• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Tip-Blade Cutting on the Performance of Large Scale Axial Fan

    2015-03-21 05:09:06尹超胡駿嚴(yán)偉張晨凱

    (尹超), (胡駿), (嚴(yán)偉), (張晨凱)

    Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 4 November 2014; revised 24 March 2015; accepted 25 May 2015)

    Effect of Tip-Blade Cutting on the Performance of Large Scale Axial Fan

    YinChao(尹超),HuJun(胡駿)*,YanWei(嚴(yán)偉),ZhangChenkai(張晨凱)

    Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 4 November 2014; revised 24 March 2015; accepted 25 May 2015)

    The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics (CFD) methods. Experiments verified the numerical simulations. The original fan was compared with the one with tip-cutting in terms of dimensionless characteristic and aerodynamic performance in tip region under the conditions of the maximum efficiency point and near-stall point. The results showed that double leakage flow occurred in tip clearance at maximum efficiency point and spillage of leakage flow from leading edge occurred in tip-blade region at near-stall point for the both two fans; and that tip-cutting with 6% of blade height could reduce the intensity of tip-leakage vortex and increase flow capacity in tip blade region, and hold the stall margin almost the same as the original fan. The maximum efficiency of the fan with tip-cutting was improved by 1%, and the ability of total pressure rising was obviously greater than the original fan.

    large axial fan; tip-blade cutting; numerical simulation; tip-leakage vortex; flow capacity

    0 Introduction

    Large axial ventilated fan is critical for cooling tower in electric power plant. In practice, a fixed fan series cannot perfectly fit all working environments. When a certain fan is a bit larger than the requirement, it is wise to cut the blade tip to avoid costly redesigning. Tip-cutting can change the flow range and even the pressure range when combined together with blade number change. Therefore, a certain fan mold can be transformed into a series of fans, which greatly decreases production cost and improves the manageability of quality. However, tip-cutting brings about problems of dynamic performance and stability, which need further investigation.

    Tip-cutting is a way of tip-treating, and many researchers have focused on tip-treating for compressor. Zhong Jingjun et al.[1]used a blade tip winglet to control the secondary flow and found that the winglet was the most effective one to weaken the intensity of the leakage flow. Shao Weiwei et al.[2]condacted some parameter studies on different attenuation thicknesses and relative height of pressure surface at tip region and indicated that blade tip attenuation within a certain range could advance choke mass flow, total pressure ratio and adiabatic efficiency. Yuan Wei et al.[3]analyzed the effect between tip clearance and casing treatment in turbomachinery, while many researchers emphasized the effect of changing tip clearance on the performance of axial compressor. Lakshminarayana et al.[4]measured the relative stagnation pressure losses in the tip region of a single-stage axial-flow compressor and suggested that the tip clearance losses increased with an increase of pressure-rise coefficient. Inoue et al.[5]measured the rotor exit flow near the rotor tip and clarified the behavior of tip leakage vortex for various tip clearances. Qiu Ming et al.[6]used a numerical optimization method for aerodynamic design of compressor blade. In his research, arbitrary rotary surface blade profiles and 3-D blade were developed for a small axial compressor with high pressure ratio. When the designed rotor reached a given pressure ratio and a mass flow rate, it had a relatively high efficiency and a large stabilization working range.

    The flow in axial ventilation fan is exactly the same with that of low speed axial compressor. However, as its total pressure ratio is smaller, its rotational speed is lower and its fan blade number is fewer. Ventilation fan and compressor have some similarities and some differences. Wang Jun et al.[7]investigated the influence of tip clearance on external performance and tip leakage vortex of low-pressure axial fan, and found that with the increase of tip clearance, the leakage flow disappeared, and was replaced by leakage vortex. Zhu Xiaocheng et al.[8]launched an experimental study on the tip leakage flow of an axial fan and found that for the ventilation fan with low speed and low pressure, the tip leakage flow also had a chance to roll up into a discrete vortex at three different tip clearances.

    Obviously, tip-cutting is different from tip clearance changing, but few researchers have paid attention to tip-cutting for axial fan. Lv Feng et al.[9]preliminarily studied the blade cutting effects on the performance of large axial-flow fan, and found that for the cases of hub-tip ratio changing from 0.56 to 0.65, the dimensionless characteristics of original fan could still be used for performance prediction of the blade-cut fans. However, they did not provide the influence and mechanism of blade-cutting on the performance of large axial fan at all.

