• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unicast Network Topology Inference Algorithm Based on Hierarchical Clustering

    2015-03-21 03:36:26肖甫是晨航黃凱祥

    (肖甫), (是晨航), (黃凱祥),

    1.College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China; 2.Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China (Received 16 December 2014; revised 17 August 2015; accepted 8 October 2015)

    Unicast Network Topology Inference Algorithm Based on Hierarchical Clustering

    XiaoFu(肖甫)1,2*,ShiChenhang(是晨航)1,HuangKaixiang(黃凱祥)1,

    WangRuchuan(王汝傳)1,2

    1.College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China; 2.Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China (Received 16 December 2014; revised 17 August 2015; accepted 8 October 2015)

    Network topology inference is one of the important applications of network tomography. Traditional network topology inference may impact network normal operation due to its generation of huge data traffic. A unicast network topology inference is proposed to use time to live (TTL) for layering and classify nodes layer by layer based on the similarity of node pairs. Finally,the method infers logical network topology effectively with self-adaptive combination of previous results. Simulation results show that the proposed method holds a high accuracy of topology inference while decreasing network measuring flow, thus improves measurement efficiency.

    network topology inference; network tomography; hierarchical clustering; time to live(TTL)

    0 Introduction

    Network topology inference is to identify the logical connection relationships between network elements using a variety of measurements and then to speculate the network topology. As the key technology in the field of network measurement,it is of great significance for network management, network operations and network security. Traditional network topology inference methods, including active measurement method like Traceroute[1,2], usually need collaboration of intermediate nodes and protocol support. With an expanding network size and an increasing security requirements, the collaboration between nodes has become more and more difficult, resulting in difficult implement of traditional network topology inference method . Therefore, network topology inference based on end-to-end measurement, also known as network topology inference based on network tomography, has been the focus of scholars.

    Network tomography can obtain network internal characteristics based on end-to-end measurement and does not need the collaboration among network internal nodes. In the tree structure network, the corresponding characteristics will be more relevant with the increasing shared link of nodes[3]. Network topology inference, as a typical application of network tomography, can infer the network topology according to the relevance of the performance characteristics of network nodes. Network topology inference based on network tomography was first applied to the multicast network. Tian et al.[4]proposed a method based on hamming distance and hop count to infer multicast network topology, where hop count was used to obtain topology level information, while hamming distance was used to identify multicast network topology. However, this algorithm can be applied only to the network with lighter load, and the need for clock synchronization between nodes is also the restriction for this method to practical applications. Due to the less equipment support muticast in actual network, this results in the research on unicast network topology inference have become more practical and valuable. Zhao et al.[5]proposed a ″transport train″ measurement which just needed one measurement source without clock synchronization and inferred network topology based on queuing delay. In order to decrease restrict of single parameter in network topology, another multi-parameter topology inference algorithm was developed by combining time delay with packet loss rate[6]. Su et al.[7]divided leaf nodes into mutually disjoint groups through fan-out attenuation mechanism, then inferred the general structure of network topology based on SBA sorting method.Brian et al. clustered terminal nodes through depth first ordering, and reconstructed the logical topology on the basis of depth-first-search (DFS) ordering[8]. Recently, Brett et al.[9.10]proposed a prototype iTop, an algorithm for inferring the network topology when only partial information was available, by construcing a virtual topology, and then repeatedly merged links in this topology toward true network structure. Zhang[11]proposed a novel binary tree pruning algorithm based on t-test to infer the network topology and a lower bound on the correctly identified probability of the proposed method as well. However, network topology inference based on network tomography assumes that the intermediate router nodes are all cooperative, and that it will cause excessive probe packets and large network measuring flow seriously affecting normal operation of the network. Therefore, how to decrease the measuring flow without influencing the accuracy of topology inference deserves our exploration.

    A unicast network topology inference based on hierarchical clustering is proposed. This method uses TTL field of probe packets for layering on leaf nodes at first, and then clusters leaf nodes on each layer based on similarity clustering algorithm. Finally, it infers the whole network topology based on hierarchical clustering results and the changing TTL value.

    1 Measurement of Network Topology Inference

    1.1Related definition

    1.2Sandwich probe measurement method

    Fig.1 Sandwich probe packets

    Sandwich probe measurement method was first proposed by Castro et al.[12]Each sandwich probe packet is composed of two short packets, and a long packet and the length of the long packet has to be considerably longer than that of the short ones. The long packet is located in the middle of the two short packets with a same destination address, but the destination address of the long packet is differ from that of the short ones. As shown in Fig.1, short packetsp1,p2haveasamedestinationaddresswhichisnode3,whilethedestinationaddressofthelongpacketqisnode5.Theinitialintervalbetweentwoshortpacketsisd.Duetothequeuedelayoflongpacketbyrouter,thetimeintervalbetweentwoshortpacketsreachingthedestinationbecomeslarge.InFig. 1,longpacketqgeneratesqueuingdelaywhenbeingforwardedbynode1,whichresultsinincreaseofdtod+Δdeventually.Themoresharedlinkswhichtheshortpacketsandthelongpacketgothrough,thelongerqueuingdelaywillbegeneratedbythelongpacket,andthelargertheintervalbetweenp1andp2comes.

