培養(yǎng)基和胎牛血清均購自Gibco BRL,Life Technologies,Grand island,NY,USA)培養(yǎng)豬小腸上皮細(xì)胞系IPEC-J2(由美國賓夕法尼亞大學(xué)惠贈(zèng)),長至80%~90%匯合時(shí),用不同濃度(0.1和 1 μg·mL-1)的LPS(Sigma-aldrich,St.Louis,MO,USA)進(jìn)行誘導(dǎo),陰性對(duì)照組只加用于配置誘導(dǎo)液的細(xì)胞培養(yǎng)液,每組有3個(gè)平行樣。分別在誘導(dǎo)后的2、4、6 h提取細(xì)胞RNA。陰性對(duì)照組在培養(yǎng)后的6 h提取細(xì)胞總RNA。
1.2 反轉(zhuǎn)錄及Real-time PCR
按照反轉(zhuǎn)錄試劑盒(PrimeScript RT Master Mix Perfect Real Time,TaKaRa,大連,中國)操作程序進(jìn)行反轉(zhuǎn)錄,cDNA合成:每10 μL的反應(yīng)體系中含5×PrimerScript RT Enzyme Mix 2 μL,總RNA不超過500 ng,RNase-free ddH2O補(bǔ)足至10 μL。反應(yīng)條件為37 ℃ 15 min,85 ℃ 5 s,4 ℃保存。
以cDNA為模板,對(duì)基因(TLR4、CD14、MyD88、TNF-α、IL-1β、IFN-α)表達(dá)量進(jìn)行檢測(cè)分析,各基因檢測(cè)引物見表1,由生工生物工程有限公司(上海,中國)合成。使用實(shí)時(shí)熒光定量PCR試劑盒(PrimeScriptTMRT Master Mix Perfect Real Time,TaKaRa,大連,中國),反應(yīng)體系:10 μL SYBR Premix ExTapTMII(2×),0.4 μL PCR Forward Primer(10 μmol·L-1),0.4 μL PCR Reverse Primer(10 μmol·L-1),0.4 μL ROX Reference Dye II(50×),2 μL cDNA,ddH2O補(bǔ)至20 μL。ABI 7500 系統(tǒng)進(jìn)行實(shí)時(shí)熒光定量反應(yīng)的檢測(cè)。Real-time PCR擴(kuò)增程序:95 ℃預(yù)變性30 s;95 ℃變性5 s,60 ℃退火34 s,40個(gè)循環(huán);為分析擴(kuò)增產(chǎn)物的特異性,PCR擴(kuò)增結(jié)束后采集多個(gè)信息點(diǎn)進(jìn)行熔解曲線分析,程序:95 ℃ 15 s,60 ℃ 1 min;95 ℃ 15 s,60 ℃ 15 s。
表1 各基因熒光定量引物
1.3 數(shù)據(jù)處理與統(tǒng)計(jì)分析
基因相對(duì)定量的結(jié)果采用2-ΔΔCt法進(jìn)行計(jì)算,用內(nèi)參基因GAPDH對(duì)各基因表達(dá)水平進(jìn)行均一化,2-ΔΔCt法計(jì)算公式:ΔCt=目的基因Ct值-內(nèi)參基因Ct值,ΔΔCt =試驗(yàn)組ΔCt值-參照組ΔCt值[10]。利用 SPSS 16.0 軟件的一般線性模型(General Linear Model,GLM)對(duì)各不同處理時(shí)間的細(xì)胞基因表達(dá)差異情況進(jìn)行比較分析。
2.1 LPS誘導(dǎo)IPEC-J2后不同時(shí)間的TLR4信號(hào)通路基因表達(dá)量差異
設(shè)每個(gè)基因陰性對(duì)照的表達(dá)量為1,對(duì)TLR4信號(hào)通路基因的熒光定量結(jié)果進(jìn)行統(tǒng)計(jì),在0.1 μg·mL-1的LPS誘導(dǎo)后各個(gè)基因表達(dá)量呈階梯狀增長,如圖1。在LPS誘導(dǎo)后的2 h,各基因表達(dá)量都有所升高,但差異均不顯著。誘導(dǎo)后的4 h,除IFN-α外,其余基因表達(dá)量都顯著或極顯著高于陰性對(duì)照組,其中TLR4和IL-1β的表達(dá)量極顯著高于誘導(dǎo)后2 h的表達(dá)量(P<0.01)。誘導(dǎo)6 h后,除TLR4基因,其余基因的表達(dá)量都極顯著高于陰性對(duì)照和誘導(dǎo)后2、4 h的表達(dá)量(P<0.01)。