    Therefore, the characteristics of large axial ventilation fans both with and without tip-cutting are investigated in detail. Moreover, tip flow fields of the two fans are numerically investigated to elucidate the loss generation mechanism.

    1 Numerical Study

    1.1 Description of the fan and tip-cutting

    A large low-speed axial-flow original fan is shown in Fig.1(a), and its design specifications are listed in Table 1. The fan has no stator, and its rotor tip diameter is 8 450 mm with a tip clearance of 25 mm. The hub-tip ratio is 0.142 and the number of rotor blades is 8. The design stagger angle of the fan is 26°.

    Due to size limit of cooling tower, the original fan blade (marked as A in Fig.1(b)) is cut by 250 mm, which is 6% of the blade length. The new tip-cutting fan (marked as B in Fig.1(b)) holds the same tip clearance as fan A, and its hub-tip ratio is up to 0.151. Fig.1(b) shows the geometry comparison of the two fan blades.

    Fig.1 Original geometry of the fan and blade comparison

    Tipdiameter/mm8450Hub/tipratio0.142Tipclearance/mm25Numberofblades8Rotationspeed/(rad·min-1)155Designstaggerangle/(°)26

    1.2 Numerical algorithm

    Fig.2 shows the computational domain and model for this study. The inlet boundary is placed one blade height upstream from the rotor center, and the outlet boundary is placed one and a half blade heights downstream from the rotor center.

    The computational grid is generated using the NUMECA AutoGrid5TM(Automated Grid Generator). The grid in tip clearance consists of 17 nodes in the span-wise direction. The grid in one blade passage contained 2 019 125 nodes. The minimum grid space asy+<3 is on the walls.

    Fig.2 Fan meridian computational domain and blade surface mesh

    Three-dimensional compressible steady RANS simulations are carried out using the commercial code NUMECA FINETM. A Spalart-Allmaras turbulence model is applied. The total pressure is 101 325 Pa. Total temperature is 288.15 K. And axial inlet flow angle is specified at the inlet boundary. The radial equilibrium static pressure is specified at the outlet boundary. The air mass flow rate change with the outlet static pressure.

    The fan shaft power can be obtained as[10]

    (1)

    Total pressure rise of the fan is defined as the difference between the total pressure of the outlet and that of the inlet

    (2)

    where the subscripts ″in″ and ″out″ denote the plane close to the leading and the trailing edges of the fan blade, respectively.

    Total pressure efficiency of the fan is defined as

    (3)

    The flow coefficient is defined as

    (4)

    The total pressure coefficient is defined as

    (5)

    whereQis the volume flow rate,UandAare the tip blade tangential speed and the through flow area, respectively.

    2 Validation of Numerical Simulation

    Due to its large scale, it is too costly to test the original fan, but there is an alternative. Similarity theory[10]illustrates that if two fans are similar in geometry, their dimensionless characteristics are equal with a same flow coefficient, no matter what their scales or rotational speeds are. Therefore, we develop a geometry-similar fan with fan B by reducing the diameter from 8 to 1.6 m, then test the new fan′s performance.

    The tip chord to blade height ratio of fan B is 0.131, same with its geometry-similar fan. The new fan′s stagger angle is 18°, same with the numerical simulation for fan B. The rotational speed of the test fan is 730 rad/min; while that of fan B is 155 rad/min.

    Fig.3 shows the comparisons between test and CFD results in terms of flow coefficient-efficiency recation and flow coefficient-total pressure coefficient relation. Fig.3(a) shows that although the test curve shifts to the left of the CFD curve, there are still at least 4 test points match well with the CFD results, and the max efficiency error is less than 3%. Fig.3(b) shows the same tendancy. This validates the reliability of the numerical simulations.

    Fig.3 Dimensionless characteristic comparison between test and CFD results

    3 Discussions and Analyses

    3.1 Characteristic comparison

    Since there is no geometry similarity between the two fans, dimensionless parameters are needed to compare the two fans′ performances[10]. Comparisons between the two fans in terms of efficiency and total pressure coefficient characteristics are shown in Fig.4. All computed results are steady-state simulations. A near-stall point is set as ″solution limit″ to prevent the simulation converging to steady state.

    Fig.4(a) shows that flow coefficient and efficiency curves of the two fans exibit almost the same tendency at the near-stall point, i.e. the solution limit, indicating that cutting off 6% of blade cannot change the steady margin. The efficiency of fan B increases to a higher level than fan A when the flow coefficient is gradually increased, and the difference between the two fans′ maximum efficiencies is 1.5%, which implies that the tip-cutting fan operates better than the original fan at high flow coefficients.