    1.3Calculation for similarity of node pair

    2 Network Topology Inference Based on Hierarchical Clustering

    Network topology inference algorithm based on hierarchical clustering consists of the following three steps: First, the source node sends probe packets to all leaf nodes, and the leaf nodes are layered by time to live (TTL) fields of the received packets; Then each layer of leaf nodes is clustered by similarity clustering algorithm; Finally, according to the result of hierarchical clustering and the changing TTL value, the network topology is inferred.

    2.1TTL hierarchical algorithm

    TTL field of 8 bit in IP datagram header is mainly used in TTL hierarchical algorithm. TTL indicates the amount of routers through which the packet passes at most, and it is also the lifetime of the packet in the network. As stipulated in IP protocol, router subtracts 1 from TTL field of the packet before forwarding it. If the TTL value is 0, the router will discard the packet and never forward it. TTL field is set by source point to prevent the waste of network resources caused by undeliverable packet forwarding indefinitely in the Internet. In practice, most OSes, including Microsoft Windows, Linux, and Unix systems,only select a few figures,including 32, 64,128 and 255, as initial TTL value. The difference between an initial TTL value and its final TTL value is the number of routers which the packet goes through in the network, also known as the hop count. Since the differences between the above initial TTL values are large, and practically few Internet hosts are apart by more than 30 hops[13], one can determine the initial TTL value of a packet as the smallest one in the above set but larger than its final TTL. Therefore, firstly the source node sends probe packets to all leaf nodes with a set initial TTL values. And then final TTL fields of received packets in leaf nodes are recorded. Finally, leaf nodes are stratified according to the hop count between source node and the destination node.

    2.2Similarity clustering algorithm

    Leaf nodes are divided into different layers according to the TTL hierarchical algorithm. Then leaf nodes are clustered by similarity layer by layer. First of all, the similarities of all node pairs in a certain layer are obtained by sandwich probe measurement and sorted ascendingly. Then minimum similarity set is calculated by variance ratio. The incompatible K-Bucket is built. Finally, leaf nodes are clustered.

    2.2.1Minimum similarity set

    For a set of similarity values in ascending order, the first element is the lower bound of the minimum similarity set and the key is to find the upper bound of the minimum similarity set. Variance is used to measure the volatility of a batch of data. By analyzing experimental data, we discovered that the difference between elements in the minimum similarity set and other elements was generally large. Therefore, variance ratio is selected to obtain minimum similarity set.

    The definition of variance is as

    Input:Thenumberofleafnodesonlayeri:n

    Similarity set of all node pairs on layeri:

    ThesizeofthesetSi:L=n×(n-1)/2

    The threshold of variance ratio:R=K

    Minimumsimilaritysetofleafnodesonlayeri:Mi=Φ

    Output:Mi

    Begin

    SortsimilarityinSiascendinglyandgetsimilaritysetinascendingorderSA={sa,b,sc,d,se,f,…},wherea,b,c,d,e,f∈[1,n].

    SelectthefirstandthesecondsmallestsimilaritiesfromSA(thatissa,b,sc,d)tocalculatetheirvarianceV2accordingtothevarianceformula;InthesamewayselectthefirstthreesmallestsimilaritiesfromSA(thatissa,b,sc,d,se,f)tocalculatetheirvarianceV3;

    IfV2≠0

    Forj={4,5,…,L}do

    Begin

    IfRj-1,j-2≥Kthen

    Begin

    Takej-2astheupperboundoftheminimumsimilaritysetofleafnodesonlayeri;

    Addthefirstj-2smallestsimilaritiesfromSAtosetMi;

    Break;

    End

    IfRj-1,j-2

    Begin

    CalculatethevarianceVjofthefirstjsmallestsimilaritiesfromSAto;

    IfVj-1≠0

    thencalculatevarianceratiosVjandVj-1:

    End;

    End;

    End;

    2.2.2IncompatibleK-Bucket

    IncompatibleK-Bucketisanarrayoflinkedlistsbasedontheminimumsimilarityset.Theleafnodepairsintheminimumsimilaritysetuniformlymaptotheincompatiblerelationsbetweenthefirstnodeanditssubsequentnodesineachlinkedlist,whilethefirstnodeineachlinkedlistconstitutesthesetofleafnodesinlayeri. Take the set of leaf nodes in a certain layer {5,7,8,10,11} for example. Firstly, build initial incompatible K-Bucket and only one node leads each linked list, as shown in Fig.2 (a). Assume that the minimum similarity set is {(5, 8),(5, 10),(7, 8),(8, 10),(7, 10),(5, 11),(8, 11),(7, 11)}. For the first node pair(5, 8),add incompatible node 8 to the linked list with the first node of 5, and add incompatible node 5 to the linked list with the first node of 8, as shown in Fig.2(b). Similarly,add the rest node pairs in the minimum similarity to the lists and the final incompatible K-Bucket is shown in Fig.2(c).

