• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT

    2015-03-21 05:09:11張海軍周儲(chǔ)偉
    關(guān)鍵詞:海軍

    (張海軍), (周儲(chǔ)偉)

    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 8 October 2014; revised 15 May 2015; accepted 19 October 2015)

    Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT

    ZhangHaijun(張海軍),ZhouChuwei(周儲(chǔ)偉)*

    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 8 October 2014; revised 15 May 2015; accepted 19 October 2015)

    The precise microscopic feature of carbon-carbon(C/C) composites is essential for an accurate prediction of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro-computed-tomography(CT) scan can well describe internal microstructures of composites. Therefore, a reconstructed model is developed based on mirco-CT, by a series of prodcedures including extracting components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS, the presented reconstructed FE model is superior in terms of high mesh quality and controllable mesh quantity. The precision of the model is verified by experiment.

    C/C composites; mirco-CT; binary image; reconstructed procedure; finite element model

    0 Introduction

    Carbon-carbon (C/C) composites are ideally suited for those situations where high specific strength and stiffness, low density, corrosion and fatigue resistance and especially high serving temperature are required[1-5]. C/C composite has been widely used in aerospace, aviation, nuclear and other civilized industries[6]. Its service performance is severely influenced by defects during manufacturing process, including voids and irregular yarns′ appearance, as shown in Fig.1.

    Fig.1 Defects of C/C composites observed by microscope

    Based on experimental results, Siron and Lamon[7]discovered the tensile and shear modules of 8-H satin weave C/C composites would be reduced by 25% and 80% due to micro-cracks and voids under loading. Aly-Hassan et al.[8]reported that at room temperature the fatigue limit of C/C laminates reduced from 230 to 213 MPa due to the occurrence of the fiber-matrix interface de-bonding. Not only the modules and strength but also the oxidation behavior are influenced by the microstructure. Han et al.[9]claimed that the zirconium carbide doped C/C composites and the oxidation always started from the voids and cracks at the fiber-matrix interfaces. Jacobson and Curry[10]investigated the oxidation processes of the fine weave C/C composites and revealed that the oxidation occurred firstly from the surfaces and voids. Microstructures are the essential factors to influence mechanical properties and oxidation behaviors of C/C composites.

    To describe microstructures of C/C composites, the distributions and shapes of voids, the real cross-sections, relative positions and longitudinal shapes of real yarns must be focused on. Mirco computed tomography(CT) is an effective technology for detecting microstructures without damage inside body[11-13]. X-ray micro-tomography has its roots in computerized axial tomography(CAT or CT) scans that have been used for medical imaging for over 40 years[14]. Presently, CT has been introduced for modeling in many fields, such as concrete reconstruction[15-17], mannequin reconstruction[18]and foamed aluminum reconstruction[19-21]. In C/C composite researches, CT is used to capture the subsurface features. A geometry model of C/C composite has been successfully reconstructed[22-23], however, the model is too complex to be used for mechanical analysis. Kan[24]did some work on voids statistics and interface extraction, but the investigation was mainly based on a simplified spatial model. Sharma et al.[25]introduced voids and cracks in the ideal model for analyzing their influence on mechanical properties. The model is more complex than the ideal model but still cannot represent real material. Therefore, a sophisticated model is needed.

    Based on micro-CT, a more realistic finite element(FE) model is established. The model takes the voids and real yarns into consideration and is verified by experiments. Some conclusions are drawn.

    1 Reconstruction Procedure

    1.1 Extraction of components

    Results of a CT scan is a gray level image which can be delivered and stored by matrix, thus MATLAB is a favorite tool in CT treatment[26-28].

    CT for fine weave pierced C/C composite is acquired from multi-scale voxel. The general view of the model scope is shown in Fig.2. The side lengths of the cube inX,YandZdirections are 5.42, 5.25 and 5 mm.

    Fig.2 General view of the scope

    Take images ofY-Zplane for example. Since both matrix and reinforcement fibers are carbon, their gray values are close. Due to low contrast, traditional methods, like homogenization of gray value or Gauss wavelet do not work. Therefore, to distinguish the boundaries of components, an appropriate threshold should be determined first.

    Step 1 From the gray level map of CT shown in Fig.3(a), the distribution scope of threshold can be obtained. In the present work,Yyarns are the major content in the image with high intensity and located at the right part of gray level map shown in Fig.4. A value near 150 is the dividing point between yarns and others.