1.0 μg·mL-1的LPS刺激小腸上皮細(xì)胞后各基因的表達(dá)量在4~6 h急速上升。TLR4和IFN-α的表達(dá)量在誘導(dǎo)后的4 h極顯著高于陰性對(duì)照組和誘導(dǎo)后2 h試驗(yàn)組(P<0.01)。在LPS誘導(dǎo)后的6 h,所測(cè)通路基因的表達(dá)量都與其他組差異極顯著(P<0.01)。同時(shí)與0.1 μg·mL-1的LPS相比,所有通路基因的表達(dá)水平都大幅度上升(圖2)。
2.2 LPS誘導(dǎo)IPEC-J2后TLR4信號(hào)通路不同基因表達(dá)量升高倍數(shù)的差異
由圖3可知,在0.1 μg·mL-1的LPS誘導(dǎo)后的2 h,TLR4的表達(dá)量上調(diào)倍數(shù)最高;誘導(dǎo)后4 h,TNF-α上調(diào)倍數(shù)最高,其次為IL-1β,均極顯著高于CD14、TLR4、MyD88和IFN-α(P<0.01);在誘導(dǎo)后的6 h,IL-1β的表達(dá)量上調(diào)倍數(shù)最高,其次為TNF-α,且同樣均極顯著高于CD14、TLR4、MyD88(P<0.01),顯著高于IFN-α(P<0.05);IFN-α上調(diào)倍數(shù)顯著增加,極顯著高于MyD88(P<0.01),顯著高于TLR4(P<0.05)。
NC.陰性對(duì)照。*.P<0.05;**.P<0.01。下圖同NC.Represents negative control.*.P<0.05;**.P<0.01.The same as below圖1 0.1 μg·mL-1 LPS誘導(dǎo)IPEC-J2后TLR4信號(hào)通路基因的表達(dá)量Fig.1 Genes expression of TLR4 pathway in IPEC-J2 induced by 0.1 μg·mL-1 LPS
圖2 1.0 μg·mL-1 LPS誘導(dǎo)IPEC-J2后TLR4信號(hào)通路基因的表達(dá)量Fig.2 Genes expression of TLR4 pathway in IPEC-J2 induced by 1.0 μg·mL-1 LPS
圖3 0.1 μg·mL-1 LPS誘導(dǎo)后TLR4信號(hào)通路基因的表達(dá)量比較Fig.3 The comparison of expression among the genes of TLR4 pathway induced by 0.1 μg·mL-1 LPS
由圖4可知,在1.0 μg·mL-1LPS誘導(dǎo)后的2 h,TNF-α的表達(dá)量上調(diào)倍數(shù)最高;在誘導(dǎo)后的4 h,IFN-α的表達(dá)量上調(diào)倍數(shù)最高,其次為TNF-α,均極顯著高于CD14、TLR4、MyD88和IL-1β(P<0.01);IL-1β的表達(dá)量上調(diào)倍數(shù)顯著高于CD14(P<0.05),且極顯著高于MyD88(P<0.01);在誘導(dǎo)后的6 h,IFN-α的表達(dá)量上調(diào)倍數(shù)仍保持最高,其次為IL-1β,極顯著高于CD14、TLR4、MyD88和TNF-α;IL-1β的表達(dá)量上調(diào)倍數(shù)急劇增加,其次為TNF-α(P<0.05),且極顯著高于CD14、TLR4和MyD88(P<0.01),TNF-α的表達(dá)量上調(diào)倍數(shù)極顯著高于CD14、TLR4和MyD88上調(diào)趨勢(shì)依次從高到低。
圖4 1.0 μg·mL-1 LPS誘導(dǎo)后TLR4信號(hào)通路基因的表達(dá)量比較Fig.4 The comparison of expression among the genes of TLR4 pathway induced by 1.0 μg·mL-1 LPS