    Fig.2 Establishment of incompatible K-Bucket

    2.2.3Leaf node clustering algorithm

    Leaf nodes in layeriare clustered based on incompatible K-Bucket. First, suppose the leaf nodes in layeriare divided into two categories, set 1 and set 2, whose representative elements are the first and the second nodes of the first linked list in incompatible K-Bucket, respectively. For the leaf node in addition to the two representative elements, its incompatible nodes in incompatible K-Bucket(that is all subsequent nodes of the linked list where it is the first node) are compared with all the elements in set 1. If they are all different, then add the leaf node to set 1. If there is at least one same node, then compare its incompatible nodes with all the elements in set 2. If they are all different, then add the leaf node to set 2, otherwise build a new category set 3 and add the leaf node to set 3. By that analogy, we finally get the clustering sets of leaf nodes in layeri. The specific algorithm in pseudo-code is described as follows.

    Leaf node clustering algorithm based on incompatible K-Bucket.

    Input: the number of leaf nodes in layeri:n

    Set of leaf nodes in layeri:Ni={x1,x2,…,xn}.

    IncompatibleK-Bucketofleafnodesinlayeri:K_Bufferi,wheretheorderofthefirstnodeineachlinkedlistissameassetNi,thatisx1,x2,…,xn.

    Output:clusteringsetsofleafnodesinlayeri:Set1,Set2,….

    Forj={1,2,…,n}do

    Begin

    Ifxj≠aandxj≠bthen

    Begin

    Fork={1,2,…,SetNum}do

    Begin

    Compareincompatiblenodesofthefirstnodexjofthejthlinkedlist(K_Bufferi[j-1])inincompatibleK-Bucket(thatisallsubsequentnodesafterxjofthejthlinkedlist)withalltheelementsinSetkonebyone;

    IfincompatiblenodesofxjandalltheelementsinSetkarealldifferentthen

    Begin

    addxjto Setk, that is

    xj∈Setk;

    Break;

    End

    IfthereisatleastonenodeinSetksamewithxjand incompatible nodes ofxjthen

    Continue;

    End

    IfincompatiblenodesofxjandtheelementsinexistingSetNumcategoriesallhavethesamethen

    Begin

    SetNum=SetNum+1;

    BuildanewcategorySetSetNum;

    AddxjtoSetSetNum,thatisxj∈SetSetNum;

    End;

    End;

    End;

    2.3Inference of hierarchical clustering network topology with changing TTL

    Now a layered network topology which is clustered in each layer is obtained by TTL hierarchical algorithm and similarity clustering algorithm. It is essential that how to merge and connect the lower clustering set and the upper clustering set to obtain a complete network topology. For instance, Fig.3 shows a hierarchical clustering network topology. The first layer is source node. The second layer contains two clustering setsAandBwhile the third layer contains setsCandD. There are 9 solutions to merge and connect the lower and the upper clustering sets together. Suppose it is corresponding to an unordered tree. There are 6 merge connection solutions which are shown in Fig.4. Through analyzing the network topology structure in these solutions, we find that the number of shared links and shared routers are not the same between each clustering set in each solution. On basis of this and the traceroute method, we obtain the number of shared routers between each clustering sets through changing the TTL value of long sandwich probe packets to infer the network topology.

    Fig.3 Hierarchical clustering network topology

    Fig.4 Merge connection solutions to hierarchical clustering network

    The sandwich probe measurement method shows that the queuing delay is generated by store-and-forward when the long packets pass through the routers, which is related with the number of shared routers. As long as the long packet and the short packets still share links, queuing delay will increase with an increasing number of shared routers. Once the long packet is separated from the short packets, queuing delay will remain unchanged as the second short packet is no long affected by long packet.

    In our method, the source node sends sandwich probe. TTL value of the long packet starts from 1 and pluses one by one to two different clustering sets. Meanwhile, the similarity of the two clustering sets is calculated. The TTL value at the turning point where the similarity stops rising and begins to be unchanged equals to the number of shared routers of the two clustering sets. Since the TTL value of the long packet is no larger than hop count of nodes in clustering sets, with limited sandwich probe packets we can get the number of shared routers among all clustering sets and then infer the complete network topology.