    Fig.3 Original image and local enlarged image

    Fig.4 Gray level map of CT of C/C composite

    Step 2 A local part of original image (Fig.3(a)) which contains boundaries among different components is extracted, as shown in Fig.3(b). The bold white frame near left side of Fig.3(b) involves a boundary between yarn and matrix, the two of which are of close gray value. The corresponding gray value matrix is shown in Fig.5.

    With identity of local image and its matrix, one can get the boundary of yarns marked with bold and gray background in Fig.5. Therefore, the threshold is in range of 147 to 150, and in this work, the value is determined as 150. By many attempts, the results from threshold 147 and 150 are similar.

    Fig.5 The gray value matrix of the enlarged scope

    After resetting the gray value of every position in the images by the threshold, new binary images are obtained, shown in Fig.6(a).The new binary image is identical to the original one but polluted by noises, thus the boundaries are not so smooth. The mid-filter method is then used to eliminate the noises. Filtered results(Fig.6(b)) show that corrosion and inflation are implemented to smooth the boundaries with operator ″line 8×8″ after trial and error. The final binary image with clear and smooth boundaries is obtained, as shown in Figs.6(c, d).

    Fig.6 Binary images after noises removal and boundary smoothing

    By the method and procedures presented above, three groups of yarns, voids and matrix can be acquired conveniently.

    1.2 Reconstruction of FE model

    In engineering applications, composites always contain several components. If each component can be reconstructed, their relative positions in the final assembly will be a thorny problem. To circumvent this difficulty, a new set of unidirectional images containing all components is generated after each component extracted from its original tomography. A typical diagram is shown in Fig.7. The gray value of each component in Fig.7 is listed in Table 1. This new set of images is the source of the reconstructed model.

    Fig.7 Components in the images with different pixel values

    ComponentMatrixVoidZyarnYyarnXyarnGrayvalue040110180255

    The essence of reconstruction is to determine whether components exist in a certain spatial position or not. In this paper, the determination is achieved by matching the gray values between adjacent layers, which is displayed in Fig.8.

    Fig.8 Relationship between elements and gray values in layers

    Only when the gray levels are the same between adjacent layers, the element of corresponding set can be generated, as shown in Fig.8.

    Since the amount of judgment and calculation is large, a special reconstruction program is compiled for automatic operation.

    The output file of the reconstruction program is in INP format, which can be imported to ABAQUS for analysis. The FE model and its components are shown in Fig.9.

    Fig.9 Reconstructed model and components

    Fig.9 reveals the characters of microstructure. The cross-sections ofXyarns andYyarns are an approximate rectangle, and that ofZyarns is circle. In the reconstructed model, the fiber volume fractions in the three direction ofX,YandZare 11%, 16% and 7.4%, respectively. Voids influence the stiffness and strength of C/C composites greatly, so it is important to model them accurately. The voids distribute desultorily. The volume of voids calculated by the reconstructed model is about 4.78%, agreeing with the experimental measurements of 4% to 5%. In order to verify the accuracy of the reconstructed model, a comparison to model from MIMICS is made, shown in Fig.10.

    Fig.10 Comparison between models from MIMICS and the present work

    Fig.10 shows that, the shapes of the two models are similar, but the qualities of the mesh are different. The model from MIMICS contains various dimensional tetrahedral elements and the mesh might be malformed in region where curvature varies sharply. This will lead to big computing error and irreal local stress prediction. The present model contains only hexahedral element with same dimensions and the mesh fineness is adjustable.

    2 Elastic Property Prediction and Experiment Validity

    Due to the periodicity and symmetry of the structure and loading, quarter of the reconstructed model is adopted for calculation of the elastic constants. The elastic modulus and Poisson ratio of carbon matrix is 11 GPa and 0.1, respectively. The yarns consist of T300 fibers whose relevant elastic constants are listed in Table 2.

    Table 2 Elastic constants of T300

    From statistics, average of sectional area ofXyarn is 0.29 mm2,Yyarn 0.43 mm2, andZyarn 0.52 mm2. The yarn inXandYdirections are double strands of 3 000 fiber bundles. The yarns inZdirection are triple strands of 3 000 fiber bundles. Since the diameter of T300 fiber is 7 μm, the filling rate of yarns inX,Y,Zdirections are estimated as 79.6%, 53.7% and 65.8%, respectively. The elastic constants of yarns can be obtained by hybrid method of two phases in composites[29]and the results are presented in Table 3.

