• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳納米管/聚酰胺納米復(fù)合材料的制備及其阻燃和熱性能

    2015-03-15 07:25:00MeisamShabanianMohsenHajibeygiMehdiRoohani
    新型炭材料 2015年5期
    關(guān)鍵詞:縮聚反應(yīng)可燃性熱法

    Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani

    (1.Faculty of Chemistry and Petrochemical Engineering,Standard Research Institute(SRI),Karaj P.O.Box 31745-139,Iran;2.Faculty of Chemistry,Kharazmi University 15719-14911 Tehran,Iran)

    碳納米管/聚酰胺納米復(fù)合材料的制備及其阻燃和熱性能

    Meisam Shabanian1, Mohsen Hajibeygi2, Mehdi Roohani1

    (1.Faculty of Chemistry and Petrochemical Engineering,Standard Research Institute(SRI),Karaj P.O.Box 31745-139,Iran;2.Faculty of Chemistry,Kharazmi University 15719-14911 Tehran,Iran)

    首先通過壬二酸和雙(對(duì)-羧苯基)苯基氧化膦直接縮聚反應(yīng)得到半芳香聚酰胺(PA),采用溶液共混方法,以多壁碳納米管(CNTs)增強(qiáng)PA得到新型納米復(fù)合材料。通過TG-DSC和微尺度燃燒量熱法探討CNTs對(duì)復(fù)合材料的熱性能和可燃性能的影響。當(dāng)CNT添加量為5%時(shí)復(fù)合材料的失重率比純PA提高5%,熱分解溫度提高70℃。與純PA相比,復(fù)合材料的熱釋放速率降低,這表明CNTs能提高PA的阻燃性。

    多壁碳納米管;納米復(fù)合材料;聚酰胺;阻燃

    1 Introduction

    Carbon nanotube(CNT)/polymer nanocomposites have attracted wide scientific and industrial interest owing to their improved or/and imparted varied properties by CNTs.Also,they become increasingly affordable.Three applications of CNT/polymer composites have been discussed recently,including antistatic or conductive materials[1,2],mechanically reinforced materials[3-5]and flame retarded materials[5-8].

    Aromatic polyamides are one of the most versatile high-performance materials and display a wide range of applications and properties.Their excellent thermal stability and mechanical properties make them useful for advanced technologies[9,10].However,applications of aromatic polyamides are often restricted by problems in their fabrication such as poor solubility and high softening or melting temperatures caused by high crystallinity and high stiffness of the polymer backbone,leading to difficult process-ability of resulting polyamides.Many efforts have been made to improve solubility and process-ability of aromatic polyamides by structure modification using aliphatic and aromatic monomers.It is also known that the solubility of polymers is often increased when polar constituents and flexible bonds such as[-O-,-SO2-,-CH2-]are incorporated into the polymer backbone owing to the changes of crystallinity and intermolecular interactions[11-18].Semi-aromatic polyamides are made by a combination of aromatic and aliphatic functional-ities.They are generally aimed at filling the performance gap between high price polymers such polyaryletherketone and aliphatic nylons.They offer a wide range of properties including transparency,thermal stability,non flammability,good barrier,and solvent resistant properties[19-21].These polyamides have been reinforced with various fillers[22-24].Recently,excellent nanocomposites obtained from CNT/polyamide, organoclay/polyamide and metal oxide and hydroxide/polyamide nanocomposites have been reported[25-27].Few investigations have been carried out in the thermal properties and flame retardancy of CNT/ semi-aromatic polyamide/nanocomposites.

    Most of the plastic are fabricated from petroleumbased materials.Recently,the productions of biobased polymers have been a very active research area. Bio-based polymers may be obtained by biotechnology,chemical modification of natural polymers or polymerization of bio-based monomers[28].Vegetable oils are an attractive and renewable chemicals for polymers owing to their availability,non-toxicity and their biodegradability. Recently, somemonomers based on various vegetable oil have been used to synthesis polymeric materials[29-31].Vegetable oils with acrylic double bonds exhibit high a reactivity for preparation of bio polymeric materials[32].Oleic acid is a monounsaturated 18-carbon fatty acid mostly found in animal fats and vegetable oils.The oxidation of unsaturated oleic acid in presence of potassium permanganate yields azelaic acid[33]The present study deals with the synthesis of semi-aromatic polyamide(PA) as a matrix of CNT/PA nanocomposites.Different properties of the nanocomposite are presented.Interesting findings on improvement of flame retardancy and thermal properties of the nanocomposites are discussed.

    2 Experimental

    2.1 Materials

    Oleic acid,N-methyl-2-pyrrolidone(NMP), potassium permanganate(KMnO4),pyridine,triphenylphosphine oxide,sulfuric acid,nitric acid,dimethylformamide(DMF),methanol and triphenyl phosphite(TPP)from merck were used without further purification.Commercially available calcium chloride (CaCl2,Aldrich)was dried under vacuum at 150℃for 6 h.CNTs(NC7000,Nanocyl S.A.,Sambreville,Belgium)have an average diameter 10 nm, lengths between 5 and 10 μm and a carbon purity of 90%.

    2.2 Monomer synthesis

    2.2.1 Synthesis of azelaic acid

    KMnO4was used to oxidize the double bond of the oleic acid,forming azelaic acid,according to procedures in the literature[33].

    2.2.2 Synthesis of Bis(3-amino phenyl)phenyl phosphine oxide

    The diamine containing phosphine oxide was synthesized according to the procedure reported[34]. It was synthesized by a three step reaction from the simple organic compounds such as triphenyl phosphine.At first,triphenyl phosphinewas oxidized to triphenyl phosphine oxide,then it was converted to bis(3-nitrophenyl)phenyl phosphine oxide by concentrated nitric acid in the presence of sulfuric acid.Bis (3-nitrophenyl)phenyl phosphine oxide was reduced to bis(3-aminophenyl)phenyl phosphine oxide with SnCl2·2H2O.