    3 Experimental Evaluations

    In order to verify network topology inference method based on hierarchical clustering, we conducted simulations with lighter and moderate network load based on NS-2.26 by controlling the size of background traffic. The simulation topology is shown in Fig.5. Simulation results in the case of moderate network load are as follows.

    Fig.5 The simulation network topology

    The initial TTL value of the probe packet was set as 128 based on the TTL hierarchical algorithm. The final TTL value was recorded in leaf nodes. Thus the hop count was calculated. The layering result based on hop count is shown in Table 1 and the source node 0 was set as layer 1.

    Table 1 Layering result of leaf nodes

    We sent sandwich probe packets to all node pairs in each layer and the similarity of node pairs are shown in Tables 2, 3.

    Then we clustered the leaf nodes in each layer based on similarity clustering algorithm, and the clustering result is shown as follows(Fig.6).

    Table 2 Similarity of node pairs in layer 2

    Table 3 Similarity of node pairs in layer 3

    Fig.6 Hierarchical clustering network topology

    Each clustering set was represented by a capital letter, namelyA={5,7},B={8},C={10,11},D={13,14},E={15,16,17},F={18,19}. After successively sending sandwich probe packets with changing TTL value to the clustering sets, we obtained the similarity of each two cluster sets, as shown in Fig. 7. The number of shared routers between clustering setsAandD,BandE,CandFwas two while the number of shared routers between the other clustering sets was one. It is easy to infer the whole network topology, as shown in Fig. 8, the number of shared routers.

    Fig.7 Variation of similarity between clustering sets and changing TTL

    Fig.8 Network topology inference based on hierarchical clustering network topology

    Compare Fig.8 with Fig.5, the network topology inferred from network topology inference method based on hierarchical clustering is exactly the same with origin network topology. And topology inference method based on hierarchical clustering for 4-layer network topology can be verified. In order to verify inference algorithm when increase the level of network topology, different simulations were conducted for 5-layer and 6-layer network topology under lighter and moderate network loads, and the simulation results are shown in Table 4.

    Table 4 Topology inference accuracy rate with different topology levels under different network loads

    Accuracy rate of hierarchical clustering network topology inference algorithm in lighter load case was higher than that of moderate load case. We infered that the algorithm works well in lighter load network environment. Table 4 also shows that as the network level increases, accuracy rate of the algorithm will be slightly reduced, but still relatively high.

    While in Refs.[9, 10], the complexity is dominated by the calculation of the merging options, which corresponding toO(|EVT|2×|VVT|3),where|VVT|thenumberofnodesinthenetworkvirtualtopologyand|EVT|thenumberoflinksconnectingthem. |VVT|equalstoN.Comparedwiththesenetworktopologyinferencebasedonnetworktomography,ourmethodcanbasicallyensurehighaccuracyoftopologyinferencewitheffectivelydecreasingmeasuringflow,thusimprovestheefficiencyoftopologyinference.

    4 Conclusions

    A unicast network topology inference algorithm based on hierarchical clustering is proposed and the simulation test is conducted on the NS-2. The experiment result shows that the network topology inference can basically ensure high accuracy of topology inference while effectively decreases measuring flow, thus improves efficiency of topology inference. How to further infer the physical topology of network is our future work.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos. 61373137, 61373017, 61373139), the Major Program of Jiangsu Higher Education Institutions (No.14KJA520002), the Six Industries Talent Peaks Plan of Jiangsu(No.2013-DZXX-014), and the Jiangsu Qinglan Project.

    [1]Luckie M, Hyun Y, Huffaker B. Traceroute probe method and forward IP path inference[C]// Proceeding of the 8th ACM SIGCOMM. New York, USA: ACM, 2008: 311-324.

    [2]Jin X, Tu W, Chan S H G. Traceroute-based topology inference without network coordinate estimation[C]// IEEE International Conference on Communications. Washington, DC, USA: IEEE, 2008: 1615-1619.

    [3]Zhao Honghua, Chen Ming. Topology Inference Based on Network Tomography [J]. Journal of Software, 2010, 21(1):133-146 .(in Chinese)

    [4]Tian H, Shen H. Hamming distance and hop count based classificcation for multicast network topology inference[C]// 19th International Conference on Advanced Information Networking and Applications. Washington DC, USA: IEEE, 2005 (1): 267-272.

    [5]Zhao Honghua, Ding Ke, Chen Ming. Topology inference algorithm by using one measuring node [J]. Journal of University of Electronic Science and Technology of China, 2010, 39(2): 275-278.(in Chinese)

    [6]Zhao Honghua, Chen Ming, Qiu Xiaofeng, et al. Multiple parameters network topology inference based on tomography [J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(4): 24-28. (in Chinese)

    [7]Su H B, Li Y, Lin S J, et al. A sort-based approach to infer the network topology[C]// 2010 IEEE International Conference on Communications. Washington, DC, USA: IEEE, 2010: 1-6.