    Table 3 Elastic constants of yarns

    In meso-scale, both the architecture and deformation of the fine weave pierced C/C composite are repeated in three spatial directions, therefore, periodic boundary conditions (PBC) must be applied to the unit cell FE model. The principle of PBC was detailed demonstrated by Xia et al.[30], and in ABAQUS. It could be achieved with multi-point constrains (MPC) technology. Finally, three uniaxial tensile loads and three pure shear loads are applied on the FE unit cell to obtain the total nine independent elastic constants for the orthogonal fine weave pierced C/C composite and the result is presented in Table 4.Local maximum principal stress in unit cell under unidirectional uniaxial tensile load alongYdirection is shown in Fig.11. For explicit illustration, the matrix elements are hidden. As expected, theYyarns undertaking most of the load and stress are observed not uniform in meso-scale because of the variation of cross sections and local undulation of yarn. The local stress concentration is important for further strength prediction.

    Table 4 Elastic constants of C/C composites

    Fig.11 Mises-stress state distribution

    Three-point bending test is performed for C/C composite to verify the FE results. Two kinds of specimens with dimensions of length(l)×width(b)×thickness(t)=74 mm×14.8 (or 18) mm×5 mm are prepared. Electronic universal testing machine (WDW-100) is used for loading and indenter displacement measurement. The experimental setup is shown in Fig.12.

    For the test, the displacement loading speed is 0.5 mm/min and indenter force is recorded instantaneously. The elastic modulus is calculated as

    (1)

    where Δpand Δfare the force increment and the deflection increment, respectively. By averaging the measure data within linear elastic response scope, the experimental elastic modulus inYdirection is 27.82 GPa in average and 4.74% bigger than the FE prediction.

    3 Conclusions

    Based on results reported herein, several conclusions are drawn.

    (1) The proposed two-step method can help extracting components from the low contrast micro-CT of C/C composite;

    (2) The model reconstructed by the proposed procedures is accurate;

    (3) The generated meshes of the model are high quality and controllable.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11272147, 10772078), the Aviation Science Foundation (No.2013ZF52074), the State Key Laboratory of Mechanical Structural Mechanics and Control (No.0214G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    [1] Windhorst T, Blount G. Carbon-carbon composites: A summary of recent developments and applications [J]. Materials & Design, 1997, 18(1): 11-15.

    [2] Fitzer E. The future of carbon-carbon composites [J]. Carbon, 1987, 25(2): 163-190.

    [3] Luo Ruiying. Present study situation and technology of preparation for carbon/carbon composites[J]. Ordnance Material Science and Engineering, 1998, 21(1): 62-66.

    [4] Buckley D, Edie D D. Carbon-carbon materials and composites [M]. New Jersey, USA: Noyes Publications, 1993:1-2.

    [5] Sheehan J E, Buesking K W, Sullivan B J. Carbon-carbon composites [J]. Annual Review of Materials Science, 1994, 24: 19-44.

    [6] Chareire J L, Dupupet G. Brake disc of carbon-carbon composite material:US 4457967[P]. 1984-7-3.

    [7] Siron O, Lamon J. Damage and failure mechanisms of A3-directional carbon/carbon composite under uniaxial tensile and shear loads [J]. Acta Materialia, 1998, 46(8): 6631-6643.

    [8] Aly-Hassan M S, Hatta H, Wakayama S, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J]. Carbon, 2003, 41(5): 1069-1078.

    [9] Han J C, He X D, Du S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3000 °C[J]. Carbon, 1995, 33(4): 473-478.

    [10]Jacobson N S, Curry D M. Oxidation microstructure studies of reinforced carbon/carbon [J]. Carbon, 2006, 44(7): 1142-1150.

    [11]Landis E N, Keane D T. X-ray micro-tomography [J]. Materials Characterization, 2010, 61(12): 1305-1316.

    [12]Feng Yanzhang, Feng Zude, Li Siwei, et al. Micro-CT characterization on microstructure of C/SiC composites [J]. Journal of Aeronautical Materials, 2011(2): 49-54.

    [13]Somashekar A A, Bickerton S, Bhattacharyya D. Compression deformation of a biaxial stitched glass fibre reinforcement: Visualisation and image analysis using X-ray micro-CT [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 140-150.

    [14]Feng Yanzhang, Feng Zude, Liu Yongsheng, et al. Micro-CT analysis of high temperature creep damage of 2D C/SiC composites [J]. Heat Treatment of Metals, 2011, 36(S1): 482-485.

    [15]Liang Limin, Yu Hongfa, Pan Zhefeng. Actual meso-structure based three-dimensional reconstruction of porous concrete [J]. Journal of Hohai University: Natural Science, 2010, 38(4):424-427.

