• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of aluminum-graphite composites by hot extrusion

    2015-03-10 01:10:51MasashiTakanoTakahiroAkaoTetsuhikoOndaZhongChunChen
    材料與冶金學(xué)報 2015年3期
    關(guān)鍵詞:標識碼分類號文獻

    Masashi Takano, Takahiro Akao, Tetsuhiko Onda, Zhong-Chun Chen

    (Department of Mechanical and Aerospace Engineering, Graduate School of Engineering, Tottori University,

    Koyama-minami 4-101, Tottori 680-8552, Japan)

    Fabrication of aluminum-graphite composites by hot extrusion

    Masashi Takano, Takahiro Akao, Tetsuhiko Onda, Zhong-Chun Chen

    (Department of Mechanical and Aerospace Engineering, Graduate School of Engineering, Tottori University,

    Koyama-minami 4-101, Tottori 680-8552, Japan)

    Abstract:Al-graphite composites have been successfully fabricated by a hot-extrusion technique. Sound extrudates can be obtained when graphite content (volume fraction) is less than 40%. The graphite tends to be aligned along the extrusion direction, due to the deformation of graphite along its basal planes during extrusion. The orientation degree of graphite in the extrusion direction is enhanced with decreasing graphite content and extrusion temperature. The preferred orientation of graphite results in an anisotropy of thermal conductivity in the extruded samples. The incorporation of large sizes of graphite flakes is beneficial to improving the thermal conductivity of extruded Al-graphite composites.

    Key words:heat dissipation material; aluminum; graphite; hot extrusion

    A heat dissipation material with high thermal conductivity and low coefficient of thermal expansion (CTE) is of significance in electronic packaging applications[1]. Graphite has been receiving much attention as a filler in many metal matrices (e.g., Al, Cu) because of its low density, low cost, low CTE and high thermal conductivity in directions parallel to the basal planes. Considering high anisotropy in thermal properties between parallel and perpendicular to the basal planes of graphite, control of the preferred orientation of graphite in a metal matrix is crucial since it is one of the main factors enhancing the thermal conductivity of metal-graphite composites[2]. Moreover, proper molding can be designed to align the graphite flakes, and the anisotropic properties can be taken advantage by aligning the basal planes of graphite flakes in direction of heat transfer. For example, hot pressing or spark plasma sintering processes have been used to fabricate Al-graphite and Cu-graphite composites with high thermal conductivity[3,4].

    From the viewpoints of lightweight and mass production, in the present study, graphite flakes were incorporated into aluminum matrix and Al-graphite composites were fabricated by a hot-extrusion technique. With the help of shear deformation during extrusion, it might be possible to align the graphite in the direction parallel to the extrusion direction. The purpose of this work was to examine the extrusion behavior, microstructure, and thermal conductivity of the Al-graphite composites.

    1Experimental pocedure

    Pure Al powder (>99.9% purity, average particle size:30 μm; Kojundo Chemical Laboratory, Japan) and natural flaky graphite (Ito Graphite Corporation, Japan) with three different diameters, 10, 60, and 250 μm, were used as the starting materials. The Al powder and graphite flakes with compositions(volume fraction) of 20, 40, and 60% graphite were ball-milled in ethanol. After drying, the mixed powders were compacted into a cylindrical green compact by uniaxial pressing, and vacuum-encapsulated into an Al can to obtain an extrusion billet. Hot extrusion was performed in a temperature range of 400~500 ℃ with an extrusion ratio ofR=14 at a punch speed of 1mm/min.

    The density of the extruded samples was determined by the Archimedes method. The phase composition was analyzed by X-ray diffraction (XRD) using CuKαradiation. The microstructure was observed by SEM. The thermal conductivity was determined by measuring thermal diffusivity and specific heat by using a laser flash apparatus (LFA457 Micro Flash; Netzsch, Selb, Germany).

    The degree of orientation of the graphite crystal in the extruded samples was estimated by the Lotgering method which provides an orientation index deduced from XRD pattern for the oriented materials. The Lotgering factor reflecting the degree of orientation (I00c) was defined by the following equation.

    (1)

    WherePdenotes the fraction of the sum of the peak intensities corresponding to the preferred orientation axis to that of all diffraction peaks (Ihkl) in the material,i.e.,

    P0is a reference value ofPfor a randomly oriented sample. Thefvalue varies between zero to unity;f=0 corresponds to random orientation, andf=1 to perfect orientation.

