劉 普, 胡家勇, 何 蓉, 朱立武
(安徽農(nóng)業(yè)大學(xué) 園藝學(xué)院果樹學(xué)重點(diǎn)實(shí)驗(yàn)室, 合肥 230036)
獼猴桃潰瘍病菌漆酶基因的克隆與功能分析
劉 普, 胡家勇, 何 蓉, 朱立武
(安徽農(nóng)業(yè)大學(xué) 園藝學(xué)院果樹學(xué)重點(diǎn)實(shí)驗(yàn)室, 合肥 230036)
為探明獼猴桃潰瘍病病菌漆酶基因的序列特征與功能,研究從12株潰瘍病病菌丁香假單孢桿菌獼猴桃致病變種(Pseudomonassyringaepv.actinidae)中擴(kuò)增獲得漆酶基因,分別命名為PsalacJF、PsalacHY、PsalacGC、PsalacHWD、PsalacINS、Psalac7285、PsalacLT12、PsalacLT16、PsalacLT26、Psalac349、PsalacKw30和PsalacK3。序列分析結(jié)果顯示上述序列之間只有少許核酸位點(diǎn)有差異,基因編碼全長都為1374 bp,BLAST預(yù)測基因編碼有457個氨基酸序列(包括N-端20個氨基酸的信號肽),啟動子位于基因上游175 bp。生物信息學(xué)分析發(fā)現(xiàn)該基因具有漆酶特有的4個Cu2+活性位點(diǎn),且活性位點(diǎn)高度保守。系統(tǒng)進(jìn)化分析結(jié)果顯示該基因編碼序列與多種細(xì)菌的漆酶基因同源關(guān)系很近,其中與P.fluorescensPf0-1的同源性最高。研究結(jié)果表明潰瘍病病菌中普遍含有具備細(xì)菌漆酶基因家族的序列特性,推測該基因可能參與調(diào)控潰瘍病病菌致病性和Cu2+耐受性。
獼猴桃;潰瘍?。黄崦?/p>
獼猴桃潰瘍病是一種毀滅性病害,由丁香假單孢桿菌獼猴桃致病變種(Pseudomonassyringaepv.actinidae, Psa)引起,主要危害獼猴桃的主干、枝干和葉片。在枝干上表現(xiàn)為病部溢出大量初為乳白色、后變紅褐色的粘液,隨后上部枝條萎蔫死亡。在葉片上則表現(xiàn)為產(chǎn)生中間為褐色、邊緣為黃色暈圈的近圓形病斑[1]。
近年研究發(fā)現(xiàn),世界獼猴桃Psa存在4種不同的致病基因型(Genotype),即Psa-J(含有編碼菜豆毒素基因簇),Psa-K(含有編碼冠菌素基因簇),Psa-V(缺乏編碼菜豆毒素和冠菌素基因簇)和Psa-LV(缺少部分effector基因簇)[2-3],不同基因型菌株存在著明顯的致病差異。其中,Psa-LV致病力較弱,僅在葉片上形成病斑;而Psa-V致病力最強(qiáng),危害也最為嚴(yán)重[2,4]。
漆酶(Laccase, EC 1.10.3.2)是一種含銅的多酚氧化酶,能有效地降解木質(zhì)素物質(zhì),與植物病原菌的致病性和色素形成密切相關(guān)。漆酶按照來源可以分為植物漆酶、真菌漆酶和細(xì)菌漆酶。銅制劑是獼猴桃潰瘍病生產(chǎn)中比較常用的一類藥劑,如硫酸銅。1988年,丁香假單胞菌番茄致病變種中分離獲得一種漆酶的類似物CopA,它表現(xiàn)出Cu2+抗性[5]。CopA和CopB是丁香假單孢桿菌獼猴桃致病種常見的兩個耐銅基因。由于銅制劑的長期使用,最近在有些病菌中發(fā)現(xiàn)攜帶有新型的耐銅基因CopR和CopS的丁香假單孢桿菌獼猴桃致病[6-8]。
酚類物質(zhì)(phenolic compounds)是植物體內(nèi)一類具有防御功能的次生代謝物質(zhì),主要由類黃酮、酚酸和單寧等組成[9],它們廣泛參與植物生長、發(fā)育和防御等生理過程,尤其在抵御病菌侵染方面具有關(guān)鍵作用[10-11]。植物在同病菌相互作用的過程中,會產(chǎn)生大量的酚類物質(zhì),調(diào)節(jié)植物抗病能力,保護(hù)自身免受傷害[12-15]。獼猴桃植物組織中,含有豐富的沒食子酸、酒石酸、綠原酸、槲皮素和p-對香豆酸等酚類物質(zhì)[16-18];在Psa侵染過程中,獼猴桃葉片中與酚類物質(zhì)代謝相關(guān)的蛋白種類、含量變化明顯[19]。由此可見,漆酶可能在病菌銅離子耐受(抗銅)、獼猴桃酚類物質(zhì)脫毒等方面起到關(guān)鍵作用。為此,本研究擬根據(jù)丁香假單孢桿菌獼猴桃致病種基因組序列設(shè)計引物克隆漆酶基因的全長,通過生物信息學(xué)的方法分析不同基因間的關(guān)系,預(yù)測基因功能,為進(jìn)一步分析潰瘍病菌漆酶基因的功能提供理論基礎(chǔ)。