    [16]Qin Wu, Du Chengbin. Meso-level model of three-dimensional concrete based on the CT slices [J]. Engineering Mechanics, 2012, 29(7):186-193.

    [17]Jiang Yuan, Bai Wei, Qi Yongle, et al. Reconstruction of 3D model of concrete mesa structure with CT original data [J]. Journal of China Three Gorges University: Natural Sciences, 2008, 30(1): 52-55.

    [18]Mu Weibin, Zhang Shuli. Investigation and achievement of three dimensions reconstruction for CT fault image by Matlab [J]. Journal of Qiqihar University, 2009, 25(1): 33-35.

    [19]Li Peng, Wang Min, Qi Xiaoli. Mechanical properties of aluminum foam based on synchrotron radiation computed-tomography[J]. Journal of Material Science & Engineering, 2011, 296:916-919.

    [20]Vesenjak M, Veyhl C, Fiedler T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541(16): 105-109.

    [21]Helfen L, Baumbach T, Stanzick H, et al. Viewing the early stage of metal foam formation by computed tomography using synchrotron radiation [J]. Advanced Engineering Materials, 2002, 4(10): 808-813.

    [22]Martín-Herrero J, Germain C. Microstructure reconstruction of fibrous C/C composites from X-ray micro tomography [J]. Carbon, 2007, 45(6): 1242-1253.

    [23]Martín-Herrero J. Hybrid object labelling in digital images [J]. Machine Vision and Applications, 2007, 18(11): 1-15.

    [24]Kan Jin. Micro and meso structures and their influence on effective properties of carbon/carbon composites [D]. Heilongjiang: Harbin Institute of Technology, 2010.(in Chinese)

    [25]Sharma R, Mahajan P, Mittal R K. Image-based finite element analysis of 3D-orthogonal carbon-carbon composite[C]∥Proceedings of the World Congress on Engineering. London, UK:WCE,2010:1597-1601.

    [26]Zeng Zheng, Dong Fanghua, Chen Xiao, et al. Three dimensions reconstruction of CT image by MATLAB [J]. CT Theory and Applications, 2004, 13(2): 24-29.

    [27]Zhang Aidong, Li Ju, Sun Lingxia. Three dimensional reconstruction of continuous ICT images by MATLAB [J]. Nuclear Electronics & Detection T echnology, 2006, 2604: 489-491.

    [28]Nixon M S, Aguado A S. Feature extraction and image processing second edition [M].Li Shiying, Yang Gaobo, translator. Beijing: Publishing House of Electronics Industry, 2011.

    [29]Chamis C C. Mechanics of composite materials: Past, present and future [R]. NASA TM- 100793, 1989.

    [30]Xia Z, Zhou C, Yong Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites [J]. International Journal of Solids and Structures, 2006, 43(2): 266-278.

    (Executive Editor: Zhang Bei)

    TB322 Document code: A Article ID: 1005-1120(2015)06-0639-07

    *Corresponding author: Zhou Chuwei, Professor, E-mail: zcw@nuaa.edu.cn.

    How to cite this article: Zhang Haijun,Zhou Chuwei. Three-dimensional reconstructed finite element model for C/C composites by micro-CT[J].Trans.Nanjing U.Aero.Astro., 2015, 32(6):639-645. http://dx.doi.org/10.16356/j.1005-1120.2015.06.639