    2Results and discussion

    Fig.1 shows the extrusion pressure-stroke curves in hot-extrusion process under various conditions. All the extrusion behaviors seem to be similar to each other. From the start point A to B (Fig.1(a)), the Al-graphite mixed powder inside the Al can is further compacted. At the same time, the plastic deformation of the Al sheath occurs. At point B where the slope of extrusion pressure versus stroke curves becomes small, the Al sheath in the front end of the billet starts to be extruded out of the die. At point C, where the pressure reaches a peak, the Al-graphite composite surrounded by the Al sheath, starts to be formed. Subsequently, the extrusion pressure is gradually reduced and the extrusion of the composite steadily continues up to point D. Finally, the composite inside the billet is completely consumed, and only residual Al sheath is extruded.

    When the graphite content varies from 20% to 60%, the extrusion curves are almost the same, but some serrations appear in the curve from C to D (Fig.1 (a)) for the sample with 60% graphite. This implies that discontinuous deformation and fracture should be induced in the sample with a high graphite content. With decreasing the particle size of graphite, the extrusion pressure becomes higher as seen in Fig.1 (b). It is considered that this results from relatively lower deformation resistance of larger graphite flakes. As the extrusion temperature decreases, the extrusion pressure tends to rise (Fig.1 (c)) due to the increase in deformation resistance of the billet at lower temperatures.

    Fig.2 shows appearances of the extruded samples with different graphite contents (graphite size: 250 μm). The extruded samples with 20% and 40% graphite (volume fraction) were sound and no evident cracks, voids, and other defects were observed. However, the addition of 60% graphite (volume fraction) results in poor formability. This might be related to the inconsistency in the extrusion behavior between Al and graphite. The existence of large amount of graphite restricts the deformation of Al matrix during hot extrusion.

    Fig.1 Extrusion pressure versus strokecurves for the samples(a)—With 20%~60% graphite (250 μm);(b)—With different graphite sizes;(c)—Extruded at temperatures ranging from 400 ℃ to 500 ℃

    The relative density of the extruded samples is shown in Fig.3. With increasing the graphite content, the relative density gradually decreases. Furthermore, as the particle size of graphite decreases, the relative density becomes low. This indicates that the presence of graphite inhibits the deformation of Al matrix and densification of the composites.

    Fig.2 Appearances of the samples extruded at 450 ℃(a)—20%; (b)—40%; (c)—60% (250 μm)

    Fig.3  Relative density of the samples extruded at450 ℃ as a function of volume fraction of graphite

    Fig.4 shows the SEM images (backscattered electron mode) on polished longitudinal sections of the extruded samples with various contents and particle sizes of graphite. The white and dark regions correspond to Al and graphite, respectively. It can be seen from Fig.4 that the graphite tends to be aligned along the direction parallel to the extrusion direction in the extruded samples. This tendency seems to be weakened and the thickness of the deformed graphite becomes large with increasing graphite content. The preferred orientation of graphite along the extrusion direction is believed to be associated with shear deformation occurred during extrusion, because graphite is easily deformed along the basal planes due to its layered structure. On the other hand, for the extruded samples of Al-40% graphite with different particle sizes of graphite shown in Figs. 4(b),(d) and (e), as the particle size of graphite decreases, both the length and thickness of the deformed graphite are reduced, and the distribution of the graphite becomes more homogeneous.

    The SEM images on polished longitudinal sections of the samples extruded at different temperatures are shown in Fig.5. It seems that the majority of graphite are aligned along the extrusion direction at 400 ℃. However, the orientation of the graphite becomes weak with increasing the extrusion temperature. It is evident that the orientation of the graphite depends strongly on deformation behavior of both graphite and Al. The deformation resistance of graphite has small temperature dependence, while the deformation resistance of Al rapidly decreases with increasing temperature. Accordingly, with the increase in extrusion temperature, the deformation of the Al matrix occurs easily compared to graphite. As a result, the deformed graphite exhibits smaller aspect ratios.

    Fig.6 shows the Lotgering factor calculated using Eq.(1) from the XRD patterns of the extruded samples. It can be found from Fig.6(a) that the particle size of graphite has small effect on the orientation of graphite. But the composites with a smaller content of graphite exhibit larger degrees of orientation. For example, the Lotgering factor of the sample with 20% graphite (250 μm) was about 1.22 times higher than that with 40% graphite. Besides, a lower extrusion temperature corresponds to a larger Lotgering factor. As shown in Fig.6(b), the Lotgering factor of the sample extruded at 400 ℃ was about 1.43 times larger than that at 500 ℃. These results are in good agreement with the microstructural observations shown in Figs.4 and 5.