    2.3 Synthesis of PA

    PA was synthesized by the following steps. 50 mL round-bottom flasks with a stirring bar were filled with 4.0 g bis(3-amino phenyl)phenyl phosphine oxide (14 mmol), 2.7 g azelaic acid (14 mmol),0.5 g calcium chloride(4.5 mmol), 8.7 mL triphenyl phosphite(28 mmol),1 mL pyridine and 8 mL N-methyl-2-pyrrolidone(Scheme 1). The reaction mixture was heated under reflux in an oil bath at 60℃ for 2 h,90℃ for 2 h,and 120℃ for 8 h.Then it was poured into 100 mL of methanol and the precipitated product was collected by filtration and washed thoroughly with hot methanol.Finally,the product was dried at 60℃ for 12 h in a vacuum oven until the constant weight(Yield=95%).

    Scheme 1 Synthesis route of PA.

    2.4 Preparation of CNT/PA nanocomposite

    CNT/PA nanocomposite was prepared by a solution mixing method.0.02 g CNTs was mixed with 0.98 g PA in N-methyl-2 pyrrolidone(NMP),The mixture was agitated at a high speed at 25℃ overnight and ultrasonically irradiated to disperse CNTs uniformly in the PA matrix.By casting the suspensiononto a glass plate and solvent evaporation in a vacuum oven,the final CNT/PA nanocomposite was prepared.

    2.5 Characterization

    Fourier transform infrared(FT-IR)data were recorded on a Galaxy series FT-IR 5000 spectrophotometer(England).For sample preparation,the powdered species were mixed with KBr and pressed into pellets for further characterization.

    1H NMR measurements were performed using a Bruker Avance III 500 spectrometer(Rheinstetten, Germany)operating at 500 MHz(1H).DMSO-d6 was used as the solvent and the solvent signal was used for internal calibration(DMSOd6:δ(1H)=2.5 ppm).

    Determination ofweight-average(Mw) and number-average(Mn)molecular weights was performed by size exclusion chromatography(SEC) using an Agilent Series 1100 (Agilent) system equipped with a pump,degasser and differential refractive index(RI)detector.Two Zorbax PSM Trimodal-S 250 mm ×6.2 mm columns(Rockland Tech,USA)were used.The measurements were performed using a mixed eluent N,N-dimethylacetamide (DMAc)with 2 vol%water and 3 g/L LiCl at a flow rate of 0.5 mL/min.The molar mass was calculated after calibration with poly(2-vinylpyridine).

    The morphological analysis was carried out using transmission electron microscopy(TEM)on a LEO 912 microscope operated with an acceleration voltage of 120 kV at room temperature in bright field illumination mode.For preparing TEM samples,two approaches were used.In the case of CNT,its ethanol suspension was dropped directly into copper grids. For the CNT/PA nanocomposite,ultrathin sections of each sample with a thickness of about 50 nm were prepared by ultramicrotomy.

    The thermal stability of the samples was measured by thermogravimetric analysis(TGA,TA instruments Q 5000)in a temperature range between room temperature and 800℃ at a heating rate of 10℃/min in nitrogen atmosphere.The thermal properties of samples were measured by differential scanning calorimetry(DSC,TA instrument Q 1000)in a temperature range between-80 and 230℃ at a heating rate of 10℃/min in nitrogen atmosphere.

    Microscale combustion calorimeter (MCC, FTT)was used to investigate flammability of the samples[35].

    3 Results and discussion

    3.1 PA characterization

    PA exhibits a number-average molecular weight (Mn)and a weight-average molecular weight(Mw) of 2.1×104and 5.4×104g/mol,respectively,according to poly(vinyl pyridine)(PVP)standard. The polydispersity index is 2.5.Inherent viscosity (ηinh)of PA is 0.71(dL/g)at a concentration of 0.5 g/dL in DMF at 25℃.

    Fig.1 shows FT-IR spectrum of PA.The absorption band at 1 655 cm-1is associated with C=O stretching vibration in the main chain of PA,the absorption band at 3 233 cm-1is contributed by N-H stretching of amide groups,the bands at 3 051 and 2 925 cm-1are related to aromatic and aliphatic C-H bond stretching vibrations,respectively,and the band at 1 165 cm-1is ascribed to P=O stretching vibration in the phosphine oxide moiety in the PA backbone.

    Fig.1 FT-IR spectrum of PA.

    The1H-NMR spectrum confirms the chemical structure of PA as shown in Fig.2.The aromatic protons appear in the region of 6.81-7.96 mg/L.The protons related to methylene groups appear in the region of 1.29-2.31 mg/L and the peak in the region of 10.19 mg/L is assigned to N-H amide groups in the PA backbone.

    3.2 Characterization of CNT/PA nanocomposite

    TEM is utilized as an effective means to have a insight into the internal structure and spatial distribution of the various components,through direct visualization[36].In general,the drawbacks related to the homogeneous dispersion of the CNTs in the polymer matrix resulted from intrinsic van der Waals attractions between the individual CNT as well as high aspect ratio and large surface area,make it difficult for the CNTs to disperse in the polymer matrix.