TLR4是天然免疫系統(tǒng)中的跨膜受體,可非特異性與病原相關(guān)分子結(jié)合,接受LPS等多種炎癥信號(hào)啟動(dòng)機(jī)體炎癥反應(yīng)。MyD88是TLR4信號(hào)通路中的一個(gè)關(guān)鍵接頭分子,與NF-κB構(gòu)成炎癥反應(yīng)通路,TLR4通路在傳遞炎癥信號(hào)和增強(qiáng)炎癥強(qiáng)度,引發(fā)腸道炎癥介質(zhì)的釋放中具有重要的作用[11]。小腸上皮細(xì)胞是豬抵抗腸道致病菌的第一道防線,是與革蘭陰性菌的LPS直接作用的細(xì)胞,它的病變將會(huì)導(dǎo)致仔豬的腹瀉和水腫等癥狀的出現(xiàn)。本試驗(yàn)用LPS體外誘導(dǎo)IPEC-J2,結(jié)果TLR4信號(hào)通路的基因及其效應(yīng)因子的表達(dá)量都隨誘導(dǎo)時(shí)間的推移而顯著上調(diào),而且在誘導(dǎo)后的6 h都與陰性對(duì)照呈極顯著差異(P<0.01)。這與相關(guān)研究結(jié)果類似,LPS的刺激會(huì)引起豬小腸上皮細(xì)胞內(nèi)細(xì)胞因子的表達(dá)上調(diào)[12],LPS免疫應(yīng)激可以上調(diào)母兔TLR4、IL-1β和IL-6在下丘腦中以及IL-1β和IL-6在卵巢、輸卵管中的表達(dá)量[13],M.Moue等的研究也表明,LPS誘導(dǎo)后腸上皮細(xì)胞內(nèi)TLR4的表達(dá)量顯著上調(diào)[14]。相關(guān)研究均說明了TLR4的基因上調(diào)是促使炎癥產(chǎn)生的關(guān)鍵。本研究用豬小腸上皮細(xì)胞系(IPEC-J2)來研究LPS與宿主的相互作用,可以在細(xì)胞水平探討TLR4信號(hào)通路對(duì)于仔豬大腸桿菌疾病的抗性調(diào)控機(jī)制,進(jìn)一步證明,TLR4免疫通路受LPS誘導(dǎo)激活,并在長時(shí)間作用下使此免疫通路信號(hào)不斷增強(qiáng),提示在豬體內(nèi)TLR4及其信號(hào)通路參與了LPS感染并引起癥狀的過程。
細(xì)胞因子是由免疫原、絲裂原或其他因子刺激細(xì)胞所產(chǎn)生的低分子量可溶性蛋白質(zhì),為生物信息分子,具有調(diào)節(jié)固有免疫和適應(yīng)性免疫應(yīng)答,促進(jìn)造血,以及刺激細(xì)胞活化、增殖和分化等功能[15]。TNF-α是炎癥反應(yīng)過程中出現(xiàn)最早、最重要的炎性介質(zhì),使血管內(nèi)皮細(xì)胞通透性增加,調(diào)節(jié)其他組織代謝活性并促使其他細(xì)胞因子的合成和釋放,誘導(dǎo)MHCⅡ類抗原在結(jié)腸上皮中的表達(dá)[16]。同時(shí),TNF-α還可誘導(dǎo)結(jié)腸上皮細(xì)胞凋亡,促進(jìn)潰瘍性結(jié)腸炎(Ulcerative colitis,UC)的發(fā)生。IL-1β可以增強(qiáng)細(xì)胞免疫和體液免疫介導(dǎo)的組織損傷過程,趨化中性粒細(xì)胞等炎性細(xì)胞進(jìn)入腸道病變部位,引起一系列腸道炎癥反應(yīng)和組織破壞。丁偉群等發(fā)現(xiàn)IL-1β在潰瘍性結(jié)腸炎患者受累腸黏膜上顯著升高,未受累黏膜IL-1β也明顯高于正常組,說明IL-1β確實(shí)參與UC的發(fā)生發(fā)展過程[17]。IFN-α可促進(jìn)大多數(shù)細(xì)胞MHCI類抗原的表達(dá),活化NK細(xì)胞和細(xì)胞毒性T淋巴細(xì)胞,引起機(jī)體的免疫反應(yīng),起到抗病毒作用,來維持機(jī)體正常水平[18]。本研究結(jié)果顯示,LPS誘導(dǎo)后的4 h開始,細(xì)胞免疫因子TNF-α、IL-1β和IFN-α的mRNA表達(dá)量上調(diào)的倍數(shù)都顯著或極顯著高于其他基因??梢?,LPS先是誘導(dǎo)膜蛋白CD14和TLR4的mRNA表達(dá),再通過依賴MyD88或非依賴MyD88的信號(hào)途徑傳遞,最終導(dǎo)致細(xì)胞因子的mRNA成放大倍數(shù)的增長,這也很好的體現(xiàn)了細(xì)胞免疫的級(jí)聯(lián)放大機(jī)制。推測(cè)機(jī)體內(nèi)的免疫效應(yīng)就是通過此級(jí)聯(lián)瀑布效應(yīng)來應(yīng)激LPS所介導(dǎo)腸道內(nèi)致病性細(xì)菌的附著和侵染,進(jìn)而導(dǎo)致腸道內(nèi)炎癥的產(chǎn)生及仔豬的腹瀉和水腫等癥狀的出現(xiàn)。