    Fig.4 SEM images on longitudinal sections of the samples extruded at 450 ℃(a)—20% (250 μm); (b)—40% (250 μm); (c)—60% (250 μm); (d)—40% (60 μm); (e)—40% (10 μm)

    Fig.5 SEM images on longitudinal sections of the samples extruded(a)—400 ℃; (b)—450 ℃; (c)—500 ℃

    Fig.6 Lotgering factor of the extruded samples as a function(a)—Particle size of graphite; (b)—Extrusion temperature

    Fig.7 Thermal conductivity of the samples extruded at450 ℃ with different contents and sizes of graphite

    Fig.8 Thermal conductivity of the samples extrudedat different temperatures

    Fig.7 shows the thermal conductivity of the extruded samples, measured at room temperature, as a function of the content of graphite. When the graphite flakes with an average diameter of 250 μm were used, the addition of graphite flakes leads to an increase in thermal conductivity in the extrusion direction. However, the addition of smaller sizes of graphite (10 μm and 60 μm) causes the reduction in thermal conductivity. This is the result of the increase in the interfacial thermal resistance. Moreover, the thermal conductivity in the extrusion direction (ED) was higher than that in the radius direction (RD), exhibiting an anisotropic behavior of thermal conductivity in the extruded sample. For example, in the case of the Al-40% graphite composite containing the graphite flakes with an average diameter of 60 μm, the thermal conductivity in the extrusion direction was 2.6 times higher than that in the radius direction as shown in Fig.7.Fig.8 shows the effect of extrusion temperature on thermal conductivity of the extruded samples. The thermal conductivity of the sample extruded at 450 ℃ was higher than that of the sample extruded at 500 ℃. A lower value at 500 ℃ may be related to (i) reduction of the orientation degree of graphite in the extrusion direction (Fig.6(b)) and (ii) possible formation of aluminum carbide during the extrusion process.

    As shown in Fig.7, a larger size of graphite flakes results in the improvement in thermal conductivity due to the decrease of contact area between Al and graphite. Accordingly, reduction of interfacial thermal resistance is one of the important factors in improving the thermal conductivity of the extruded Al-graphite composites. For this reason, an Al-Si alloy powder is incorporated into the Al-graphite powder mixtures as an additive. Since the Al-Si alloy powder has a lower melting point than Al (for example, 577 ℃ for Al-12Si alloy), it is melted and penetrated into the interfacial regions between Al and graphite during densification process of the mixed powders.

    In this way, the intimate contact

    between Al and graphite leads to decrease in interfa-cial thermal resistance, thus enhancing the thermal conductivity of the composites. Another way is to further improve the orientation degree of the graphite crystals in the extrusion direction, because graphite has high thermal conductivity in directions parallel to its basal planes. This may be realized by increasing the extrusion ratio (deformation degree). Furthermore, a larger deformation degree is also helpful to improve the interfacial contact between Al and graphite. Further investigations are in progress and the results will be reported elsewhere.

    3Conclusions

    (1) Al-graphite composites have been successfully fabricated by hot extrusion when graphite content (volume fraction) is less than 40%.

    (2) The graphite tends to be aligned along the extrusion direction during hot extrusion. Its degree of orientation in the extrusion direction is enhanced with decreasing graphite content and extrusion temperature.

    (3) The preferred orientation of graphite results in an anisotropy of thermal conductivity in the extruded samples. The thermal conductivity in the extrusion direction is higher than that in the radius direction.

    (4) The incorporation of large sizes of graphite flakes is beneficial to improving the thermal conductivity of extruded Al-graphite composites.

    References:

    [1]Zweben C. Advances in composite materials for thermal management in electronic packaging . JOM, 1998, 50 (6): 47-51.

    [2]Yuan G M, Li X K, Dong Z J,etal. Graphite blocks with preferred orientation and high thermal conductivity . Carbon, 2012, 50 (1): 175-182.

    [3]Chen J K, Huang I S. Thermal properties of aluminum-graphite composites by powder metallurgy . Composites, Part B, 2013, 44: 698-703.

    [4]Q Liu, He X-B, Ren S-B, Zhang C,etal. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating . J Alloy Comp, 2014, 587: 255-259.