    The dispersion of CNTs in the polymeric matrix generally depends on the polar interaction between the nanofillers and the polymer matrix.Fig.3 shows the TEM micrographs of CNT and the CNT/PA nano-composite.Fig.3a displays a TEM micrograph of CNTs with an outer diameter of~10 nm.There are amorphous matters on the CNT surface that can be attributed to dispersion of CNTs in ethanol.Ethanol shows an etching effect on CNTs[37].From the TEM results,it can be seen that CNTs have been well dispersed within PA matrix with very small aggregations and entanglements of CNTs in the CNT/PA nanocomposite(Fig.3b).The aggregation of CNTs is attributed to the strong van der Waals interaction between the nanotubes.In the case of the CNT/PA nanocomposite,interaction between CNTs and PA leads to a good dispersion.

    Fig.21H-NMR spectrum of PA.

    The thermal stability and char yields are very important properties in polymeric materials and normally they can be reflected by TGA.The thermal properties of PA and the CNT/PA nanocomposite were investigated by TGA and DSC,which are described in Fig. 4 and summarized in Table 1.

    The TGA and DTG of PA show two steps in its thermal decomposition.The main decomposition step occurs between 350 and 500℃ with a decomposition peak at around 435℃.The char yield of PA is about 26.4%.

    This indicates that PA containing long aliphatic chain in its backbone possesses a good thermal stability and a very high char yield as compared with conventional aliphatic polyamides.TGA of CNTs shows a 2.5%weight loss up to 800℃.The thermal decomposition behavior of the CNT/PA nanocomposite shows its first decomposition step occurring at much higher temperature than the neat PA with a decomposition peak at 253℃.The main decomposition peak is around 426℃,similar to PA.It is noticed that CNT/PA nanocomposite has a much higher the 5% weight loss temperature(T5)and the 10%weight loss temperature(T10)(over 70℃)than those of PA,indicating that the introduction of CNTs into PA can significantly improve the thermal stability of PA and delay the decomposition of PA.CNT/PA nanocomposite also has a higher char residue than neat PA at 800℃.

    Fig.3 TEM micrographs of the(a)CNTs and(b)CNT/PA nanocomposite.

    Fig.4 TGA and DTG curves of PA,the CNT/PA nanocomposite and CNTs.

    Differential scanning calorimetry(DSC)was used to determine the glass-transition temperature values(Tg)of the samples.The glass transition temperature(Tg)of PA is at 142℃ and that of the CNT/ PA nanocomposite is 148℃(Fig.5).The onset of decomposition temperature of CNT/PA nanocomposite is higher than that of PA.Thus,it means that incorporation of CNTs into PA matrix and interaction between PA chains and CNTs improve the thermal stability and increase Tgvalues of the nanocomposite.

    Table 1 Thermal properties of PA and the CNT/PA nanocomposite.

    Fig.5 DSC curves of the PA and CNT/PA nanocomposite.

    The microscale combustion calorimeter(MCC) is a fast and convenient technique developed for the investigation of the flammability of polymers.The parameters measured from this test are heat release rate (HRR)and the total heat release(THR).The HRR plots for PA and the CNT/PA nanocomposite are shown in Fig.6 and the corresponding combustion data is presented in Table 2.It can be found that the values of peak HRR(pHRR)in the CNT/PA nanocomposite are lower than that of PA.The pHRR value of neat PA is 296.3 W/g,and the pHRR of the CNT/PA nanocomposite is 264.3 W/g,indicating that the nanocomposite has a low flammability.The THR calculated from the area under the HRR curve is also an important parameter for fire hazard evaluation.The CNT/PA nanocomposite has a lower THR value of 17.8 kJ·g-1than neat PA(19.7 kJ·g-1). It is noted that the THR values of the CNT/PA nanocomposite is not much lower than PA.This might be relevant to the high heat transfer of CNTs.CNTs may influence the fire behavior of the polymer by changing energy absorption and heat conductivity[38]. The CNT/PA nanocomposite has a higher char residue at high temperatures than neat PA.This could lead to a better flame retardancy of the nanocomposite.Besides the char resides have an impact on the flame retardancy for both of PA and CNT/PA nanocomposite.Another possible flame retardant mechanism for the PA and CNT/PA nanocomposite is that the phosphine oxide moieties in PA backbone might release some phosphorus containing radicals which can capture the H· and HO·in gas phase,so that the flammability of the PA and CNT/PA nanocomposites is lowered.All the above results suggest that the introduction of CNTs could improve flame retardancy of PA.

    Fig.6 HRR curves of the PA and CNT/PA nanocomposite.

    Table 2 MCC measurement data

    4 Conclusions

    A novel bio-based semi-aromatic CNT reinforced PA nanocomposite was fabricated by a solution mixing method.PA was synthesized through polycondensation between the phosphorus diamine and bio-based azelaic acid.The introduction of phosphine oxide and aliphatic groups enhances solubility and improves glass transition temperature of PA.CNTs have a good dispersion in PA matrix.Study on the thermal degradation of the CNT/PA nanocomposite reveals that the introduction of CNTs into PA matrix can significantly increase the thermal stability of PA.The CNT/PA nanocomposite has also an increased char yield.The presence of CNTs in PA matrix improves the flame retardancy of PA by decreasing pHRR and THR values.

    [1] Song W L,Wang W,L Monica Veca,et al.Polymer/carbon nanocomposites for enhanced thermal transport properties-Carbon nanotubes versus graphene sheets as nanoscale fillers[J].Journal of Materials Chemistry,2012,22(33):17133-17139.

    [2] Al-Saleh M H,U Sundararaj.Microstructure,electrical,and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites[J].Journal of Polymer Science,Part B:Polymer Physics,2012,50(19): 1356-1362.