    In Fig.4(b), flow coefficient-total pressure coefficient relations of the two fans are compared. The total pressure coefficient increases when the flow coefficient decreases, and at the same flow coefficient point, total pressure of fan B is higher than that of fan A.

    Fig.4 Fan dimensionless characteristics comparison

    Fig.5 Radial distribution of isentropic efficiency at maximum efficiency point

    3.2 Tip flow field comparison

    Fig.5 shows the spanwise distributions of maximum isentropic efficiency of the two fans. The isentropic efficiency is defined as

    (6)

    Fig.5 shows that both isentropic efficiency curves show ″bow″ type distributions in the spanwise direction, wherer/Ris the relative blade height. In the region less than 15% blade height, the isentropic efficiency is below 0. As the flow speed is low here, the main consideration for this part of blade is the structural strength. The isentropic efficiency of the two fans has little difference between 35%—90% blade heights, while fan B shows a higher isentropic efficiency than fan A in more than 90% of the blade height including tip clearance. This indicates that tip-cutting can greatly influence tip flow field. As the tip rim speed is high, the flow in this region leaves a large proportion of entire-channel flow. The efficiency in this area has a great influence on the entire efficiency of the fan. Therefore, the whole area needs a thorough analysis.

    Fig.6 shows the relative velocity streamlines in three tip clearance sections at maximum efficiency points of the two fans. The red, green, and blue lines represent the surface flow lines in the blade tip, 50% tip clearance and 90% tip clearance sections, respectively. The surface flow line is the projection of the relative velocity streamline on the surface. All the surface flow lines which start from the leading edge converge to one line after a short development. Each converged line reflects the leading edge of the tip leakage vortex in its surface.

    Fig.6 Tip-leakage vortex and casing wall pressure distribution at maximum efficiency point

    The tip leakage flow line starting at the leading edge of the blade reaches to adjacent blade tip clearance after a blade passage development, and a secondary leakage flow occurs in the tip clearance. This secondary leakage flow together with the local leakage flow forms a double-leakage flow. And the surface flow line in tip section reaches the exit of the adjacent blade. In contrast, the secondary leakage flow of fan B is closer to the local blade trailing edge than fan A (blue and green lines), and the surface flow line in blade tip section of fan B reaches the exit further away from the pressure side of the adjacent blade (red lines) without secondary leakage flow, indicating that the circumferential development of the tip leakage vortex in fan B is weakened to some extent compared to fan A; and that the flow capacity in tip region is improved after tip-cutting.

    Fig.7 presents tip leakage vortex and entropy distribution at maximum efficiency point, whereSis the entropy. The tip leakage vortex is identified by the vortex core and the tip leakage streamlines from the leading edge. The vortex core is colored by the normalized helicityHn[11], which is defined as

    (7)

    whereζ,Wdenote vectors of the absolute vorticity and relative flow velocity, respectively.

    The normalized helicityHncharacterizes the directional correlation of the absolute vorticity and relative flow velocity. The magnitude ofHntakes the value of unity anywhere the streamwise vortex is presented. It can assess the nature of vortex quantitatively, even when the vorticity decays. The sign ofHnrepresents the direction of swirl relative to the streamwise velocity component at the vortex axis. The point where the sign of it on the vortex core changes from negative to positive is the place where the tip-leakage vortex core is formed or broken. The pointAin Fig.7 is the starting position at which the tip leakage vortex is formed.Hnon the vortex core is almost +1 after the vortex is formed. Due to the presence of streamwise vortex, the vortex core is believed to represent the tip leakage vortex rolling up clockwise from the leading edge of the rotor tip. The difference between the two fans is that pointAin fan A is closer to the leading edge, which could induce a larger low-energy fluid region. One could see it from the entropy distribution in all planes.

    Fig.7 Tip-leakage vortex and entropy distribution at maximum efficiency point

    From the entropy distribution map we can clearly see the leakage vortex occurs in the suction side of blade tip. The entropy production in the tip region of fan A is obviously greater than that of fan B. The greater entropy production is, the more energy losts. The tip leakage vortex spreads after pointA, which could greatly reduce the tip flow capacity.

    In Fig.8, the distribution of static pressure coefficient at near-stall point is shown in casing and tip-leakage vortex paths from the leading edge.