    [5]Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I . J Inorg Nucl Chem, 1959, 9: 113-123.

    中圖分類號:TB 333.1

    文獻標識碼:A

    文章編號:1671-6620(2015)03-0227-05

    doi:10.14186/j.cnki.1671-6620.2015.03.014

    猜你喜歡
    標識碼分類號文獻
    Hostile takeovers in China and Japan
    速讀·下旬(2021年11期)2021-10-12 01:10:43
    Cultural and Religious Context of the Two Ancient Egyptian Stelae An Opening Paragraph
    大東方(2019年12期)2019-10-20 13:12:49
    The Application of the Situational Teaching Method in English Classroom Teaching at Vocational Colleges
    The Role and Significant of Professional Ethics in Accounting and Auditing
    商情(2017年1期)2017-03-22 16:56:36
    A Study on the Change and Developmentof English Vocabulary
    Translation on Deixis in English and Chinese
    Process Mineralogy of a Low Grade Ag-Pb-Zn-CaF2 Sulphide Ore and Its Implications for Mineral Processing
    Study on the Degradation and Synergistic/antagonistic Antioxidizing Mechanism of Phenolic/aminic Antioxidants and Their Combinations
    潤滑油(2014年3期)2014-11-07 14:30:02
    A Comparative Study of HER2 Detection in Gastroscopic and Surgical Specimens of Gastric Carcinoma
    The law of exercise applies on individual behavior change development
    这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区 | 在线观看国产h片| 免费观看人在逋| 丝袜在线中文字幕| 韩国高清视频一区二区三区| 中文字幕制服av| 中文字幕制服av| 国产精品久久久av美女十八| 欧美变态另类bdsm刘玥| 一二三四社区在线视频社区8| 国精品久久久久久国模美| 色综合欧美亚洲国产小说| 激情五月婷婷亚洲| 黄色a级毛片大全视频| 王馨瑶露胸无遮挡在线观看| 老司机亚洲免费影院| 下体分泌物呈黄色| 国产精品一二三区在线看| 丝瓜视频免费看黄片| 丝袜喷水一区| 久久久欧美国产精品| 精品人妻熟女毛片av久久网站| 90打野战视频偷拍视频| 你懂的网址亚洲精品在线观看| 这个男人来自地球电影免费观看| 日韩av在线免费看完整版不卡| 欧美日韩一级在线毛片| 在线观看免费日韩欧美大片| 久久天躁狠狠躁夜夜2o2o | 黄色毛片三级朝国网站| 制服人妻中文乱码| 黑人猛操日本美女一级片| 男女高潮啪啪啪动态图| 成人18禁高潮啪啪吃奶动态图| 桃花免费在线播放| 女人精品久久久久毛片| 免费不卡黄色视频| 18在线观看网站| 亚洲黑人精品在线| 男女下面插进去视频免费观看| 久久久亚洲精品成人影院| 青草久久国产| 在线观看免费午夜福利视频| 日韩制服骚丝袜av| 色精品久久人妻99蜜桃| 国产色视频综合| 精品国产一区二区久久| 首页视频小说图片口味搜索 | 成年动漫av网址| 亚洲,欧美精品.