    [8]Eriksson B, Dasarathy G, Barford P, et al. Efficient network tomography for internet topology discovery [J]. IEEE Transactions on Networking, 2012, 20(3): 931-943.

    [9]Holbert B, Tati S, Silvestri S, et al. Network topology inference with partial information [J].IEEE Transactions on Network and Service Management, 2015, 12(3):406-419.

    [10]Holbert B, Tati S, Silvestri S, et al. Network topology inference with partial information[C]// International Conference on Computing, Networking and Communications, Network Algorithm & Performance Evaluation Symposium. Washington, DC, USA: IEEE, 2015:796-802.

    [11]Zhang Runsheng, Li Yanbin, Li Xiaotian. Topology inference with network tomography based on t-Test [J]. IEEE Communications Letters, 2014, 18(6):921-924.

    [12]Castro R, Coates M, Liang G, et al. Network tomography: Recent developments [J]. Statistical Science, 2003, 19(3): 499-517.

    [13]Wang H, Ding W, Zhu H. A method of tree network topology inference based on hierarchical host table[C]∥ Systems and Informatics (ICSAI), 2012 International Conference on. USA:IEEE, 2012: 1477-1481.

    (Executive Editor: Zhang Bei)

    TP393Document code:AArticle ID:1005-1120(2015)06-0591-09

    *Corresponding author: Xiao Fu, Professor, E-mail:xiaof@njupt.edu.cn.

    How to cite this article: Xiao Fu, Shi Chenhang, Huang Kaixiang,et al. Unicast network topology inference algorithm based on hierarchical clustering[J]. Trans. Nanjing U. Aero. Astro., 2015,32(6):591-599. http://dx.doi.org/10.16356/j.1005-1120.2015.06.591