1.1 試驗(yàn)材料
獼猴桃潰瘍病病菌丁香假單孢桿菌獼猴桃致病變種(Pseudomonassyringaepv.actinidae)由課題組從中國和意大利、日本、韓國等國家共分離或收集(表1),其中Kw30為Psa-J,K3為Psa-K,其他均為Psa-V。
表1試驗(yàn)采用的潰瘍病菌株
1.2 實(shí)驗(yàn)方法
1.2.1 獼猴桃潰瘍病病菌漆酶基因全長克隆
根據(jù)丁香假單孢桿菌獼猴桃致病變種基因組序列設(shè)計,Cu3F CTTTTACCTGCCTCTTTTTCCG,Cu3R TGCCTCCCATTTTCGTTTCCTG。以獼猴桃潰瘍病病菌基因組DNA為模板,擴(kuò)增體系反應(yīng)條件為:95℃預(yù)變性5 min;94℃ 1 min,61℃ 2 min,72℃ 2 min,32個循環(huán);72℃ 10 min;4℃ 保溫。取6 μL PCR擴(kuò)增產(chǎn)物,經(jīng)1.2%瓊脂糖凝膠,1.5~2 V/cm 電泳檢測,照相。回收目的條帶并克隆測序。利用BLAST軟件將測序結(jié)果與GenBank中的已知基因進(jìn)行同源性分析。
1.2.2 獼猴桃潰瘍病菌漆酶基因結(jié)構(gòu)與功能預(yù)測
利用BLAST、DNAMAN、Swissplot、MEGA3.1和Clustal X2.0等軟件對漆酶基因進(jìn)行結(jié)構(gòu)和功能分析。
1.2.3 大腸桿菌異源表達(dá)分析
利用引物MeiQCuF GGGATTACATATGTCACGACACCTCGATGGCGGCCATG和MeiQCuF GTTCTCGAGATGTCCTTCACCCGTCGTCAGATCC引入酶切位點(diǎn)Nde I和 Xho I并構(gòu)建表達(dá)載體pET22b-Psalac轉(zhuǎn)化大腸桿菌BL21(DE3),IPTG誘導(dǎo)表達(dá)。細(xì)胞破碎(30%功率,開4 s、關(guān)6 s)后上清液SDS-PAGE蛋白電泳分析。同時,提取物利用丁香醛連氮為底物檢測漆酶的活性。
2.1 漆酶基因的克隆
從不同危害時期和國家(地區(qū))的潰瘍病病菌中克隆得到了不同類型病菌的Psalac全長,分別命名為Psalac-JF/HY/HWD等。PsalacJF編碼全長1374 bp,BLAST預(yù)測該基因編碼有457個氨基酸序列(包括N-端20個氨基酸的信號肽)。生物信息學(xué)分析發(fā)現(xiàn)啟動子位于基因上游175 bp。同時該基因編碼的氨基酸序列與NCBI進(jìn)行BLASTP同源比對,分析結(jié)果顯示該漆酶基因與基因組漆酶基因序列相同。
Psalac序列比較表明,不同類型病菌之間在部分核酸區(qū)域有差異。聚類分析發(fā)現(xiàn)在假單胞桿菌屬其他種基因組中同樣存在Psalac類似序列,表明Psalac在假單胞桿菌屬中普遍存在(圖1)。我們對Psalac與其他細(xì)菌漆酶進(jìn)行多序列比對,結(jié)果顯示Psalac 與其他細(xì)菌漆酶一樣在銅離子結(jié)合位點(diǎn)區(qū)域表現(xiàn)保守(圖2),因此可以認(rèn)定Psalac是潰瘍病病菌所編碼的漆酶基因。
圖1 分離自不同時期和國家(地區(qū))的潰瘍病菌psalac
AE016853.1 (P.syringaepv.tomatoDC3000), CP000058.1 (P.syringaepv.phaseolicola1448A),CP000075.1 (P.syringaepv.syringaeB728a),CP000094.2 (P.fluorescensPf0-1),CP002585.1 (P.brassicacearumsubsp.brassicacearumNFM421),CP004045.1 (P.poaeRE 1-1-14),CP003880.1 (Pseudomonassp. UW4),CP003150.1 (P.fluorescensF113),AF326404.1 (P.chlororaphis)、AF326399.1 (Pseudomonassp. GB13),AF326405.1 (P.fluorescen),AF086638.1 (P.putida),AF326403.1 (Pseudomonassp. MG1),AF326401. (Pseudomonas sp. ISO1),AF326398.1 (Pseudomonassp. ADP) and AF326407.1 (P.putidaMnB1)