    [3] Ghasemi I,A T Farsheh,Z Masoomi.Effects of multi-walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly(vinyl chloride)/(wood flour)/(multi-walled carbon nanotubes)[J]. Journal of Vinyl and Additive Technology,2012,18(3):161-167.

    [4] Díez-Pascual A M,Mohammed N,Carlos M,et al.High-performance nanocomposites based on polyetherketones[J].Progress in Materials Science,2012,57(7):1106-1190.

    [5] Ma P C,Siddiqui Naveed A,Gad Marom,et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review[J].Composites Part A:Applied Science and Manufacturing,2010,41(10):1345-1367.

    [6] Shabanian M,Nian-Jun Kang,De-Yi Wang,et al.Synthesis, characterization and properties of novel aliphatic-aromatic polyamide/functional carbon nanotube nanocomposites via in situ polymerization[J].RSC Advances,2013,3(43):20738-20745.

    [7] Hapuarachchi T D,T Peijs.Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites[J].Composites Part A:Applied Science and Manufacturing,2010,41(8):954-963.

    [8] Abbaszadeh S,Allec N,Karim K S.Characterization of low dark-current lateral amorphous-selenium metal-semiconductormetal photodetector[J].IEEE Electron Device Letters,2011, 32(9):1263-1265.

    [9] Cassidy P E.Thermally stable polymers:syntheses and properties[M].1980,Marcel Dekker Inc.

    [10] García J M,Félix C,García,Felipe Serna,et al.High-performance aromatic polyamides[J].Progress in Polymer Science, 2010,35(5):623-686.

    [11] Mallakpour S,M Kolahdoozan.Synthesis and properties of novel soluble aromatic polyamides derived from 5-(2-phthalimidyl-3-methyl butanoylamino)isophthalic acid and aromatic diamines[J].Reactive and Functional Polymers,2008,68(1): 91-96.

    [12] Bazzar M,M Ghaemy,R Alizadeh.Novel fluorescent light-emitting polymer composites bearing 1,2,4-triazole and quinoxaline moieties:Reinforcement and thermal stabilization with silicon carbide nanoparticles by epoxide functionalization[J].Polymer Degradation and Stability,2012,97(9):1690-1703.

    [13] Song R,D Yang,L He.Preparation of semi-aromatic polyamide(PA)/multi-wall carbon nanotube(MWCNT)composites and its dynamic mechanical properties[J].Journal of Materials Science,2008,43(4):1205-1213.

    [14] Shabanian M,M Hajibeygi.Magnetic heat resistant poly(amide-imide)nanocomposite derived from bisphenol A:Synthesis and properties[J].Polymer Composites,2013,34(10):1682-1689.

    [15] Faghihi K,M Hajibeygi,M Shabanian.Novel thermally stable poly(amide-imide)s containing dibenzalacetone moiety in the main chain:Synthesis and characterization[J].Macromolecular Research,2010,18(5):421-428.

    [16] Faghihi K,Shabanian M,Hajibeygi M,et al.Synthesis and characterization of new poly(ether-ester-imide)s as a generation of soluble and thermally stable polymers[J].Polymer Bulletin, 2010,66(1):37-49.

    [17] Shabanian M,D Ghanbari.Synthesis of magnesium hydroxide nanofiller and its use for improving thermal properties of new poly(ether-amide)[J].Journal of Applied Polymer Science, 2013,127(3):2004-2009.

    [18] Shabbir S,et al.Synthesis,characterization and functionalization of thermally stable hyperbranched polyamide-ethers based on 6-hydroxy-2,4-bis(4'-nitrobenzamide)pyrimidine[J].Polymer Degradation and Stability,2010,95(4):500-507.

    [19] Shabanian M,Nian-Jun Kang,De-Yi Wang,et al.Synthesis of aromatic-aliphatic polyamide acting as adjuvant in polylactic acid(PLA)/ammonium polyphosphate(APP)system[J]. Polymer Degradation and Stability,2013,98(5):1036-1042.

    [20] Zulfiqar S,M Ishaq,M Ilyas Sarwar.Synthesis and characterization of soluble aromatic-aliphatic polyamide[J].Advances in Polymer Technology,2010,29(4):300-308.

    [21] Zulfiqar S,Zahoor Ahmad,Muhammad Ishaq,et al.Aromatic-aliphatic polyamide/montmorillonite clay nanocomposite materials:Synthesis,nanostructure and properties[J].Materials Science and Engineering:A,2009,525(1-2):30-36.

    [22] Sarwar M I,S Zulfiqar,Z Ahmad.Properties of polyamide-zirconia nanocomposites prepared from sol-gel technique[J].Polymer Composites,2009,30(1):95-100.

    [23] Zulfiqar S,Ayesha K,Muhammad R,et al.Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites[J].Applied Surface Science,2008,255(5):2080-2086.

    [24] Shabanian M,Basaki N.New photosensitive semi aramid/organoclay nanocomposite containing cinnamoyl groups:Synthesis and characterization[J].Composites Part B:Engineering, 2013,52:224-232.

    [25] Zulfiqar,S,Ishaq M,Sarwar M I.Effect of surface modification of montmorillonite on the properties of aromatic polyamide/ clay nanocomposites[J].Surface and Interface Analysis,2008, 40(8):1195-1201.

    [26] Zhao H,et al.Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J].Journal of Membrane Science,2014. 450(0):249-256.

    [27] Mallakpour S,Hatami M.Production and evaluation of the surface properties of chiral poly(amide-imide)/TiO2nanocomposites containing L-phenylalanine units[J].Progress in Organic Coatings,2012,74(3):564-571.

    [28] Pardal F,Slim Salhi,Brigitte Rousseau,et al.Unsaturated polyamides from bio-Based z-octadec-9-enedioic acid[J].Macromolecular Chemistry and Physics,2008,209(1):64-74.