    猜你喜歡
    海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
    我的海軍之夢(mèng)
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    海軍行動(dòng)
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration
    近代中國(guó)海軍的早期教育
    軍事歷史(1993年3期)1993-08-21 06:16:06
    清末海軍一次引人注目的軍艦出訪
    軍事歷史(1992年6期)1992-08-15 06:25:16
    国产免费现黄频在线看| 777米奇影视久久| 伊人亚洲综合成人网| 日韩,欧美,国产一区二区三区| 国产av一区二区精品久久| 精品人妻一区二区三区麻豆| 天堂俺去俺来也www色官网| 国产片特级美女逼逼视频| 国产成人精品久久二区二区免费| 国产亚洲午夜精品一区二区久久| 少妇人妻久久综合中文| 后天国语完整版免费观看| 肉色欧美久久久久久久蜜桃| 视频区欧美日本亚洲| 亚洲第一青青草原| 99久久人妻综合| 婷婷成人精品国产| 中文乱码字字幕精品一区二区三区| 中文字幕高清在线视频| 一区二区三区四区激情视频| 免费av中文字幕在线| 中文精品一卡2卡3卡4更新| 黄色片一级片一级黄色片| 久久性视频一级片| 视频在线观看一区二区三区| 亚洲国产精品一区二区三区在线| 国产高清不卡午夜福利| 精品人妻熟女毛片av久久网站| 国产欧美日韩一区二区三 | 久久久久久亚洲精品国产蜜桃av| 国产av一区二区精品久久| 色哟哟哟哟哟哟| 国产视频一区二区在线看| 亚洲国产精品合色在线| 亚洲专区字幕在线| 麻豆一二三区av精品| 91大片在线观看| 国产精品永久免费网站| 免费在线观看成人毛片| 国产成人一区二区三区免费视频网站| 国产色视频综合| 日韩高清综合在线| 免费人成视频x8x8入口观看| 精品免费久久久久久久清纯| 日韩视频一区二区在线观看| 女性生殖器流出的白浆| 久久香蕉国产精品| 国产黄a三级三级三级人| 亚洲熟妇中文字幕五十中出| 国产免费av片在线观看野外av| 欧美黑人精品巨大| 国产一区二区三区视频了| 国产精品1区2区在线观看.| 欧美不卡视频在线免费观看 | 久久草成人影院| 国产精品亚洲av一区麻豆| 精品欧美国产一区二区三| 嫁个100分男人电影在线观看| 国产成人影院久久av| 亚洲一码二码三码区别大吗| 亚洲精品中文字幕一二三四区| 久久中文字幕人妻熟女| 露出奶头的视频| 成在线人永久免费视频| av在线天堂中文字幕| 国产精品av久久久久免费| 一个人免费在线观看的高清视频| 国产一区二区激情短视频| 18禁美女被吸乳视频| 日韩三级视频一区二区三区| 欧美黄色片欧美黄色片| 黄色视频不卡| 亚洲精品美女久久久久99蜜臀| 香蕉av资源在线| 久久天堂一区二区三区四区| 一区二区日韩欧美中文字幕| 亚洲国产精品久久男人天堂| 国产单亲对白刺激| 欧美+亚洲+日韩+国产| 18禁黄网站禁片免费观看直播| 欧美+亚洲+日韩+国产| 男女床上黄色一级片免费看| 成人午夜高清在线视频 | 亚洲,欧美精品.| 国产亚洲精品久久久久5区| 精品一区二区三区四区五区乱码| 制服人妻中文乱码| 在线观看66精品国产| 无遮挡黄片免费观看| 叶爱在线成人免费视频播放| 日本撒尿小便嘘嘘汇集6| 淫妇啪啪啪对白视频| 国产视频一区二区在线看| 两个人免费观看高清视频| 大型av网站在线播放| 久久久久国产一级毛片高清牌| 国产伦一二天堂av在线观看| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 一卡2卡三卡四卡精品乱码亚洲| 好看av亚洲va欧美ⅴa在| 午夜福利在线在线| 久久中文字幕人妻熟女| 亚洲av电影不卡..在线观看| 亚洲五月色婷婷综合| 国产蜜桃级精品一区二区三区| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 中文字幕高清在线视频| 亚洲国产精品999在线| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区| 一级a爱视频在线免费观看| 日本 av在线| 人成视频在线观看免费观看| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 精品少妇一区二区三区视频日本电影| 亚洲av美国av| 热99re8久久精品国产| 成人精品一区二区免费| 国产真人三级小视频在线观看| 亚洲精品中文字幕一二三四区| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 国产av一区二区精品久久| 视频在线观看一区二区三区| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站 | 亚洲第一青青草原| 国产真实乱freesex| 日日爽夜夜爽网站| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| x7x7x7水蜜桃| 久久精品亚洲精品国产色婷小说| www日本黄色视频网| 精品免费久久久久久久清纯| 日韩欧美在线二视频| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 国产精品 国内视频| 午夜久久久久精精品| 亚洲国产高清在线一区二区三 | 熟女少妇亚洲综合色aaa.