2.2 漆酶基因的異源表達(dá)
通過構(gòu)建pET22b-PsalacJF載體和大腸桿菌異源表達(dá),粗酶SDS-PAGE分析(圖3),結(jié)果顯示PsalacJF蛋白質(zhì)分子質(zhì)量約為50 ku,與生物信息學(xué)預(yù)測的蛋白質(zhì)分子質(zhì)量大小一致。利用丁香醛連氮為底物,純化的酶蛋白在50 mmol/L Na2HPO4-KH2PO4緩沖液(pH值7.5)環(huán)境中可以有效地使底物氧化成紅色(圖3),顯示純化酶蛋白具有漆酶活性。
圖2 Clustal X2.0 分析Psalac及其他細(xì)菌漆酶蛋白質(zhì)序列
CAA17652(Mycobacteriumtuberculosis), NP854527 (M.bovisAF2122/97), BAB05801(BacillushaloduransC-125), AAP57087(B.halodurans), AAD24211(P.putidaGB-1), ADM87301(uncultured bacterium) and AAC16140(RhodobactercapsulatusSB 1003). Four histidine-rich copper binding domains were indicated by full-length vertical boxes
圖3 Psalac大腸桿菌異源表達(dá)SDS-PAGE和酶活顯色
A—SDS-PAGE; B—酶活顯色; The final concentration of IPTG screening with 0、0.1、0.2、0.5和0.75 mmol/L; temperature screening by using 16℃ and 37℃
漆酶是一種含銅的多酚氧化酶,能夠催化上百種酚類物質(zhì)氧化。近年來研究發(fā)現(xiàn)漆酶在細(xì)菌中廣泛存在[20],Ausec等[21]通過對2200種細(xì)菌的1200種漆酶進(jìn)行分析后發(fā)現(xiàn)76% 漆酶具有可將蛋白分泌至胞外的信號肽。不同物種之間漆酶的核酸和氨基酸序列相似度低,只有在銅離子結(jié)合區(qū)域比較保守,漆酶可能在不同細(xì)菌中參與了不同的細(xì)胞功能。目前,漆酶已報道在病原菌抵御外界不良環(huán)境,如孢子形成、毒性金屬離子耐受(如銅離子)及致病性等生物學(xué)過程中發(fā)揮關(guān)鍵作用[22]。
針對漆酶,另一個尤為關(guān)注的是漆酶作為多銅蛋白,具有多個銅離子結(jié)合位點(diǎn),可以增強(qiáng)病菌銅離子耐受性。獼猴桃潰瘍病是樹體枝干型病害,常規(guī)的化學(xué)藥劑防治效果不明顯,目前防治潰瘍病主要依靠銅制劑(如氫氧化銅、硫酸銅和氧氯化銅等)和鏈霉素。因此,病菌的銅抗性機(jī)制研究已成為一個熱點(diǎn)。人們對分離自不同危害時期和國家的潰瘍病病菌進(jìn)行分析后發(fā)現(xiàn)病菌原先僅有抗銅基因copA(已被證實(shí)具備漆酶活性)和copB, 現(xiàn)在部分病菌已出現(xiàn)了copR和copS等其他抗銅基因[23]。
試驗(yàn)利用獼猴桃潰瘍病病菌的基因組序列設(shè)計引物擴(kuò)增獲得的漆酶基因序列,預(yù)測其氨基酸序列。對PsalacJF與其他細(xì)菌漆酶進(jìn)行多序列比對,結(jié)果顯示PsalacJF 與其他細(xì)菌漆酶一樣在銅離子結(jié)合位點(diǎn)區(qū)域表現(xiàn)保守。大腸桿菌異源表達(dá)結(jié)果顯示克隆獲得的漆酶基因具有漆酶活性,可以認(rèn)定該擴(kuò)增產(chǎn)物為漆酶基因編碼序列。下一步驗(yàn)證漆酶基因與病菌的銅制劑耐藥性和致病性的關(guān)系。
[1]趙利娜,胡家勇,葉振風(fēng),等. 獼猴桃潰瘍病病原茵的分子鑒定和致病力測定[J].華中農(nóng)業(yè)大學(xué)學(xué)報,2012, 31(5): 604-608.