    国产精品伦人一区二区| 高清日韩中文字幕在线| 精品久久久久久久末码| 亚洲久久久久久中文字幕| 在线观看舔阴道视频| 精品人妻偷拍中文字幕| 狂野欧美激情性xxxx在线观看| 麻豆国产av国片精品| 真实男女啪啪啪动态图| 日本成人三级电影网站| 免费电影在线观看免费观看| 亚洲四区av| 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 极品教师在线免费播放| 久久精品国产亚洲网站| 国产精品野战在线观看| 日韩人妻高清精品专区| 国产成人福利小说| 亚洲人成伊人成综合网2020| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区av在线 | 人人妻,人人澡人人爽秒播| 欧美黑人欧美精品刺激| 久99久视频精品免费| 日韩大尺度精品在线看网址| 精品一区二区三区人妻视频| 欧美一区二区国产精品久久精品| 国产成人aa在线观看| 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 亚洲av成人av| 国产美女午夜福利| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 成人特级av手机在线观看| 午夜爱爱视频在线播放| 色综合婷婷激情| 精品人妻偷拍中文字幕| 偷拍熟女少妇极品色| 亚洲成a人片在线一区二区| 午夜视频国产福利| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 亚洲人与动物交配视频| 欧美+日韩+精品| 欧美日本亚洲视频在线播放| 欧美一区二区亚洲| 精品久久久久久成人av| 小说图片视频综合网站| 亚洲国产欧洲综合997久久,| 美女 人体艺术 gogo| 少妇的逼水好多| 国产精品综合久久久久久久免费| 91久久精品国产一区二区三区| 热99re8久久精品国产| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费| 国产精品精品国产色婷婷| 桃色一区二区三区在线观看| 午夜免费男女啪啪视频观看 | 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 赤兔流量卡办理| 久久久午夜欧美精品| 色综合站精品国产| 亚洲成a人片在线一区二区| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| a在线观看视频网站| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 国产亚洲91精品色在线| 国产中年淑女户外野战色| 亚洲午夜理论影院| 久久亚洲精品不卡| 欧美色视频一区免费| 久久久精品大字幕| 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 内地一区二区视频在线| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 熟女人妻精品中文字幕| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 色播亚洲综合网| 内地一区二区视频在线| 全区人妻精品视频| 免费高清视频大片| 三级毛片av免费| 在线观看舔阴道视频| 色在线成人网| 日本 欧美在线| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 最近视频中文字幕2019在线8| xxxwww97欧美| 欧美激情久久久久久爽电影| 天堂动漫精品| 干丝袜人妻中文字幕| 亚洲性久久影院| 欧美日韩精品成人综合77777| 男女视频在线观看网站免费| 免费人成在线观看视频色| 日本黄大片高清| 国产精品人妻久久久影院| 国产精品一区www在线观看 | 最后的刺客免费高清国语| 又黄又爽又刺激的免费视频.| 日本黄大片高清| 97超视频在线观看视频| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久久黄片| 免费在线观看成人毛片| 网址你懂的国产日韩在线| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 天堂网av新在线| 欧美+亚洲+日韩+国产| 最近视频中文字幕2019在线8| 久久草成人影院| 国产精品1区2区在线观看.| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人手机在线| 午夜视频国产福利| 最新中文字幕久久久久| 乱系列少妇在线播放| av在线亚洲专区| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 久久久精品大字幕| 少妇人妻一区二区三区视频| 色精品久久人妻99蜜桃| 亚洲中文日韩欧美视频| 一级a爱片免费观看的视频| 中国美女看黄片| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 成人无遮挡网站| 精品一区二区三区av网在线观看| 国产 一区精品| 午夜福利在线观看吧| 日韩大尺度精品在线看网址| 国产真实伦视频高清在线观看 | 国产高潮美女av| 美女xxoo啪啪120秒动态图| 亚洲久久久久久中文字幕| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 亚洲精品456在线播放app | 午夜激情福利司机影院| 国产老妇女一区| 亚洲av成人av| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 99视频精品全部免费 在线| 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 国产黄片美女视频| 亚洲性夜色夜夜综合| 亚洲美女搞黄在线观看 | 哪里可以看免费的av片| 免费黄网站久久成人精品| 国产一区二区三区视频了| 综合色av麻豆| 亚洲avbb在线观看| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 99热精品在线国产| 搡女人真爽免费视频火全软件 | 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 亚洲国产欧美人成| 久久精品国产鲁丝片午夜精品 | 女的被弄到高潮叫床怎么办 | 欧美丝袜亚洲另类 | 俺也久久电影网| 中文字幕av在线有码专区| 久久国产乱子免费精品| 久9热在线精品视频| 国产精品99久久久久久久久| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片 | 国产单亲对白刺激| 国产一级毛片七仙女欲春2| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 亚洲av中文av极速乱 | 国产女主播在线喷水免费视频网站 | 岛国在线免费视频观看| 波多野结衣巨乳人妻| 久久久久久久久中文| 无遮挡黄片免费观看| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 中文字幕av成人在线电影| 男女边吃奶边做爰视频| av黄色大香蕉| 婷婷色综合大香蕉| 免费在线观看成人毛片| 久久精品91蜜桃| 中文字幕熟女人妻在线| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看| 99九九线精品视频在线观看视频| 中文字幕久久专区| 热99在线观看视频| 久久精品国产99精品国产亚洲性色| av.