    The static pressure coefficient is defined

    (8)

    wherepsdenotes the static pressure and the subscript 1 the fan inlet ,ρthe air density andWthe relative velocity.

    The minimum pressure is located near the leading edge on the suction surface, and the pressure trough in the two fans extends from the minimum pressure point to the adjacent blade import. Moreover, the tip leakage vortex extends to the adjacent blade import along the pressure trough. Both tip leakage vortices extend to the leading edge of the next blade and the spillage of tip leakage flow from the leading edge occurs. The tip leakage vortex in fan A reaches the rotor exit after 5 blade passages tangential development. In contrast, the development of tip leakage vortex in fan B just needs four blade passages. Moreover, the interaction between the tip leakage vortex and the wake in fan A generates a larger pressure loss at the rotor exit than that of fan B.

    Fig.8 Tip-leakage vortex and casing wall pressure distribution at near-stall point

    Fig.9 elaborates tip leakage vortex and entropy distributions at near-stall point of the two fans. The vortex core is also colored byHn. The influence range of tip leakage vortex is much larger than that at the maximum efficiency point both in the spanwise and pitchwise directions, comparing the entropy production areas in the tip region. The spillage of tip leakage flow from the leading edge is more clearly in three-dimensional quality. Nishioka et al.[12]indicated that the spillage of tip leakage flow from the leading edge could induce a larger total pressure loss than double leakage flow, and the pressure rise could be much lower in the tip region. The leakage vortex intensity of fan A is stronger than that of fan B, especially at the middle planes, which induces a larger low-energy fluid region and low flow capacity in the tip region.

    4 Conclusions

    The tip-cutting effect on performance of the large axial ventilation fan has been investigated using steady Reynolds-Averaged-Navier-Stokes (RANS) simulations. A geometry similar fan has been tested to verify the reliability of the numerical simulations. The results are summarized as follows:

    (1) Cutting 6% blade can improve total pressure efficiency. And with the increase of flow efficient, the difference of efficiency between the two fans increases up to 1%. At the same time, 6% blade cutting has little effect on the fan′s stall margin. The fan with tip-cutting keeps almost the same flow coefficient and efficiency at near-stall point as the original one.

    (2) The tip-leakage vortices at maximum efficiency point of the two fans have a vortex rolling up clockwise along the core flow direction. The double leakage flow just occurs in tip clearance, which has little influence on the entire performance.

    (3) At the maximum efficiency point, the tip vortex of fan B passes further away from the pressure side of the adjacent blade than that of fan A, which improves the flow capacity in tip region. While at the near-stall point, the tip leakage vortex extends to the leading edge of the next blade, and the spillage of tip leakage flow from the leading edge occurs. The tip leakage vortex in fan A reaches rotor exit after five blade passages tangential development. In contrast, the development of tip leakage vortex in fan B just needs four blade passages to reach the rotor exit.

    Acknowledgement

    This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113218120006).

    [1] Zhong Jingjun, Han Shaobing, Lu Huawei. Numerical simulation of blade tip winglet on the aerodynamic performance of compressor cascade[J]. Journal of Engineering Thermophysics, 2010,31(2):243-246. (in Chinese)

    [2] Shao Weiwei, Ji Lucheng, Huang Weiguang. Analysis of overall aerodynamic performance of axial-flow compressor with attenuated blade tip[J]. Journal of Aerospace Power, 2008,23(2):367-373. (in Chinese)

    [3] Yuan Wei, Zhou Sheng, Lu Yajun. 3D numerical analysis for the effect between tip clearance and casing treatment in turbomachinery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004,30(9):885-888. (in Chinese)

    [4] Lakshminarayani B, Sitaram N, Zhang J. End-wall and profile losses in a low-speed axial flow compressor rotor[J]. ASME J Engineering for Gas Turbine and Power, 1986, 108:22-31.

    [5] Inoue M, Kuroumaru M, Fukuhara M. Behavior of tip leakage flow behind an axial compressor rotor[J]. ASME J Engineering for Gas Turbine and Power, 1986, 108:7-14.

    [6] Qiu Ming, Zhou Zhenggui. Application of numerical optimization method in aerodynamic design of axial compressor rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013,45(1):75-81. (in Chinese)

    [7] Wang Jun, Yao Ruifeng, Liu Jing, et al. Influence of tip clearance on external performance and tip leakage vortex of low-pressure axial fan[J]. Fluid Machinery, 2011,39(9):26-30. (in Chinese)

    [8] Zhu Xiaocheng, Lin Wanlai, Du Zhaohui. Experimental study on the tip leakage flow of an axial fan[J]. Journal of Shanghai Jiaotong University, 2005,39(2):177-181.