[2]Scortichini M, Marcelletti S, Ferrante P, et al.Pseudomonassyringaepv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen[J]. Molecular Plant Pathology, 2012, 13: 631-640.
[3]Serizawa S, Ichikawa T, Takikawa Y, et al. Occurence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides[J]. Annals of the Phytopathological Society of Japan, 1989, 55: 427-436.
[4]Chapman J R, Taylor R K, Weir B S, et al. Phylogenetic relationships among global populations ofPseudomonassyringaepv. Actinidiae[J]. Phytopathology, 2012, 102:1034-1044.
[5]Mellano M A, Cooksey D A. Nucleotide sequence and organization of copper resistance genes fromPseudomonassyringaepv. tomato[J]. Journal of Bacteriology, 1988, 170(6):2879-2883.
[6]Mellano M A, Cooksey D A. Nucleotide sequence and organization of copper resistance genes fromPseudomonassyringaepv. tomato[J]. Journal of Bacteriology, 1988, 170(6):2879-2883.
[7]Held C, Kandelbauer A, Schroeder M, et al. Biotransformation of phenolics with laccase containing bacterial spores[J].Environmental Chemistry Letters, 2005, 3(2):74-77.
[8]Cha J S, Cooksey D A. Copper resistance inPseudomonassyringaemediated by periplasmic and outer membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(20):8915-8919.
[9]Cheynier V, Comte G, Davies K M, et al. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology[J]. Plant Physiology and Biochemistry, 2013, 72: 1-20.
[10]Terrier N, Poncet-Legrand C, Cheynier V. Flavanols, flavonols and dihydroflavonols[J]. Wine Chemistry and Biochemistry. Springer New York, 2009, 463-507.
[11]Haminiuk C W I, Maciel G M, Plata-Oviedo M S V, et al. Phenolic compounds in fruits-an overview[J]. International Journal of Food Science & Technology, 2012, 47: 2023-2044.
[12]Ruelas C, Tiznado-Hernandez M E, Sanchez-Estrada A, et al. Changes in phenolic acid content duringAlternariaalternatainfection in tomato fruit[J]. Journal of Phytopathology, 2006, 154: 236-244.
