薛 瓊, 肖小峰, 陳歡歡
(1.武漢理工大學(xué) 理學(xué)院, 武漢 430070;2.武漢紡織大學(xué) 機械工程與自動化學(xué)院, 武漢 430073)
?
薛 瓊1*, 肖小峰2, 陳歡歡1
(1.武漢理工大學(xué) 理學(xué)院, 武漢 430070;2.武漢紡織大學(xué) 機械工程與自動化學(xué)院, 武漢 430073)
研究了一類具有非負Ricci曲率和大體積增長的完備非緊黎曼流形.證明了在共軛半徑有正下界以及流形M上測地球與歐氏空間上單位球的體積增長相差不大的條件下,流形M微分同胚于Rn.該文將體積增長條件改進,推廣了M.Do.Carmo和C.Xia的結(jié)果.
Ricci曲率; 大體積增長; 共軛半徑; Excess函數(shù)
首先給出關(guān)于邊的Ricci曲率的Toponogov型比較定理,這是臨界點理論的基礎(chǔ).
應(yīng)用Toponogov型比較定理, Shen在文獻[10]中得到了推廣的Excess估計,給出了一個上界.
定義1對任意p,q∈M,p,q的Excess函數(shù)定義為:
epq(x)=d(x,p)+d(x,q)-d(p,q),
其中,d(p,q)表示從p到q的距離.
若對任意的(k+1)維子空間V?TpM中的一組標(biāo)準(zhǔn)正交基{e1,…,ek+1},曲率張量R(x,y)z滿足
其中,h=d(x,γ),s=min(d(p,x),d(q,x)).
記∑為p點處切空間TpM上單位球SpM的一個閉子集. 令
1999年, Xia結(jié)合推廣的Bishop-Gromov體積比較定理,得到如下體積估計和函數(shù)估計.
引理3[6]設(shè)(M,g)是一個完備非緊的n(n≥2)維Riemann流形,滿足RicM≥0,αM>0,則
引理4[7]設(shè)(M,g)是一個完備非緊的n(n≥2)維Riemann流形,滿足RicM≥0,αM>0,則對任意的x∈?B(p,r)和r>0,有
證明因為critp≥r0,故B(p,r0)內(nèi)沒有異于p點的臨界點.選取任意的x滿足r=d(p,x)≥r0,只需要證明點x不是p點的臨界點即可.
(1)
由于d(p*,q*)≤2ρ,可得到
(2)
結(jié)合(1)、(2)及定義1,有
(3)
再由引理2,注意min(d(p,x),d(q,x))≥r,可得
這時取σ1,σ2分別為從點x到p,q的極小測地線,由p*,q*的定義及三角不等式,得到
(4)
結(jié)合定理1,可證得下面的定理2,它明顯優(yōu)于Carmo和Xia在文獻[5]中的結(jié)果.
(5)
則M微分同胚于Rn.
證明由定理1,取δ=δ(n,i0,r0,k)>0,并令
這時取定理2中的ε為ε=min{ε1,ε2}.
一方面,固定r≥r0,x∈?B(p,r).由于hp(x)=d(x,Rp)≤r,結(jié)合引理4及條件(5),有
(6)
因此
(7)
(8)
(1+3hr-1)n≤1+3(2n-1)hr-1,
(9)
再根據(jù)(8)、(9),又可得
(10)
(11)
結(jié)合(10)及(11),有
故根據(jù)定理1知定理2結(jié)論成立.
定理2改進了文獻[5]中大體積增長的指數(shù),同樣得到更強的M微分同胚于Rn的結(jié)果,推廣了文獻[5]的結(jié)論.
[1] Bishop R L,Crittenden R J.Geometry of Manifolds[M]. New York: Academic Press, 1964.
[2] Gromov M.Metric Structures for Riemannian and Non-Riemannian Spaces[M].Boston:Birkh?user Boston Inc, 1999.
[3] Shen Z.Complete manifolds with nonnegative Ricci curvature and large volume growth[J]. Invent Math,1996,125:393-404.
[4] Ordway D,Stephens B,Yang D G.Large volume growth and finite topological type[J]. Proc Amer Math Soc, 2000, 128: 1191-1196.
[5] Carmo M D,Xia C. Ricci curvature and the topology of open manifolds[J]. Math Ann, 2000, 316: 391-400.
[6] Xia C. Open manifolds with nonnegative Ricci curvature and large volume growth[J]. Comment Math Helv, 1999, 74: 456-466.
[7] Xia C. Large volume growth and the topology of open manifolds[J]. Math Zeit, 2002, 239:515-526.
[8] Li G,Shi Y,Wu C.Ricci curvature, radial curvature and large volume growth[J]. Geom Dedicata, 2011,150: 63-74.
[9] Dai X,Wei G. A comparison-estimate of Toponogov type for Ricci curvature[J]. Math Ann, 1995, 303: 297-306.
[10] Shen Z.On complete manifolds of nonnegative kth-Ricci curvature[J]. Tran Amer Math Soc, 1993, 338:289-310.
Ricci curvature, conjugate radius and large volume growth
XUE Qiong1, XIAO Xiaofeng2, CHEN Huanhuan1
(1.School of Science, Wuhan University of Technology, Wuhan 430070;2.School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073)
In this paper, complete noncompact Riemannian manifolds with nonnegative Ricci curvature and large volume growth were studied. We prove that such a manifoldMisdiffeomorphictoaEuclideann-space Rnif its conjugate radius has positive lower bound and the volume growth of geodesic balls inMisnottoofarfromthatoftheballsinRn. We extended the result of M.Do.Carmo and C.Xia by improving volume growth conditions.
Ricci curvature; large volume growth; conjugate radius; Excess function
2014-10-20.
國家自然科學(xué)基金項目(11201357,11201358);中央高?;究蒲袠I(yè)務(wù)費專項資金項目(2015IA010).
1000-1190(2015)03-0331-03
O186
A
*E-mail: 18986258401@189.cn.