    [29] Galià M,Lucas Montero de Espinosa,Joan Carles Ronda,?et al.Vegetable oil-based thermosetting polymers[J].European Journal of Lipid Science and Technology,2010,112(1):87-96.

    [30] Zuo J,Shaojun Li,Laziz Bouzidi,et al.Thermoplastic polyester amides derived from oleic acid[J].Polymer,2011,52 (20):4503-4516.

    [31] Roumanet P J,Lafleche F,Jarroux N,et al.Novel aliphatic polyesters from an oleic acid based monomer.Synthesis,epoxidation,cross-linking and biodegradation[J].European Polymer Journal,2013,49(4):813-822.

    [32] Xia Y,R C Larock.Vegetable oil-based polymeric materials: synthesis,properties,and applications[J].Green Chemistry, 2010,12(11):1893-1909.

    [33] McEwen,J H a W.Azelaic acid[J].Organic Synthese,1943,2:53-54.

    [34] Faghihi K,Zamani K.Synthesis and properties of novel flameretardant poly(amide-imide)s containing phosphine oxide moieties in main chain by microwave irradiation[J].Journal of Applied Polymer Science,2006,101(6):4263-4269.

    [35] Shi Y,Takashi Kashiwag,Richard N Walters,et al.Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method:Enhanced flame retardant and mechanical properties[J].Polymer,2009,50(15):3478-3487.

    [36] Kiliaris P,Papaspyrides C D.Polymer/layered silicate(clay) nanocomposites:An overview of flame retardancy[J].Progress in Polymer Science,2010,35(7):902-958.

    [37] Yu G,Gong J L,Wang S,et al.Etching effects of ethanol on multi-walled carbon nanotubes[J].Carbon,2006,44(7): 1218-1224.

    [38] Kashiwagi T,Grulke Eric A,Jenny Hilding,et al.Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites[J].Polymer,2004,45(12):4227-4239.

    Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties

    Meisam Shabanian1, Mohsen Hajibeygi2, Mehdi Roohani1
    (1.Faculty of Chemistry and Petrochemical Engineering,Standard Research Institute(SRI),Karaj P.O.Box 31745-139,Iran; 2.Faculty of Chemistry,Kharazmi University 15719-14911 Tehran,Iran)

    A novel composite based on a semi-aromatic polyamide(PA)reinforced by multiwall carbon nanotubes(CNTs)was prepared by a solution mixing method.PA was synthesized through a direct polycondensation between azelaic acid and bis(3-amino phenyl)phenyl phosphine oxide.The effect of the CNT addition on the thermal and flammability properties of the composite were studied by thermogravimetric analysis,differential scanning calorimetry and microscale combustion calorimetry.The temperature at which 5%weight loss occurs is increased by over 70℃ by incorporating CNTs into the PA matrix.CNTs improve the flame retardancy of PA,which is manifested by a decrease of the heat release rate and the total heat release of the composite compared with pure PA.

    Multiwalled carbon nanotube;Nanocomposite;Polyamide;Flame Retardancy.