在线天堂| 免费大片18禁| 啦啦啦韩国在线观看视频| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 悠悠久久av| 亚洲av熟女| 窝窝影院91人妻| 热99在线观看视频| 一级av片app| 国产免费一级a男人的天堂| 91在线精品国自产拍蜜月| 免费在线观看日本一区| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 国产三级中文精品| 久9热在线精品视频| 欧美激情久久久久久爽电影| 深爱激情五月婷婷| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 三级毛片av免费| 又紧又爽又黄一区二区| 成人午夜高清在线视频| 中国美白少妇内射xxxbb| 97超视频在线观看视频| 直男gayav资源| 国产三级在线视频| 成人av在线播放网站| 国产黄片美女视频| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 久久久久久久久大av| 性欧美人与动物交配| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 日本在线视频免费播放| 精华霜和精华液先用哪个| 最近在线观看免费完整版| 国内精品一区二区在线观看| 欧美一区二区亚洲| 午夜免费男女啪啪视频观看 | 国产亚洲精品久久久com| 少妇熟女aⅴ在线视频| 色哟哟·www| 国产精品永久免费网站| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久亚洲 | 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区 | 亚洲av成人精品一区久久| 亚洲精品成人久久久久久| 国产美女午夜福利| 一区二区三区高清视频在线| 性色avwww在线观看| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 国产精品久久久久久久久免| 亚洲自拍偷在线| 成人av在线播放网站| 一级黄色大片毛片| 校园人妻丝袜中文字幕| 中文字幕av在线有码专区| 高清日韩中文字幕在线| 在线播放国产精品三级| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 国产 一区精品| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 中国美女看黄片| 不卡视频在线观看欧美| 免费观看人在逋| 中文字幕高清在线视频| 久久久久久久午夜电影| 99久久精品一区二区三区| 在线免费观看的www视频| 亚洲久久久久久中文字幕| 色在线成人网| 在线免费观看不下载黄p国产 | 美女高潮的动态| 亚洲专区中文字幕在线| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 欧美黑人巨大hd| 亚洲va日本ⅴa欧美va伊人久久| 综合色av麻豆| 成人一区二区视频在线观看| 天堂√8在线中文| 国产综合懂色| 美女黄网站色视频| 国产aⅴ精品一区二区三区波| 精品国产三级普通话版| 内地一区二区视频在线| 91av网一区二区| xxxwww97欧美| 男女啪啪激烈高潮av片| 午夜激情欧美在线| 此物有八面人人有两片| 韩国av在线不卡| 国内少妇人妻偷人精品xxx网站| 国产亚洲av嫩草精品影院| h日本视频在线播放| 日日干狠狠操夜夜爽| 国产精品亚洲美女久久久| a级毛片a级免费在线| 窝窝影院91人妻| 亚洲18禁久久av| 日韩欧美国产在线观看| 他把我摸到了高潮在线观看| 中文在线观看免费www的网站| 国产高清激情床上av| 人妻久久中文字幕网| 无遮挡黄片免费观看| 欧美色欧美亚洲另类二区| 久久久久久九九精品二区国产| 国产精品嫩草影院av在线观看 | 欧美成人性av电影在线观看| 日韩精品中文字幕看吧| 少妇猛男粗大的猛烈进出视频 | 成人精品一区二区免费| 狂野欧美激情性xxxx在线观看| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 精品国内亚洲2022精品成人| 亚洲国产欧洲综合997久久,| 免费在线观看日本一区| 色吧在线观看| 精品久久久噜噜| 日韩欧美一区二区三区在线观看| 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 老司机午夜福利在线观看视频| 亚洲成人精品中文字幕电影| 亚洲人成伊人成综合网2020| 国产精品久久久久久久电影| 99国产精品一区二区蜜桃av| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 亚洲第一电影网av| 久久亚洲真实| 一级黄色大片毛片| 美女cb高潮喷水在线观看| 熟女电影av网| 男人的好看免费观看在线视频| 99视频精品全部免费 在线| 午夜福利在线观看吧| 波野结衣二区三区在线| 桃红色精品国产亚洲av| 国产精品一区二区性色av| 久久久色成人| 亚洲专区中文字幕在线| xxxwww97欧美| 美女免费视频网站| 91麻豆av在线| 国产高清激情床上av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av.av天堂| 蜜桃久久精品国产亚洲av| eeuss影院久久| 老司机午夜福利在线观看视频| 深夜a级毛片| 91精品国产九色| eeuss影院久久| 校园春色视频在线观看| 丰满的人妻完整版| 日韩欧美在线二视频| 国产伦精品一区二区三区视频9| 亚洲不卡免费看| 久久久成人免费电影| 中文字幕人妻熟人妻熟丝袜美| 国产私拍福利视频在线观看| 男女那种视频在线观看| 国产黄a三级三级三级人| 麻豆一二三区av精品| 国产精品爽爽va在线观看网站| 窝窝影院91人妻| 男女边吃奶边做爰视频| av在线亚洲专区| 