    [9] Lü Feng, Zhao Yanjie, Li Jingyin. Effects of blade cutting on the performance of large-type axial-flow fan[J]. Compressor Blower and Fan Technology, 2012(2):18-22.

    [10]Zhang Yucheng, Yi Dengli, Feng Dianyi, et al. Ventilator design and selection[M]. Beijing: Chemical Industry Press, 2011. (in Chinese)

    [11]Yamada K, Funazaki K, Furukawa M. The behavior of tip clearance flow at near-stall condition in a transonic axial compressor rotor[C]∥Proceedings of the ASME Turbo Expo 2007-Power for Land, Sea, and Air. USA: ASME, 2007:295-306.

    [12]Nishioka T, Joko M. Characteristic of tip-leakage flow at high stagger-angle setting for rotor blade in an axial flow[R]. GT2012-6920, ASME, 2012.

    (Executive Editor: Zhang Bei)

    V211.3 Document code:A Article ID:1005-1120(2015)06-0623-08

    *Corresponding author: Hu Jun, Professor, E-mail:hjape@nuaa.edu.cn.

    How to cite this article: Yin Chao, Hu Jun, Yan Wei, et al. Effect of tip-blade cutting on the performance of large scale axial fan[J]. Trans. Nanjing U. Aero. Astro., 2015,32(6):623-630. http://dx.doi.org/10.16356/j.1005-1120.2015.06.623