用兩種濃度的LPS來誘導(dǎo)IPEC-J2,1.0 μg·mL-1濃度的LPS刺激后使TLR4信號(hào)通路各基因mRNA的表達(dá)量明顯高于0.1 μg·mL-1濃度LPS誘導(dǎo)時(shí)各基因mRNA的表達(dá)量。由此推測(cè),相對(duì)較高濃度的LPS對(duì)機(jī)體腸部的刺激會(huì)帶來更強(qiáng)烈的免疫反應(yīng),使正常機(jī)體更快速的產(chǎn)生炎癥反應(yīng),以致仔豬嚴(yán)重的腹瀉和水腫。M.Moue等的研究表明,0.25 μg·mL-1的LPS會(huì)引起腸上皮細(xì)胞TLR4 mRNA的表達(dá)顯著上調(diào)(P<0.05),而0.025或5 μg·mL-1濃度的LPS均未引起TLR4 mRNA的顯著上調(diào)[14]。本試驗(yàn)所選擇LPS濃度恰好在這兩者之間,所得試驗(yàn)結(jié)果與其相互補(bǔ)充。另外,無論是0.1 μg·mL-1或是1.0 μg·mL-1濃度的LPS來誘導(dǎo)小腸上皮細(xì)胞,MyD88基因表達(dá)的增長倍數(shù)都為最低,這可能與此通路對(duì)MyD88的依賴性有關(guān),MyD88 mRNA水平的表達(dá)量表現(xiàn)為相對(duì)穩(wěn)定,以此來確保機(jī)體的代謝穩(wěn)定。
已有研究表明,TLR4基因的表達(dá)水平往往與各種炎癥反應(yīng)相關(guān),H.Hammad等發(fā)現(xiàn),吸入屋塵螨提取物后,呼吸道上皮細(xì)胞表達(dá)的TLR4 能夠活化樹突狀細(xì)胞導(dǎo)致過敏性炎癥[19];E.Cario研究發(fā)現(xiàn)腸炎病人TLR4表達(dá)上調(diào)[20]。本課題組前期研究表明,TLR4基因表達(dá)水平的下調(diào)可以提高斷奶仔豬對(duì)于F18大腸桿菌的抗性[21];本試驗(yàn)結(jié)果進(jìn)一步證實(shí)了TLR4及其信號(hào)通路基因表達(dá)水平對(duì)于豬大腸桿菌抗性存在調(diào)控作用,提示,下一步在繼續(xù)深入研究TLR4信號(hào)通路對(duì)于豬大腸桿菌抗性調(diào)控機(jī)理的基礎(chǔ)上,可以考慮利用RNAi等手段,系統(tǒng)研究下調(diào)和干擾TLR4及其信號(hào)通路的表達(dá)是否可以提升仔豬對(duì)于大腸桿菌侵染能力,為豬大腸桿菌病的抗病育種工作提供新的方法和策略。
[1] POLTORAK A,HE X,SMIRNOVA I,et al.Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene[J].Science,1998,282(5396):2085-2088.
[2] GIOANNINI T L,WEISS J P.Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells[J].ImmunolRes,2007,39(1):249-260.[3] MIYAKE K.Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors[J].SeminImmunol,2007,19(1):3-10.
[4] TAKEDA K,KAISHO T,AKIRA S.Toll-like receptors[J].AnnuRevImmunol,2003,21:335-376.
[5] AKIRA S,TAKEDA K.Toll-like receptor signalling[J].NatRevImmunol,2004,4(7):499-511.
[6] PANDEY S,AGRAWAL D K.Immunobiology of Toll-like receptors:emerging trends[J].ImmunolCellBiol,2006,84(4):333-341.
[7] HAWIGER J.Innate Immunity and Inflammation:a transcriptional paradigm[J].ImmunolRes,2001,23(2-3):99-109.