[13]Kim H G, Kim G S, Lee J H, et al. Determination of the change of flavonoid components as the defence materials ofCitrusunshiuMarc. fruit peel againstPenicilliumdigitatumby liquid chromatography coupled with tandem mass spectrometry[J]. Food Chemistry, 2011, 128: 49-54.
[14]Ballester A R, Lafuente M T, Forment J, et al. Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance[J]. Molecular Plant Pathology, 2011, 12: 879-897.
[15]Daayf F, El-Hadrami A, El-Bebany A F, et al. Phenolic compounds in plant defense and pathogen counter-defense mechanisms[J]. Recent Advances in Polyphenol Research, 2012(3): 191.
[16]Park Y S, Leontowicz H, Leontowicz M, et al. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars[J]. Journal of Food Composition and Analysis, 2011, 24: 963-970.
[17]Webby R F, Wilson R D, Ferguson A R. Leaf flavonoids of actinidia[J]. Biochemical Systematics and Ecology, 1994, 22: 277-286.
[18]Lee D E, Shin B J, Hur H J, et al. Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication[J]. British Journal of Nutrition, 2010, 104: 164-170.
[19]Petriccione M, Di Cecco I, Arena S, et al. Proteomic changes inActinidiachinensisshoot during systemic infection with a pandemicPseudomonassyringaepv. actinidiae strain[J]. Journal of Proteomics 2013, 78: 461-476.
[20]Fang Z M, Li T L, Wang Q, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability[J]. Applied Microbiology and Biotechnology,2011, 89: 1103-1110.
[21]Ausec L, Zakrzewski M, Goesmann A, et al. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes[J]. PLoS ONE, 2011, 6, e25724.
[22]Galai S, Lucas-Elio P, Marzouki M N, et al. Molecular cloning of a copper-dependent laccase from the dye-decolorizing strainStenotrophomonasmaltophiliaAAP56[J]. Journal of Applied Microbiology, 2011, 111:1394-1405.
[23]Nakajima M, Goto M, Hibi, T. Similarity between copper resistance genes fromPseudomonassyringaepv. actinidiae andP.syringaepv. Tomato[J]. Journal of General Plant Pathology, 2002, 68:68-74.
Cloning and analysis of the expression of laccase genes inPseudomonassyringaepv.actinidae
LIU Pu, HU Jia-yong, HE Rong, ZHU Li-wu
(College of Horticulture, the Key Laboratory of Pomology, Anhui Agricultural University, Hefei 230036, China)
The objective of this study was to reveal sequence features of laccase, which would be used in further study of pathogenesis of kiwifruit bacterial canker caused byPseudomonassyringaepv.actinidae. 12 laccase genes homologsPsalacJF,PsalacHY,PsalacGC,PsalacHWD,PsalacINS,Psalac7285,PsalacLT12,PsalacLT16,PsalacLT26,Psalac349,PsalacKw30 andPsalacK3 were cloned from differentPseudomonassyringaepv.actinidaestrains isolated from diverse regions and countries. The results showed that the complete DNA sequence of laccase gene were 1374 bp in length, encoding a putative proteins of 457-amino acid. All canker strains share the same amino acid sequences and small nucleic acid sequence differences, containing four highly conservative Cu2+active sites. Promoter is located in the upstream gene with 175 bp. Phylogenetic analysis indicated that putative laccase sequence was homologous toP.fluorescensPf0-1 laccase CP000094.2. The studies suggested that laccase gene had the sequence characteristics of laccase gene family in bacteria, which meant that laccase might involve in the pathogenicity and copper-resistant ofPseudomonassyringaepv.actinidae.
kiwifruit; kiwifruit bacterial canker; laccase
2014-04-17;
2014-04-25
安徽省自然科學(xué)基金(1408085QC62)
劉 普,博士,講師,主要從事果樹病害分子機(jī)制,E-mail:puliu@ahau.edu.cn;
朱立武,教授,主要從事果樹種質(zhì)資源利用與創(chuàng)新,E-mail: zhuliwu@ahau.edu.cn。
S663.4;Q78
A
2095-1736(2015)01-0048-04
doi∶10.3969/j.issn.2095-1736.2015.01.048