    一进一出抽搐动态| 亚洲av美国av| 成人国产综合亚洲| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区精品| 夜夜夜夜夜久久久久| 麻豆国产av国片精品| 大型av网站在线播放| 99国产综合亚洲精品| 女性生殖器流出的白浆| 黄色视频不卡| 亚洲自拍偷在线| 黄色 视频免费看| 午夜两性在线视频| 女性被躁到高潮视频| 亚洲av五月六月丁香网| 亚洲欧美日韩高清在线视频| 久久国产亚洲av麻豆专区| 中文字幕av电影在线播放| 午夜久久久久精精品| 亚洲avbb在线观看| 中文字幕色久视频| 国产精品秋霞免费鲁丝片| 两个人视频免费观看高清| 久久中文字幕人妻熟女| 久久精品国产亚洲av高清一级| 成人亚洲精品一区在线观看| 丝袜美腿诱惑在线| 国产成人精品久久二区二区91| 19禁男女啪啪无遮挡网站| 俄罗斯特黄特色一大片| 国产一区二区三区在线臀色熟女| 露出奶头的视频| 午夜福利免费观看在线| 露出奶头的视频| 久久精品国产亚洲av高清一级| 亚洲av电影在线进入| 18禁美女被吸乳视频| 久久精品影院6| avwww免费| 一区二区日韩欧美中文字幕| 国产av一区二区精品久久| 午夜视频精品福利| www日本在线高清视频| 咕卡用的链子| 欧美成人免费av一区二区三区| 校园春色视频在线观看| 午夜老司机福利片| 日韩高清综合在线| 1024视频免费在线观看| 97超级碰碰碰精品色视频在线观看| 欧美一级毛片孕妇| 国产亚洲欧美98| 久久久久国产一级毛片高清牌| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 午夜免费鲁丝| 亚洲精品国产色婷婷电影| 可以免费在线观看a视频的电影网站| 免费在线观看亚洲国产| 99久久综合精品五月天人人| 精品国产乱子伦一区二区三区| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 18禁裸乳无遮挡免费网站照片 | 黄色视频,在线免费观看| 久99久视频精品免费| 看免费av毛片| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| www.熟女人妻精品国产| 国产亚洲精品久久久久久毛片| 精品人妻在线不人妻| 最近最新中文字幕大全免费视频| 久久人妻熟女aⅴ| 一进一出抽搐动态| 一级毛片高清免费大全| 欧美成人午夜精品| 欧美亚洲日本最大视频资源| 国产午夜福利久久久久久| 精品午夜福利视频在线观看一区| 精品第一国产精品| 女性被躁到高潮视频| 日本五十路高清| av视频免费观看在线观看| 国产黄a三级三级三级人| 午夜亚洲福利在线播放| 久久精品91无色码中文字幕| 制服诱惑二区| 国产精品亚洲av一区麻豆| 久久久久精品国产欧美久久久| 91在线观看av| 夜夜看夜夜爽夜夜摸| 亚洲精品一区av在线观看| 亚洲 欧美一区二区三区| 99国产精品99久久久久| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 一a级毛片在线观看| 91av网站免费观看| 美女 人体艺术 gogo| 99精品在免费线老司机午夜| 99久久久亚洲精品蜜臀av| 免费在线观看完整版高清| 久久精品成人免费网站| 日本在线视频免费播放| 不卡av一区二区三区| 此物有八面人人有两片| 成人亚洲精品一区在线观看| 午夜精品久久久久久毛片777| 欧美中文综合在线视频| 国产激情欧美一区二区| 老司机靠b影院| 人人妻人人爽人人添夜夜欢视频| 亚洲av熟女| 欧美一级毛片孕妇| 欧美国产精品va在线观看不卡| av中文乱码字幕在线| 精品人妻在线不人妻| 叶爱在线成人免费视频播放| 老司机靠b影院| 不卡av一区二区三区| 精品福利观看| 精品电影一区二区在线| 午夜福利一区二区在线看| 国产私拍福利视频在线观看| 亚洲熟妇中文字幕五十中出| 精品久久久久久久毛片微露脸| 高清黄色对白视频在线免费看| 啦啦啦 在线观看视频| 亚洲成av片中文字幕在线观看| 久久精品成人免费网站| 在线av久久热| 亚洲国产中文字幕在线视频| 99精品在免费线老司机午夜| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成av片中文字幕在线观看| 亚洲七黄色美女视频| 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 中文字幕av电影在线播放| 久久久久久人人人人人| 51午夜福利影视在线观看| 法律面前人人平等表现在哪些方面| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 久久久久久亚洲精品国产蜜桃av| av免费在线观看网站| 国产精品,欧美在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美性长视频在线观看| 欧美黑人欧美精品刺激| 中文字幕色久视频| 不卡一级毛片| 嫩草影院精品99| 色综合欧美亚洲国产小说| 久热爱精品视频在线9| 久久精品影院6| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 亚洲精品粉嫩美女一区| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| 夜夜爽天天搞| 热re99久久国产66热| 国产精品久久久久久亚洲av鲁大| 国产精品av久久久久免费| 国产伦人伦偷精品视频| 欧美+亚洲+日韩+国产| 精品一品国产午夜福利视频| 精品久久久久久久毛片微露脸| 亚洲七黄色美女视频| www.www免费av| 亚洲精品国产一区二区精华液| 在线国产一区二区在线| 身体一侧抽搐| 欧美激情 高清一区二区三区| 亚洲一码二码三码区别大吗| 性少妇av在线| 又黄又粗又硬又大视频| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 久久精品亚洲熟妇少妇任你| 久久久水蜜桃国产精品网| 女人精品久久久久毛片| 激情视频va一区二区三区| 午夜福利免费观看在线| 多毛熟女@视频| 悠悠久久av| 制服丝袜大香蕉在线| 国内久久婷婷六月综合欲色啪| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| x7x7x7水蜜桃| 又黄又粗又硬又大视频| 天堂√8在线中文| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 成在线人永久免费视频| 日本在线视频免费播放| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 