| 国产黄片美女视频| 十八禁网站免费在线| 91国产中文字幕| 日韩大尺度精品在线看网址| 91成人精品电影| 狠狠狠狠99中文字幕| 法律面前人人平等表现在哪些方面| 亚洲五月色婷婷综合| 十八禁网站免费在线| 热99re8久久精品国产| 欧美乱色亚洲激情| 1024香蕉在线观看| 亚洲人成伊人成综合网2020| 欧美精品亚洲一区二区| 国产午夜精品久久久久久| 久久这里只有精品19| 日韩国内少妇激情av| 男女下面进入的视频免费午夜 | 一本综合久久免费| 在线永久观看黄色视频| 三级毛片av免费| 国产伦一二天堂av在线观看| 免费在线观看完整版高清| 别揉我奶头~嗯~啊~动态视频| 热re99久久国产66热| 久久久国产欧美日韩av| 亚洲成av人片免费观看| 国产伦在线观看视频一区| 中文字幕人成人乱码亚洲影| 1024手机看黄色片| 欧美国产精品va在线观看不卡| 久热这里只有精品99| 91国产中文字幕| 热re99久久国产66热| 中文字幕人成人乱码亚洲影| 精品熟女少妇八av免费久了| 婷婷亚洲欧美| 久久久水蜜桃国产精品网| 欧美色欧美亚洲另类二区| 欧美日韩瑟瑟在线播放| 国产成年人精品一区二区| 黄色片一级片一级黄色片| 欧美绝顶高潮抽搐喷水| 日本精品一区二区三区蜜桃| 成人三级做爰电影| 午夜视频精品福利| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频| 国产av一区二区精品久久| 久久香蕉激情| 变态另类成人亚洲欧美熟女| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 成人一区二区视频在线观看| 在线观看一区二区三区| 国产麻豆成人av免费视频| 日本熟妇午夜| 国产精品日韩av在线免费观看| www国产在线视频色| 久久国产精品影院| 国产精品自产拍在线观看55亚洲| 久久午夜综合久久蜜桃| 成人三级黄色视频| 久99久视频精品免费| 亚洲自偷自拍图片 自拍| 久久天堂一区二区三区四区| 久久久久久亚洲精品国产蜜桃av| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 悠悠久久av| 少妇裸体淫交视频免费看高清 | 丁香六月欧美| 久久婷婷人人爽人人干人人爱| 国产熟女午夜一区二区三区| 欧美精品亚洲一区二区| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 日韩精品青青久久久久久| 亚洲一码二码三码区别大吗| 色综合婷婷激情| av欧美777| 99在线视频只有这里精品首页| 国产伦在线观看视频一区| 国产精品,欧美在线| 精品无人区乱码1区二区| 在线观看66精品国产| 淫秽高清视频在线观看| 久久午夜综合久久蜜桃| av在线播放免费不卡| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 亚洲无线在线观看| 中文字幕最新亚洲高清| 亚洲第一av免费看| xxxwww97欧美| 999久久久精品免费观看国产| 久久中文字幕一级| 亚洲精品av麻豆狂野| 18禁黄网站禁片免费观看直播| 制服诱惑二区| 国产乱人伦免费视频| 美女高潮到喷水免费观看| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| 免费看十八禁软件| 欧美 亚洲 国产 日韩一| 久久久久久久久久黄片| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 精品久久久久久久末码| 成人永久免费在线观看视频| 黄色视频不卡| 中文在线观看免费www的网站 | 亚洲人成77777在线视频| 中文字幕最新亚洲高清| 男人舔女人下体高潮全视频| 亚洲欧美激情综合另类| 久久久久久免费高清国产稀缺| 嫩草影院精品99| 天堂影院成人在线观看| 18禁黄网站禁片免费观看直播| 国产欧美日韩一区二区精品| 国产精品免费视频内射| 欧美成人性av电影在线观看| 热re99久久国产66热| 国产欧美日韩一区二区三| 两人在一起打扑克的视频| 亚洲 欧美 日韩 在线 免费| 久久亚洲真实| 熟妇人妻久久中文字幕3abv| 女性生殖器流出的白浆| 九色国产91popny在线| 在线视频色国产色| x7x7x7水蜜桃| 久久久久久九九精品二区国产 | 美女扒开内裤让男人捅视频| 亚洲真实伦在线观看| 男人的好看免费观看在线视频 | 欧美一区二区精品小视频在线| 人成视频在线观看免费观看| 中文字幕精品免费在线观看视频| 国产午夜精品久久久久久| 黄色丝袜av网址大全| 2021天堂中文幕一二区在线观 | 