[8] CHOI C,KWON D,MIN K,et al.In-situ hybridization for the detection of inflammatory cytokines (IL-1,TNF-a and IL-6) in pigs naturally infected with Actinobacillus pleuropneumoniae[J].JCompPathol,1999,121(4):349-356.
[9] IMBERECHTS H,DE GREVE H,SCHLICKER C,et al.Characterization of F107 fimbriae ofEscherichiacoli107/86,which cause edema disease in pigs and nucleotide sequence of F107 major fimbrial subunit gene,fedA[J].InfectImmun,1992,60(5):1963-1971.[10] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J].Methods,2001,25(4):402-408.
[11] MOSES T,WAGNER L,F(xiàn)LEMING S D.TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage[J].JLeukocBiol,2009,86(4):971-980.
[12] 蔡景義,周安國,田 剛,等.氧化鋅對(duì)LPS處理豬腸上皮細(xì)胞炎性細(xì)胞因子分泌及基因表達(dá)的影響[J].中國畜牧雜志,2011,47(23):47-50. CAI J Y,ZHOU A G,TIAN G,et al.Effect of ZnO on the secretion of inflammatory cytokines and the expression of genes in lipopolysaccharide-induced pig enterocyte[J].ChineseJournalofAnimalScience,2011,47(23):47-50.(in Chinese)
[13] 何自標(biāo),蘭瑞霞,陳 晨,等.脂多糖對(duì)母兔下丘腦、卵巢、輸卵管中TLR4及其相關(guān)細(xì)胞因子表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(6):910-917. HE Z B,LAN R X,CHEN C,et al.Effect of LPS on the expression of TLR4 and related cytokines in oviduct,ovary and hypothalamus of rabbits[J].ActaVeterinariaetZootechnicaSinica,2014,45(6):910-917.(in Chinese)
[14] MOUE M,TOHNO M,SHIMAZU T,et al.Toll-like receptor 4 and cytokine expression involved in functional immune response in an originally established porcine intestinal epitheliocyte cell line[J].BiochimBiophysActa,2008,1780(2):134-144.
[15] HIBI T,INOUE N,OGATA H,et al.Introduction and overview:recentadvances in the immunotherapy of inflammatory bowel disease[J].JGastroenterol,2003,38(Suppl 15):36-42.
[16] SZLOSAREK P W,BALKWILL F R.Tumour necrosis factor alpha:a potential target for the therapy of solid tumours[J].LancetOncol,2003,4(9):565-573.
[17] 丁偉群,林庚金,徐三榮,等.潰瘍性結(jié)腸炎發(fā)病中白介素水平的變化[J].復(fù)旦學(xué)報(bào),2001,28(4):330-333. DING W Q,LIN G J,XU S R,et al.Changes of interleukin level in ulcerative colitis patients[J].JournalofFudanUniversity,2001,28(4):330-333.(in Chinese)[18] SCHLOTTMANN K,WACHS F P,GROSSMANN J,et al.Interferon gamma down regulates IL8 production in primary human colon icepithelial cells without induction of apoptosis[J].IntJColorectalDis,2004,19:421-429.
[19] HAMMAD H,CHIEPPA M,PERROS F,et al.House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells[J].NatMed,2009,15(4):410-416.
[20] CARIO E,PODOLSKY D K.Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease[J].InfectImmun,2000,68(12):7010-7017.