    Meisam Shabanian.E-mail:m.shabanian@standard.ac.ir

    TB332

    A

    Meisam Shabanian.E-mail:m.shabanian@standard.ac.ir

    1007-8827(2015)05-0397-07

    10.1016/S1872-5805(15)60199-8

    Received date:2015-07-03; Revised date:2015-10-10

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    縮聚反應(yīng)可燃性熱法
    化妝服飾國(guó)內(nèi)外合規(guī)要求及關(guān)鍵指標(biāo)比對(duì)分析
    李東垣“甘溫除熱法”的現(xiàn)代臨床應(yīng)用
    淺析高分子材料的相關(guān)知識(shí)
    某型民用飛機(jī)使用冷卻方案降低機(jī)身內(nèi)燃油箱可燃性的研究
    科技視界(2019年15期)2019-07-23 01:51:16
    認(rèn)知有機(jī)化學(xué)的基本反應(yīng)
    高鄰位熱塑性酚醛樹脂的合成與表征
    預(yù)縮聚反應(yīng)器氣相管“鼓泡”的成因探討
    電氣設(shè)備起火的原因及預(yù)防
    溶劑熱法可控合成納米氯化亞銅
    飛機(jī)燃油箱可燃性適航條款分析
    婷婷丁香在线五月| 天天操日日干夜夜撸| 国产三级黄色录像| 极品教师在线免费播放| 久久精品国产亚洲av高清一级| 国产有黄有色有爽视频| av有码第一页| 美女高潮喷水抽搐中文字幕| 国内毛片毛片毛片毛片毛片| 无人区码免费观看不卡| 免费一级毛片在线播放高清视频 | 精品欧美一区二区三区在线| 成人永久免费在线观看视频| 美女视频免费永久观看网站| 欧美午夜高清在线| 色精品久久人妻99蜜桃| 精品欧美一区二区三区在线| 色老头精品视频在线观看| 久久久国产欧美日韩av| 少妇裸体淫交视频免费看高清 | 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| 美女视频免费永久观看网站| 99re6热这里在线精品视频| 欧美在线一区亚洲| 人妻久久中文字幕网| 欧美人与性动交α欧美软件| 日韩成人在线观看一区二区三区| 国产精品av久久久久免费| 操出白浆在线播放| 美女福利国产在线| 乱人伦中国视频| 91精品三级在线观看| 国产色视频综合| 国产aⅴ精品一区二区三区波| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 久久人妻熟女aⅴ| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 久久久久久久国产电影| 女性生殖器流出的白浆| 日本wwww免费看| 人妻丰满熟妇av一区二区三区 | 日韩人妻精品一区2区三区| 777米奇影视久久| 高清欧美精品videossex| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 色婷婷av一区二区三区视频| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 91成年电影在线观看| 国产成人av教育| 久久 成人 亚洲| 每晚都被弄得嗷嗷叫到高潮| 女性生殖器流出的白浆| 三级毛片av免费| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女 | 亚洲av成人一区二区三| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清 | 久久人妻av系列| 欧美日韩精品网址| 亚洲专区中文字幕在线| avwww免费| 久久中文看片网| 亚洲精品中文字幕一二三四区| 日本一区二区免费在线视频| x7x7x7水蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久久久电影网| 成人国产一区最新在线观看| 亚洲精品久久成人aⅴ小说| 日韩欧美一区视频在线观看| 日本黄色视频三级网站网址 | 亚洲一区二区三区欧美精品| 午夜亚洲福利在线播放| 久9热在线精品视频| 日本一区二区免费在线视频| 淫妇啪啪啪对白视频| 啦啦啦视频在线资源免费观看| 麻豆乱淫一区二区| 精品欧美一区二区三区在线| xxxhd国产人妻xxx| 王馨瑶露胸无遮挡在线观看| 欧美日韩精品网址| 精品久久久久久,| 国产精品一区二区在线观看99| 51午夜福利影视在线观看| 精品一区二区三区四区五区乱码| 国产在线精品亚洲第一网站| 黄色 视频免费看| 一a级毛片在线观看| 亚洲精品国产精品久久久不卡| 国产黄色免费在线视频| 欧美乱妇无乱码| 亚洲第一欧美日韩一区二区三区| 欧美人与性动交α欧美精品济南到| 制服人妻中文乱码| 女同久久另类99精品国产91| 国产欧美日韩一区二区三区在线| 国产又色又爽无遮挡免费看| 高清视频免费观看一区二区| 最近最新中文字幕大全免费视频| 久久精品亚洲av国产电影网| 久久久国产一区二区| 久久精品国产综合久久久| 久久婷婷成人综合色麻豆| 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清 | 人妻 亚洲 视频| 香蕉丝袜av| 久99久视频精品免费| 制服人妻中文乱码| 亚洲欧美激情在线| 国产真人三级小视频在线观看| 在线视频色国产色| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区| 中文字幕av电影在线播放| 亚洲专区国产一区二区| 精品视频人人做人人爽| 99国产综合亚洲精品| 亚洲色图 男人天堂 中文字幕| 法律面前人人平等表现在哪些方面| 国产精品永久免费网站| 日日爽夜夜爽网站| 国产精品电影一区二区三区 | 久久天躁狠狠躁夜夜2o2o| 美女扒开内裤让男人捅视频| 韩国av一区二区三区四区| 久久国产精品影院| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人爽人人夜夜| 这个男人来自地球电影免费观看| 18禁黄网站禁片午夜丰满| av天堂久久9| 91九色精品人成在线观看| 国产亚洲一区二区精品| 在线视频色国产色| 五月开心婷婷网| 亚洲人成电影观看| 成人三级做爰电影| 久久 成人 亚洲| 变态另类成人亚洲欧美熟女 | 精品第一国产精品| 欧美激情久久久久久爽电影 | av国产精品久久久久影院| 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 19禁男女啪啪无遮挡网站| 麻豆av在线久日| 婷婷丁香在线五月| 看片在线看免费视频| 激情视频va一区二区三区| av在线播放免费不卡| 午夜福利在线免费观看网站| 亚洲一区二区三区欧美精品| 可以免费在线观看a视频的电影网站| 丁香六月欧美| 老司机靠b影院| 亚洲熟妇中文字幕五十中出 | 在线看a的网站| 国产熟女午夜一区二区三区| 最新美女视频免费是黄的| 97人妻天天添夜夜摸| 