国产野战对白在线观看| 久久久精品国产亚洲av高清涩受| 国产午夜福利久久久久久| 久久精品国产亚洲av高清一级| 窝窝影院91人妻| 国产免费av片在线观看野外av| 男女那种视频在线观看| 日韩精品青青久久久久久| 俺也久久电影网| 老司机深夜福利视频在线观看| 亚洲成av片中文字幕在线观看| 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看 | 国产aⅴ精品一区二区三区波| 亚洲精品一区av在线观看| 91国产中文字幕| 欧美不卡视频在线免费观看 | 午夜老司机福利片| 国产成人欧美| 久久九九热精品免费| 成人国产综合亚洲| 亚洲九九香蕉| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| 在线看三级毛片| 亚洲成人久久性| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲性夜色夜夜综合| 看免费av毛片| 亚洲成av片中文字幕在线观看| 高清在线国产一区| 国产蜜桃级精品一区二区三区| 色综合欧美亚洲国产小说| 亚洲av成人不卡在线观看播放网| 麻豆成人午夜福利视频| 久久精品91蜜桃| 国产精品久久久久久人妻精品电影| 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| 一级毛片女人18水好多| 亚洲成av片中文字幕在线观看| 成人18禁在线播放| 一区福利在线观看| 精品日产1卡2卡| 2021天堂中文幕一二区在线观 | 无遮挡黄片免费观看| 国产国语露脸激情在线看| 国产一级毛片七仙女欲春2 | 久久久久免费精品人妻一区二区 | 嫩草影视91久久| 色在线成人网| 亚洲一码二码三码区别大吗| 99riav亚洲国产免费| 国产亚洲欧美精品永久| 欧美最黄视频在线播放免费| 国产真人三级小视频在线观看| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 国产精品久久久av美女十八| 特大巨黑吊av在线直播 | svipshipincom国产片| 亚洲美女黄片视频| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 久99久视频精品免费| 老司机靠b影院| 精品欧美国产一区二区三| 熟女电影av网| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 国产亚洲av高清不卡| 在线观看午夜福利视频| 国产99白浆流出| 在线观看免费日韩欧美大片| 久久婷婷成人综合色麻豆| 最近在线观看免费完整版| 久久久久久免费高清国产稀缺| 久久性视频一级片| 久久久国产欧美日韩av| 精品午夜福利视频在线观看一区| 久久精品aⅴ一区二区三区四区| 午夜成年电影在线免费观看| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| 草草在线视频免费看| 99热这里只有精品一区 | 曰老女人黄片| 久久天躁狠狠躁夜夜2o2o| 精品不卡国产一区二区三区| tocl精华| 精品电影一区二区在线| 精品一区二区三区四区五区乱码| 在线视频色国产色| 午夜成年电影在线免费观看| 日韩欧美三级三区| 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 久久精品亚洲精品国产色婷小说| 人成视频在线观看免费观看| 亚洲人成网站在线播放欧美日韩| 久9热在线精品视频| 少妇粗大呻吟视频| xxxwww97欧美| 亚洲国产看品久久| 黄色丝袜av网址大全| 免费在线观看完整版高清| 人妻丰满熟妇av一区二区三区| 亚洲av成人av| 一区二区三区国产精品乱码| 制服丝袜大香蕉在线| 一进一出好大好爽视频| 男女那种视频在线观看| 欧美激情极品国产一区二区三区| 精品卡一卡二卡四卡免费| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 日本成人三级电影网站| 午夜精品在线福利| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 欧美av亚洲av综合av国产av| 亚洲男人的天堂狠狠| 男女做爰动态图高潮gif福利片| 欧美大码av| 亚洲熟妇中文字幕五十中出| 精品卡一卡二卡四卡免费| 国产亚洲精品久久久久5区| 欧美不卡视频在线免费观看 | 欧美久久黑人一区二区| 日韩三级视频一区二区三区| 亚洲在线自拍视频| 久久精品国产亚洲av香蕉五月| 欧洲精品卡2卡3卡4卡5卡区| 18禁国产床啪视频网站| 午夜久久久在线观看| 亚洲精品一区av在线观看| 91麻豆av在线| 黄片小视频在线播放| 怎么达到女性高潮| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 男人的好看免费观看在线视频 | 亚洲av日韩精品久久久久久密| 国产伦在线观看视频一区| 日韩av在线大香蕉| 国产午夜福利久久久久久| 日本一区二区免费在线视频| 色在线成人网| 国产高清videossex| 美女高潮喷水抽搐中文字幕| 波多野结衣巨乳人妻| 叶爱在线成人免费视频播放| 国产精品免费视频内射| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 校园春色视频在线观看| 欧美激情 高清一区二区三区| 啦啦啦韩国在线观看视频| or卡值多少钱| 亚洲色图av天堂| 青草久久国产| 午夜久久久久精精品| 国产黄a三级三级三级人| 9191精品国产免费久久| 亚洲av熟女| 女同久久另类99精品国产91| 中文字幕人妻熟女乱码| 男人舔奶头视频| 精品日产1卡2卡| 欧美激情 高清一区二区三区| 看片在线看免费视频| 丝袜美腿诱惑在线| 国产精品1区2区在线观看.