[21] 包文斌,潘章源,朱 璟,等.豬TLR4基因在F18大腸菌抗性型和敏感型資源群體間的差異表達(dá)分析[J].畜牧獸醫(yī)學(xué)報(bào),2011,42(2):278-283. BAO W B,PAN Z Y,ZHU J,et al.Differentiation of porcine TLR4 gene mRNA expression between resistant and sensitive resource populations to ETEC F18[J].ActaVeterinariaetZootechnicaSinica,2011,42(2):278-283.(in Chinese)
(編輯 郭云雁)
本刊相關(guān)報(bào)道(以下文章由本刊網(wǎng)站www.xmsyxb.com可以免費(fèi)下載查閱):
1.黃志堅(jiān),羅 剛,陳騰騰,等.牡蠣粗多糖對(duì)脂多糖刺激仔豬NF-κB信號(hào)通路相關(guān)基因轉(zhuǎn)錄的影響[J].畜牧獸醫(yī)學(xué)報(bào),2015,46(6):1037-1046. HUANG Z J,LUO G,CHEN T T,et al.Explore mechanism of oyster crude polysaccharide alleviated immune stress on weanling piglets[J].ActaVeterinariaetZootechnicaSinica,2015,46(6):1037-1046.(in Chinese)
2.余長松,賈 剛,鄧秋紅,等.胰高血糖素樣肽-2對(duì)脂多糖應(yīng)激的IPEC-J2細(xì)胞形態(tài)和緊密連接相關(guān)基因表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2015,46(4):592-599. YU C S,JIA G,DENG Q H,et al.The effects of GLP-2 on cell morphology and the gene expression of tight junction in LPS stressed IPEC-J2 cells[J].ActaVeterinariaetZootechnicaSinica,2015,46(4):592-599.(in Chinese)
3.何自標(biāo),蘭瑞霞,陳 晨,等.脂多糖對(duì)母兔下丘腦、卵巢、輸卵管中TLR4及其相關(guān)細(xì)胞因子表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(6):910-917. HE Z B,LAN R X,CHEN C,et al.Effect of LPS on the expression of TLR4 and related cytokines in oviduct,ovary and hypothalamus of rabbits[J].ActaVeterinariaetZootechnicaSinica,2014,45(6):910-917.(in Chinese)
4.羅 剛,黃志堅(jiān),陳騰騰,等.牡蠣粗多糖對(duì)免疫應(yīng)激仔豬炎性細(xì)胞因子和PPARγ mRNA轉(zhuǎn)錄水平的影響[J].畜牧獸醫(yī)學(xué)報(bào),2014,45(3):483-488. LUO G,HUANG Z J,CHEN T T,et al.Effects of oyster crude polysaccharides on inflammatory cytokine andPPARγ mRNA transcription of weanling piglets after immunological stress[J].ActaVeterinariaetZootechnicaSinica,2014,45(3):483-488.(in Chinese)
Analysis of Differential Expression ofTLR4 and TLR4 Signaling Pathway Genes under Lipopolysaccharide-induced Pig Intestinal Epithelial Cells
SUN Li1,XIA Ri-wei1,YIN Xue-mei1,YU Li-huai1,ZHU Guo-qiang2,WU Sheng-long1,BAO Wen-bin1*
(1.KeyLaboratoryforAnimalGenetics,Breeding,ReproductionandMolecularDesignofJiangsuProvince,CollegeofAnimalScienceandTechnology,YangzhouUniversity,Yangzhou225009,China;2.CollegeofVeterinaryMedicine,YangzhouUniversity,Yangzhou225009,China)
In this study,we exposed pig intestinal epithelial cells (IPEC-J2) to 0.1 and 1 μg·mL-1LPS for 2,4 and 6 h,respectively.Then,we estimated the relative mRNA expression ofTLR4 and TLR4 signaling pathway-related genes (CD14,MyD88,TNF-α,IL-1β,IFNα) using qPCR,which preliminary revealed the mechanism of the molecules related to inflammatory reactions in pig intestinal epithelial cells induced by enterotoxigenicEscherichiacoli.Both concentrations of LPS upregulated the expression ofTLR4 and its signaling pathway-related genes,and the expression level of all genes sharply increased from 4 to 6 h.The fold change of mRNA expression induced by 1.0 μg·mL-1LPS was significantly higher than that induced by 0.1 μg·mL-1LPS.The former stimulated the intestinal tract to produce stronger immune responses and more rapid development of inflammatory reactions.Above results suggested that LPS was released in the pig intestinal tract withE.coliinfection,and upregulated the LPS receptor TLR4,leading to activation of the TLR4 signaling pathway.Given the dependency on myeloid differentiation factor 88 (MyD88) during signaling,stable upregulation ofMyD88 and the cytokine cascade results in the release of large amounts of proinflammatory cytokines,causing inflammatory reactions,diarrhea and edema disease.
swine;TLR4 gene;signaling pathway;cytokines
10.11843/j.issn.0366-6964.2015.07.003
2014-09-28
國家自然科學(xué)基金(31372285;31172183);江蘇省高校自然科學(xué)研究重大項(xiàng)目(14KJA230003);轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2014ZX08006-001B);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)
孫 麗(1992-),女,江蘇如皋人,碩士生,主要從事豬遺傳育種研究,E-mail:sl19920327@163.com
*通信作者:包文斌,博士,研究員,主要從事豬抗病育種研究,E-mail:wbbao@yzu.edu.cn
S828.2
A
0366-6964(2015)07-1095-07