午夜福利视频在线观看免费| 国产男女超爽视频在线观看| 亚洲九九香蕉| 免费在线观看黄色视频的| 久久热在线av| 国产成+人综合+亚洲专区| 999精品在线视频| 99国产精品免费福利视频| 两性夫妻黄色片| 99热网站在线观看| 好看av亚洲va欧美ⅴa在| 精品电影一区二区在线| www.999成人在线观看| 国产欧美日韩一区二区精品| 久久青草综合色| 少妇粗大呻吟视频| 亚洲av成人av| 大香蕉久久成人网| 中出人妻视频一区二区| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 国产精品成人在线| 最新美女视频免费是黄的| 欧美日韩精品网址| 黄色女人牲交| 欧美精品人与动牲交sv欧美| 91麻豆av在线| www日本在线高清视频| 热re99久久精品国产66热6| 精品国产亚洲在线| 99精品欧美一区二区三区四区| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| 在线国产一区二区在线| 12—13女人毛片做爰片一| 深夜精品福利| 国产色视频综合| 精品一区二区三区av网在线观看| 亚洲成人免费电影在线观看| 国产一卡二卡三卡精品| 久久天躁狠狠躁夜夜2o2o| 国产成人啪精品午夜网站| 岛国在线观看网站| 大型黄色视频在线免费观看| 亚洲久久久国产精品| 在线观看日韩欧美| 99精品在免费线老司机午夜| 精品少妇一区二区三区视频日本电影| 一本一本久久a久久精品综合妖精| 51午夜福利影视在线观看| 色精品久久人妻99蜜桃| 欧美精品一区二区免费开放| 熟女少妇亚洲综合色aaa.| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| 男人操女人黄网站| 亚洲色图综合在线观看| 男人舔女人的私密视频| 成人亚洲精品一区在线观看| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 国产精品久久久久久人妻精品电影| 亚洲欧洲精品一区二区精品久久久| 12—13女人毛片做爰片一| 叶爱在线成人免费视频播放| 久久久国产一区二区| 在线观看www视频免费| 大香蕉久久网| 操美女的视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲国产精品sss在线观看 | 纯流量卡能插随身wifi吗| 五月开心婷婷网| 女警被强在线播放| 中文字幕高清在线视频| 国产亚洲一区二区精品| 一区二区日韩欧美中文字幕| 国产精品久久视频播放| 国产高清国产精品国产三级| 久久国产精品影院| 日本精品一区二区三区蜜桃| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 免费在线观看影片大全网站| 亚洲av成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 免费av中文字幕在线| 久久精品亚洲熟妇少妇任你| 超碰97精品在线观看| av有码第一页| 午夜老司机福利片| 99国产精品99久久久久| 国产精品综合久久久久久久免费 | av网站免费在线观看视频| 69精品国产乱码久久久| 免费久久久久久久精品成人欧美视频| 国产精品 欧美亚洲| 亚洲av片天天在线观看| 老司机深夜福利视频在线观看| 国产精品久久久久久精品古装| 免费在线观看完整版高清| a在线观看视频网站| 中文字幕色久视频| 亚洲自偷自拍图片 自拍| 人人妻,人人澡人人爽秒播| 精品人妻熟女毛片av久久网站| 久久精品亚洲av国产电影网| 高清av免费在线| 精品卡一卡二卡四卡免费| 999精品在线视频| 亚洲男人天堂网一区| 中亚洲国语对白在线视频| 丰满迷人的少妇在线观看| 亚洲欧美精品综合一区二区三区| 日韩欧美国产一区二区入口| 亚洲中文av在线| 亚洲人成电影观看| 高潮久久久久久久久久久不卡| 黄色成人免费大全| av线在线观看网站| 黑丝袜美女国产一区| 精品国产一区二区久久| 欧美最黄视频在线播放免费 | 欧美日韩亚洲国产一区二区在线观看 | 十分钟在线观看高清视频www| 精品高清国产在线一区| 免费看a级黄色片| 狠狠狠狠99中文字幕| 久久久国产一区二区| 一级黄色大片毛片| 久久久久精品人妻al黑| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清 | 久久久国产一区二区| 一区二区三区激情视频| 国内毛片毛片毛片毛片毛片| 亚洲avbb在线观看| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| 人妻丰满熟妇av一区二区三区 | 99热只有精品国产| 视频区图区小说| 国产乱人伦免费视频| 亚洲中文av在线| 午夜老司机福利片| 色老头精品视频在线观看| 91成人精品电影| 搡老岳熟女国产| 无限看片的www在线观看| 午夜免费成人在线视频| 精品福利永久在线观看| 精品第一国产精品| 欧美+亚洲+日韩+国产| 日本a在线网址| 久久人人爽av亚洲精品天堂| ponron亚洲| 狠狠婷婷综合久久久久久88av| 人妻丰满熟妇av一区二区三区 | 亚洲av欧美aⅴ国产| 91九色精品人成在线观看| 宅男免费午夜| 国产欧美日韩一区二区精品| 天天躁日日躁夜夜躁夜夜| www.自偷自拍.com| 国产精品影院久久| 久久久久久久午夜电影 | 久久精品亚洲av国产电影网| 一级片'在线观看视频| 身体一侧抽搐| 满18在线观看网站| 黄色丝袜av网址大全| 999久久久国产精品视频| av超薄肉色丝袜交足视频| 丁香六月欧美| 在线视频色国产色| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 国产在视频线精品| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 看片在线看免费视频| 国产精品国产av在线观看| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区| 大香蕉久久网| 欧美中文综合在线视频| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 99精品在免费线老司机午夜| 久久狼人影院| 欧美日韩一级在线毛片| 激情在线观看视频在线高清 | 国精品久久久久久国模美| 国产一区在线观看成人免费| 99香蕉大伊视频| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 国产亚洲欧美精品永久| 亚洲专区中文字幕在线| 久久亚洲真实| 91在线观看av| 国产男女超爽视频在线观看| 欧美人与性动交α欧美软件| 69av精品久久久久久| 下体分泌物呈黄色| 1024视频免费在线观看| 麻豆乱淫一区二区| 亚洲色图 男人天堂 中文字幕| 老汉色∧v一级毛片| 国产熟女午夜一区二区三区| 自线自在国产av| 美女 人体艺术 gogo| 亚洲精品在线观看二区| 中文字幕色久视频| 一区福利在线观看| 欧美大码av| 国产一卡二卡三卡精品| 亚洲精品久久午夜乱码| 大香蕉久久网| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| a级毛片黄视频| av网站免费在线观看视频| 