不卡av一区二区三区| 亚洲男人天堂网一区| 国产亚洲欧美98| 亚洲欧美日韩另类电影网站| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 国产精品久久久久久精品电影 | 成熟少妇高潮喷水视频| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 亚洲精品av麻豆狂野| 搡老岳熟女国产| 久久久久国内视频| 又黄又爽又免费观看的视频| 国产在线观看jvid| 国产亚洲精品久久久久5区| 如日韩欧美国产精品一区二区三区| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影| 男人舔女人下体高潮全视频| 丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区| 日韩精品青青久久久久久| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三区在线| 深夜精品福利| 日韩有码中文字幕| 色综合婷婷激情| 亚洲美女黄片视频| 亚洲黑人精品在线| 91老司机精品| 乱人伦中国视频| 一夜夜www| 成人18禁在线播放| 在线观看www视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一码二码三码区别大吗| 欧美成人免费av一区二区三区| 午夜福利影视在线免费观看| 人人妻人人澡欧美一区二区 | 亚洲 欧美一区二区三区| 日本黄色视频三级网站网址| 精品国产美女av久久久久小说| 一级片免费观看大全| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 日韩视频一区二区在线观看| 啦啦啦韩国在线观看视频| 久久狼人影院| 欧美黄色淫秽网站| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 色综合站精品国产| 啦啦啦观看免费观看视频高清 | 高潮久久久久久久久久久不卡| 巨乳人妻的诱惑在线观看| tocl精华| 亚洲五月色婷婷综合| 久久中文字幕一级| 色综合婷婷激情| 午夜福利,免费看| 老司机福利观看| 天天躁夜夜躁狠狠躁躁| 麻豆国产av国片精品| 黄色成人免费大全| av在线天堂中文字幕| 人妻丰满熟妇av一区二区三区| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| 成人手机av| 精品福利观看| cao死你这个sao货| 欧美日韩瑟瑟在线播放| 日本免费a在线| 精品国内亚洲2022精品成人| 亚洲成av片中文字幕在线观看| 亚洲国产中文字幕在线视频| 精品国产一区二区三区四区第35| 性欧美人与动物交配| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区| 精品福利观看| 亚洲国产精品成人综合色| 久久久久久久久中文| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 免费在线观看影片大全网站| 91国产中文字幕| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 真人做人爱边吃奶动态| 久久久久久国产a免费观看| 久久影院123| 美女午夜性视频免费| 99久久精品国产亚洲精品| 亚洲国产欧美日韩在线播放| 好男人在线观看高清免费视频 | 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| 国产成人欧美| 国产一区二区三区在线臀色熟女| 日日干狠狠操夜夜爽| 亚洲性夜色夜夜综合| 日韩一卡2卡3卡4卡2021年| 看片在线看免费视频| 日本五十路高清| 国产伦人伦偷精品视频| 伦理电影免费视频| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| 午夜精品国产一区二区电影| 久久久久久久精品吃奶| 一级毛片精品| 国产又色又爽无遮挡免费看| 国产国语露脸激情在线看| 亚洲午夜精品一区,二区,三区| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 国产午夜福利久久久久久| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区免费欧美| 久久人人精品亚洲av| 在线观看午夜福利视频| 男男h啪啪无遮挡| 99re在线观看精品视频| 亚洲精品国产精品久久久不卡| 久久久精品国产亚洲av高清涩受| 免费无遮挡裸体视频| 19禁男女啪啪无遮挡网站| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 亚洲国产欧美日韩在线播放| 精品乱码久久久久久99久播| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 国产精品一区二区在线不卡| 精品人妻1区二区| 国产高清有码在线观看视频 | 久久国产乱子伦精品免费另类| 最近最新免费中文字幕在线| 色综合婷婷激情| 国产高清激情床上av| 十分钟在线观看高清视频www| 亚洲中文字幕日韩| 久久久久久久精品吃奶| 午夜免费鲁丝| avwww免费| 亚洲色图 男人天堂 中文字幕| 韩国av一区二区三区四区| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| xxx96com| 巨乳人妻的诱惑在线观看| 制服诱惑二区| 成人国产综合亚洲| 好男人电影高清在线观看| 在线视频色国产色| 老鸭窝网址在线观看| 久久热在线av| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 91大片在线观看| 亚洲精品一区av在线观看| 中亚洲国语对白在线视频| 国产1区2区3区精品| 一边摸一边抽搐一进一出视频| ponron亚洲| 亚洲国产欧美一区二区综合| 看片在线看免费视频| 久久天堂一区二区三区四区| av片东京热男人的天堂| 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕| 免费不卡黄色视频| 国产99白浆流出| 亚洲黑人精品在线| 精品国产国语对白av| 深夜精品福利| 美女扒开内裤让男人捅视频| 波多野结衣高清无吗| 十八禁人妻一区二区| 天天一区二区日本电影三级 | 久久久久国产一级毛片高清牌| 12—13女人毛片做爰片一| 久久亚洲真实| 亚洲一区二区三区不卡视频| 亚洲精品美女久久av网站| 