午夜亚洲福利在线播放| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区成人| 精品福利观看| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 男人舔奶头视频| 国产亚洲欧美98| 搡老岳熟女国产| 精品99又大又爽又粗少妇毛片 | 可以在线观看毛片的网站| 久久久久久久午夜电影| 伦精品一区二区三区| 日日干狠狠操夜夜爽| 精品福利观看| 给我免费播放毛片高清在线观看| 22中文网久久字幕| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 亚洲图色成人| 亚洲熟妇中文字幕五十中出| 18+在线观看网站| 制服丝袜大香蕉在线| 国产精品国产高清国产av| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 国产成人aa在线观看| 婷婷精品国产亚洲av在线| 女人被狂操c到高潮| 少妇丰满av| 日韩欧美国产在线观看| 床上黄色一级片| 日韩在线高清观看一区二区三区 | 免费人成在线观看视频色| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 久久久久久久精品吃奶| 亚洲国产高清在线一区二区三| 99在线视频只有这里精品首页| 欧美+亚洲+日韩+国产| 成人鲁丝片一二三区免费| 少妇丰满av| 乱码一卡2卡4卡精品| АⅤ资源中文在线天堂| 免费av观看视频| 最近中文字幕高清免费大全6 | 天美传媒精品一区二区| 日本成人三级电影网站| 人妻少妇偷人精品九色| 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 99精品在免费线老司机午夜| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 日韩欧美国产一区二区入口| 欧美黑人欧美精品刺激| 国产色婷婷99| 国产精品女同一区二区软件 | 毛片女人毛片| 99国产极品粉嫩在线观看| 人妻久久中文字幕网| 99久久中文字幕三级久久日本| 国产精品电影一区二区三区| 免费观看人在逋| 亚洲精品一卡2卡三卡4卡5卡| 亚洲四区av| 亚洲av中文av极速乱 | 美女高潮喷水抽搐中文字幕| 日韩欧美在线乱码| 我要搜黄色片| 国产视频一区二区在线看| 人妻少妇偷人精品九色| 美女免费视频网站| 又黄又爽又刺激的免费视频.| 欧美性猛交黑人性爽| 免费看光身美女| 精品久久久久久久末码| 久久久久久九九精品二区国产| 麻豆av噜噜一区二区三区| 久久亚洲精品不卡| 日日夜夜操网爽| 亚洲av不卡在线观看| av国产免费在线观看| 国产aⅴ精品一区二区三区波| 久久精品综合一区二区三区| 欧美激情久久久久久爽电影| 在现免费观看毛片| 精品人妻视频免费看| 午夜久久久久精精品| 欧美一区二区国产精品久久精品| 婷婷亚洲欧美| 男人和女人高潮做爰伦理| av中文乱码字幕在线| 中文字幕免费在线视频6| 亚洲av免费在线观看| 国产精品人妻久久久久久| 免费搜索国产男女视频| 一进一出抽搐gif免费好疼| 一级av片app| 国产精品国产三级国产av玫瑰| 欧美最黄视频在线播放免费| 亚洲av一区综合| 九九在线视频观看精品| 亚洲欧美激情综合另类| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 国产伦人伦偷精品视频| 精品一区二区三区视频在线观看免费| 韩国av在线不卡| 草草在线视频免费看| 国产av麻豆久久久久久久| 狠狠狠狠99中文字幕| 日本成人三级电影网站| 一级黄片播放器| 国产蜜桃级精品一区二区三区| 国产伦精品一区二区三区四那| 成人午夜高清在线视频| 国产女主播在线喷水免费视频网站 | 如何舔出高潮| 欧美精品国产亚洲| 国产精品乱码一区二三区的特点| 久久午夜亚洲精品久久| 97人妻精品一区二区三区麻豆| 国产在线精品亚洲第一网站| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 色视频www国产| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜添av毛片 | 欧美+亚洲+日韩+国产| 蜜桃久久精品国产亚洲av| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看 | 中文字幕精品亚洲无线码一区| 日本 av在线| 美女被艹到高潮喷水动态| 久久久久久久精品吃奶| 久久热精品热| 精品久久久久久成人av| 琪琪午夜伦伦电影理论片6080| 免费无遮挡裸体视频| 日韩 亚洲 欧美在线| 国产精品av视频在线免费观看| 赤兔流量卡办理| 欧美成人一区二区免费高清观看| 午夜免费成人在线视频| 久久人妻av系列| 免费观看人在逋| 国内精品美女久久久久久| 婷婷丁香在线五月| 亚洲熟妇中文字幕五十中出| 欧美精品啪啪一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久精品久久久久久噜噜老黄 | 一个人免费在线观看电影| 永久网站在线| 极品教师在线视频| 色哟哟·www| 国产乱人伦免费视频| 在线免费观看不下载黄p国产 | 看黄色毛片网站| 久久久久国内视频| 村上凉子中文字幕在线| 午夜精品一区二区三区免费看| 69人妻影院| 国产爱豆传媒在线观看| 日本三级黄在线观看| 最近视频中文字幕2019在线8| 国产蜜桃级精品一区二区三区| 免费av观看视频| 久久久久九九精品影院| 午夜影院日韩av| 欧美一级a爱片免费观看看| 女人十人毛片免费观看3o分钟| 日韩人妻高清精品专区| 国产在视频线在精品| 噜噜噜噜噜久久久久久91| 在线观看66精品国产| 成年免费大片在线观看| 亚洲av成人av| 国产精品98久久久久久宅男小说| 乱系列少妇在线播放| 丰满的人妻完整版| 欧美人与善性xxx| 麻豆成人午夜福利视频| 精品国产三级普通话版| netflix在线观看网站| 给我免费播放毛片高清在线观看| 亚洲成人中文字幕在线播放| 成人欧美大片| 亚洲av熟女| 亚洲精品亚洲一区二区| 国产色爽女视频免费观看| 一区二区三区四区激情视频 | 网址你懂的国产日韩在线| 国产日本99.免费观看| 天堂动漫精品| 国产乱人伦免费视频| 97超级碰碰碰精品色视频在线观看| 日韩欧美三级三区| 国产精品一区二区三区四区免费观看 | 老司机午夜福利在线观看视频| 国产一区二区在线av高清观看| 又紧又爽又黄一区二区| 一级av片app| 琪琪午夜伦伦电影理论片6080| 九九在线视频观看精品| 91麻豆av在线| 淫秽高清视频在线观看| 国产精品久久久久久久电影| 色av中文字幕| 国产精品日韩av在线免费观看| 国产精品久久久久久久电影|