黄色成人免费大全| 两性夫妻黄色片| 美女视频免费永久观看网站| 国产成人一区二区三区免费视频网站| 色在线成人网| 亚洲精品国产一区二区精华液| 日韩欧美一区视频在线观看| 两个人看的免费小视频| 国产精品二区激情视频| 中文字幕av电影在线播放| 久久精品人人爽人人爽视色| 国产精品久久久久成人av| 亚洲一码二码三码区别大吗| 黑人巨大精品欧美一区二区mp4| 超色免费av| 国产99白浆流出| 久久午夜亚洲精品久久| 老熟女久久久| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av香蕉五月 | 成年人免费黄色播放视频| 免费一级毛片在线播放高清视频 | 亚洲av成人av| 9191精品国产免费久久| 满18在线观看网站| 麻豆乱淫一区二区| 欧美日韩福利视频一区二区| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 亚洲片人在线观看| 国产日韩一区二区三区精品不卡| 国产午夜精品久久久久久| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 午夜激情av网站| 十八禁人妻一区二区| 丰满饥渴人妻一区二区三| 18禁美女被吸乳视频| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 91麻豆av在线| 午夜精品国产一区二区电影| 亚洲av日韩在线播放| 亚洲 欧美一区二区三区| 天天躁夜夜躁狠狠躁躁| 波多野结衣一区麻豆| 国产精品99久久99久久久不卡| 免费观看人在逋| 91精品国产国语对白视频| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 在线国产一区二区在线| 亚洲精品粉嫩美女一区| 亚洲在线自拍视频| 午夜免费观看网址| www.精华液| 亚洲,欧美精品.| 亚洲 欧美一区二区三区| 成在线人永久免费视频| 欧美不卡视频在线免费观看 | av天堂久久9| 亚洲精品国产精品久久久不卡| 亚洲人成伊人成综合网2020| 久久国产精品男人的天堂亚洲| 亚洲欧美激情综合另类| 亚洲精品一卡2卡三卡4卡5卡| 国产成人欧美| 亚洲熟妇熟女久久| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 亚洲欧美激情综合另类| 18禁观看日本| 国产av又大| 侵犯人妻中文字幕一二三四区| 99国产精品一区二区蜜桃av | a级片在线免费高清观看视频| 国产男女内射视频| 波多野结衣av一区二区av| 99热网站在线观看| 老熟女久久久| 日本wwww免费看| 亚洲 国产 在线| 亚洲人成电影免费在线| 亚洲国产欧美日韩在线播放| 久久九九热精品免费| 亚洲中文字幕日韩| 久久精品91无色码中文字幕| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 少妇 在线观看| 99香蕉大伊视频| tube8黄色片| 国产精品一区二区在线不卡| 一个人免费在线观看的高清视频| 午夜激情av网站| 欧美人与性动交α欧美精品济南到| 精品亚洲成国产av| 搡老乐熟女国产| 国产精品九九99| 超碰成人久久| 久久午夜亚洲精品久久| tube8黄色片| 最近最新中文字幕大全电影3 | 午夜免费鲁丝| 久久人妻熟女aⅴ| 亚洲三区欧美一区| 精品一区二区三区四区五区乱码| 两个人免费观看高清视频| 久久ye,这里只有精品| 亚洲av美国av| 99精品在免费线老司机午夜| 19禁男女啪啪无遮挡网站| 国产高清videossex| 亚洲专区字幕在线| 天天添夜夜摸| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看. | 正在播放国产对白刺激| 宅男免费午夜| 国精品久久久久久国模美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美精品永久| 在线永久观看黄色视频| 人妻丰满熟妇av一区二区三区 | 免费av中文字幕在线| 日韩 欧美 亚洲 中文字幕| 正在播放国产对白刺激| 国产欧美亚洲国产| 久久久国产成人免费| 午夜视频精品福利| 国产亚洲欧美98| 国产真人三级小视频在线观看| 亚洲avbb在线观看| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 叶爱在线成人免费视频播放| 757午夜福利合集在线观看| 亚洲精品自拍成人| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 变态另类成人亚洲欧美熟女 | 丰满的人妻完整版| 91大片在线观看| 啦啦啦 在线观看视频| 咕卡用的链子| av网站免费在线观看视频| 亚洲中文字幕日韩| 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| 很黄的视频免费| 色在线成人网| 免费久久久久久久精品成人欧美视频| 一进一出好大好爽视频| 日日夜夜操网爽| 久久人妻熟女aⅴ| av免费在线观看网站| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 日本vs欧美在线观看视频| 日本欧美视频一区| 欧美日韩亚洲国产一区二区在线观看 | 国产又色又爽无遮挡免费看| 国产精品电影一区二区三区 | 一进一出抽搐gif免费好疼 | 久久国产精品影院| 99热网站在线观看| 欧美黑人欧美精品刺激| 欧美精品啪啪一区二区三区| 国产精品美女特级片免费视频播放器 | a级毛片黄视频| 国产国语露脸激情在线看| 国产蜜桃级精品一区二区三区 | 麻豆av在线久日| 女人高潮潮喷娇喘18禁视频| 欧美大码av| 久久人妻熟女aⅴ| 午夜视频精品福利| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成77777在线视频| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡动漫免费视频| 捣出白浆h1v1| av免费在线观看网站| av福利片在线| 91成人精品电影| 国产激情久久老熟女| 亚洲精品国产区一区二| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 十八禁网站免费在线| 国产1区2区3区精品| 欧美激情高清一区二区三区| 欧美激情久久久久久爽电影 | 精品国产亚洲在线| 99久久国产精品久久久| 精品久久久久久,| 欧美国产精品一级二级三级| 深夜精品福利| 男男h啪啪无遮挡| 狠狠狠狠99中文字幕| 建设人人有责人人尽责人人享有的| 操出白浆在线播放| 亚洲国产毛片av蜜桃av| 国内久久婷婷六月综合欲色啪| 天堂动漫精品| 99久久综合精品五月天人人| 热re99久久精品国产66热6| 黄色片一级片一级黄色片| 国产xxxxx性猛交| 亚洲在线自拍视频| 天堂√8在线中文| 又黄又粗又硬又大视频| 国产男女超爽视频在线观看| 午夜激情av网站| 精品熟女少妇八av免费久了| 久久久国产欧美日韩av| 成人影院久久| 99在线人妻在线中文字幕 | 精品一区二区三卡|