国产高清videossex| 97人妻精品一区二区三区麻豆 | 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| bbb黄色大片| 亚洲中文字幕日韩| 大型av网站在线播放| 久久精品国产综合久久久| 国产成年人精品一区二区| 欧美另类亚洲清纯唯美| 亚洲av成人不卡在线观看播放网| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 动漫黄色视频在线观看| 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 久久久水蜜桃国产精品网| 亚洲天堂国产精品一区在线| 一级a爱片免费观看的视频| 黄色片一级片一级黄色片| 久久久久久免费高清国产稀缺| 久久亚洲真实| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| 国产97色在线日韩免费| 日韩免费av在线播放| 91国产中文字幕| 国产精品免费视频内射| 欧美日韩亚洲综合一区二区三区_| 中文字幕久久专区| 亚洲成人国产一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线视频色国产色| 极品人妻少妇av视频| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 国产精品98久久久久久宅男小说| 搡老妇女老女人老熟妇| 亚洲午夜理论影院| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 国产蜜桃级精品一区二区三区| 成年女人毛片免费观看观看9| www.自偷自拍.com| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| av超薄肉色丝袜交足视频| 搞女人的毛片| 国产精品精品国产色婷婷| 国产1区2区3区精品| 长腿黑丝高跟| 精品一区二区三区av网在线观看| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| 黄色a级毛片大全视频| 亚洲成人国产一区在线观看| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影 | 精品高清国产在线一区| 人人妻人人爽人人添夜夜欢视频| 伦理电影免费视频| 两个人免费观看高清视频| 精品午夜福利视频在线观看一区| 午夜视频精品福利| 一区在线观看完整版| 国产一级毛片七仙女欲春2 | 人人妻人人澡人人看| 亚洲一区二区三区色噜噜| 亚洲人成电影观看| 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 国产乱人伦免费视频| 满18在线观看网站| 亚洲最大成人中文| 18禁美女被吸乳视频| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 午夜福利免费观看在线| 91精品国产国语对白视频| 国产三级黄色录像| 窝窝影院91人妻| 日韩三级视频一区二区三区| 看免费av毛片| 亚洲精品美女久久av网站| 免费观看精品视频网站| 久久精品影院6| 啦啦啦韩国在线观看视频| 亚洲久久久国产精品| 精品久久久久久久久久免费视频| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 国产91精品成人一区二区三区| 亚洲精品国产色婷婷电影| 日韩欧美一区二区三区在线观看| 多毛熟女@视频| 男女做爰动态图高潮gif福利片 | 久久香蕉精品热| 99riav亚洲国产免费| 一边摸一边做爽爽视频免费| 在线观看午夜福利视频| 午夜两性在线视频| 亚洲人成电影观看| 动漫黄色视频在线观看| 国产成人影院久久av| 亚洲熟女毛片儿| 一区二区三区精品91| 999精品在线视频| 好男人在线观看高清免费视频 | 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 日本vs欧美在线观看视频| 午夜福利欧美成人| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 国产精品野战在线观看| 大陆偷拍与自拍| 又黄又爽又免费观看的视频| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 制服诱惑二区| 波多野结衣高清无吗| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三| 精品第一国产精品| 长腿黑丝高跟| 一级毛片高清免费大全| 90打野战视频偷拍视频| 亚洲国产欧美网| 日日干狠狠操夜夜爽| 一级a爱视频在线免费观看| 给我免费播放毛片高清在线观看| 国产欧美日韩一区二区三区在线| 美女 人体艺术 gogo| 国产av在哪里看| 欧美成人免费av一区二区三区| 男女做爰动态图高潮gif福利片 | 国产伦一二天堂av在线观看| 一级片免费观看大全| 丝袜在线中文字幕| 在线av久久热| 丰满的人妻完整版| 看免费av毛片| 亚洲性夜色夜夜综合| 亚洲色图av天堂| 99在线视频只有这里精品首页| 亚洲少妇的诱惑av| 91麻豆av在线| 久久狼人影院| 日本vs欧美在线观看视频| 欧美一区二区精品小视频在线| 后天国语完整版免费观看| 99国产极品粉嫩在线观看| 精品欧美一区二区三区在线| 日韩欧美一区视频在线观看| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 日韩欧美免费精品| 手机成人av网站| 日韩高清综合在线| 999久久久精品免费观看国产| 可以在线观看的亚洲视频| 欧美日韩黄片免| 十八禁人妻一区二区| 99久久久亚洲精品蜜臀av| 国产色视频综合| 精品电影一区二区在线| 操美女的视频在线观看| 精品久久久久久,| 午夜久久久在线观看| 亚洲国产精品sss在线观看| 亚洲av成人av| 丁香六月欧美| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 午夜福利在线观看吧| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 两个人免费观看高清视频| 国产99久久九九免费精品| 国产精品自产拍在线观看55亚洲| 欧美不卡视频在线免费观看 | 777久久人妻少妇嫩草av网站| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 国产精品 欧美亚洲| 国产精品九九99| 中文字幕精品免费在线观看视频|