| 青草久久国产| 2021天堂中文幕一二区在线观 | 在线天堂中文资源库| 91在线观看av| 久久天躁狠狠躁夜夜2o2o| 一区二区三区高清视频在线| 在线av久久热| 久久中文看片网| 黄色毛片三级朝国网站| 欧美zozozo另类| 黄网站色视频无遮挡免费观看| 日韩有码中文字幕| 搡老岳熟女国产| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩精品亚洲av| 久久精品国产综合久久久| 一级片免费观看大全| 12—13女人毛片做爰片一| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三| 真人做人爱边吃奶动态| 免费搜索国产男女视频| 丝袜在线中文字幕| 国产v大片淫在线免费观看| 91麻豆精品激情在线观看国产| 日日摸夜夜添夜夜添小说| 欧美成人性av电影在线观看| 身体一侧抽搐| 在线av久久热| 99热只有精品国产| 国产亚洲精品av在线| 99久久无色码亚洲精品果冻| 黄色 视频免费看| 亚洲免费av在线视频| 婷婷六月久久综合丁香| 黄片播放在线免费| 亚洲九九香蕉| 亚洲国产高清在线一区二区三 | 久久久久久人人人人人| 成人亚洲精品av一区二区| 老汉色av国产亚洲站长工具| 欧美精品啪啪一区二区三区| 麻豆国产av国片精品| 国产野战对白在线观看| 两个人看的免费小视频| av在线天堂中文字幕| 侵犯人妻中文字幕一二三四区| 欧美日韩福利视频一区二区| av欧美777| 成人欧美大片| 老鸭窝网址在线观看| 成人av一区二区三区在线看| 久久久久国产一级毛片高清牌| 99精品欧美一区二区三区四区| 欧美乱码精品一区二区三区| 黄片大片在线免费观看| 亚洲成人精品中文字幕电影| 国产又黄又爽又无遮挡在线| 天天添夜夜摸| 一区二区三区激情视频| 国产单亲对白刺激| 免费高清视频大片| 国产精品国产高清国产av| 真人一进一出gif抽搐免费| 美女免费视频网站| 免费观看精品视频网站| 日本a在线网址| 老司机靠b影院| 成人亚洲精品av一区二区| 19禁男女啪啪无遮挡网站| 欧美日韩瑟瑟在线播放| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕| 在线国产一区二区在线| 69av精品久久久久久| 一级a爱视频在线免费观看| 嫁个100分男人电影在线观看| 国产爱豆传媒在线观看 | 欧美大码av| 在线免费观看的www视频| 精品一区二区三区av网在线观看| 黄色视频不卡| 熟妇人妻久久中文字幕3abv| 亚洲黑人精品在线| 亚洲国产高清在线一区二区三 | 香蕉久久夜色| 久久人妻福利社区极品人妻图片| 亚洲va日本ⅴa欧美va伊人久久| 性色av乱码一区二区三区2| 美国免费a级毛片| 制服丝袜大香蕉在线| 久久久久国产精品人妻aⅴ院| 成在线人永久免费视频| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区| 久久青草综合色| 国产精品二区激情视频| 一级毛片精品| 亚洲欧美一区二区三区黑人| 脱女人内裤的视频| 女性生殖器流出的白浆| 91九色精品人成在线观看| 大型av网站在线播放| 亚洲精品在线美女| 在线av久久热| 黄片小视频在线播放| 首页视频小说图片口味搜索| 久久99热这里只有精品18| 黄色丝袜av网址大全| 国产精品九九99| 9191精品国产免费久久| 久久香蕉国产精品| 国产1区2区3区精品| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 欧美日韩福利视频一区二区| www日本黄色视频网| 91老司机精品| 国产一区二区在线av高清观看| 女人爽到高潮嗷嗷叫在线视频| 日本 欧美在线| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 日韩 欧美 亚洲 中文字幕| 国产99久久九九免费精品| 亚洲av第一区精品v没综合| 亚洲va日本ⅴa欧美va伊人久久| 久久久久国内视频| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 国产精品香港三级国产av潘金莲| 亚洲欧洲精品一区二区精品久久久| 色综合站精品国产| 免费无遮挡裸体视频| 久9热在线精品视频| 村上凉子中文字幕在线| 成人18禁高潮啪啪吃奶动态图|