| 成人免费观看视频高清| 久久精品国产亚洲av高清一级| 这个男人来自地球电影免费观看| 欧美人与性动交α欧美精品济南到| 99热网站在线观看| 欧美另类一区| 99国产精品99久久久久| 五月天丁香电影| 亚洲精品成人av观看孕妇| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 国产午夜精品一二区理论片| 免费看不卡的av| 两个人免费观看高清视频| 欧美老熟妇乱子伦牲交| 美女午夜性视频免费| 精品一区二区三卡| 高清视频免费观看一区二区| 亚洲av电影在线进入| 一级,二级,三级黄色视频| 麻豆国产av国片精品| 亚洲免费av在线视频| 国产人伦9x9x在线观看| 丁香六月欧美| 最近手机中文字幕大全| 亚洲五月色婷婷综合| 欧美成人精品欧美一级黄| 日本91视频免费播放| kizo精华| 国产精品一区二区在线观看99| 大型av网站在线播放| 婷婷色综合大香蕉| 性少妇av在线| av一本久久久久| 99久久综合免费| 亚洲精品第二区| 飞空精品影院首页| 免费少妇av软件| 国产三级黄色录像| 国产精品 国内视频| 别揉我奶头~嗯~啊~动态视频 | 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩高清在线视频 | 国产极品粉嫩免费观看在线| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻1区二区| 国产精品国产av在线观看| 五月开心婷婷网| 亚洲人成电影观看| 两人在一起打扑克的视频| 久久午夜综合久久蜜桃| 欧美乱码精品一区二区三区| 亚洲av综合色区一区| 精品国产一区二区三区四区第35| videosex国产| 欧美精品一区二区免费开放| 自拍欧美九色日韩亚洲蝌蚪91| 国精品久久久久久国模美| 久久精品亚洲熟妇少妇任你| 女人被躁到高潮嗷嗷叫费观| 国产精品国产av在线观看| 肉色欧美久久久久久久蜜桃| 99国产精品一区二区三区| 热re99久久精品国产66热6| 中文字幕亚洲精品专区| 国产亚洲av片在线观看秒播厂| 美女中出高潮动态图| 欧美黑人欧美精品刺激| 国产亚洲精品久久久久5区| 久久精品国产亚洲av高清一级| 亚洲av欧美aⅴ国产| 日韩人妻精品一区2区三区| 精品国产乱码久久久久久小说| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 亚洲精品av麻豆狂野| 男的添女的下面高潮视频| 男女下面插进去视频免费观看| 中国美女看黄片| 国产精品国产三级专区第一集| 又大又爽又粗| av线在线观看网站| 精品一品国产午夜福利视频| 人体艺术视频欧美日本| 麻豆国产av国片精品| 国产一区二区 视频在线| 我的亚洲天堂| 91精品国产国语对白视频| 啦啦啦视频在线资源免费观看| 亚洲一区中文字幕在线| 国产一级毛片在线| 尾随美女入室| 久久人妻福利社区极品人妻图片 | 欧美中文综合在线视频| 热re99久久国产66热| 亚洲三区欧美一区| 日韩 欧美 亚洲 中文字幕| 大陆偷拍与自拍| 操出白浆在线播放| 伦理电影免费视频| 亚洲欧美清纯卡通| 婷婷成人精品国产| 日韩电影二区| 国产有黄有色有爽视频| 国产精品成人在线| 国产男女内射视频| 天天躁日日躁夜夜躁夜夜| 999精品在线视频| 国产精品国产av在线观看| 天天躁夜夜躁狠狠久久av| 国产97色在线日韩免费| 国产成人av激情在线播放| 亚洲精品一卡2卡三卡4卡5卡 | 免费看av在线观看网站| 一区二区日韩欧美中文字幕| 国产亚洲精品久久久久5区| 国产麻豆69| 免费在线观看日本一区| 亚洲欧美日韩另类电影网站| 午夜影院在线不卡| 欧美日韩综合久久久久久| 精品久久久精品久久久| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 捣出白浆h1v1| 视频在线观看一区二区三区| 黄片播放在线免费| 一个人免费看片子| 免费观看a级毛片全部| 美国免费a级毛片| 考比视频在线观看| 视频区图区小说| 9热在线视频观看99| 99re6热这里在线精品视频| 操美女的视频在线观看| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区 | 久久ye,这里只有精品| 真人做人爱边吃奶动态| 亚洲欧美中文字幕日韩二区| 极品少妇高潮喷水抽搐| 91精品三级在线观看| 日本a在线网址| 别揉我奶头~嗯~啊~动态视频 | 国产成人av激情在线播放| 久久久久久人人人人人| 午夜福利乱码中文字幕| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 精品国产超薄肉色丝袜足j| 成人亚洲欧美一区二区av| √禁漫天堂资源中文www| 亚洲国产成人一精品久久久| 十八禁人妻一区二区| 亚洲国产欧美网| 首页视频小说图片口味搜索 | 午夜免费鲁丝| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| 精品少妇久久久久久888优播| 91成人精品电影| 久久精品亚洲av国产电影网| 一本—道久久a久久精品蜜桃钙片| 99国产精品99久久久久| 亚洲欧美日韩另类电影网站| 美女午夜性视频免费| 亚洲人成77777在线视频| 中国美女看黄片| 一本—道久久a久久精品蜜桃钙片| 久久精品亚洲熟妇少妇任你| 婷婷成人精品国产| 看十八女毛片水多多多| 国产成人av教育| 久久99热这里只频精品6学生| 精品少妇内射三级| 又黄又粗又硬又大视频| 日韩制服丝袜自拍偷拍| 久久久精品免费免费高清| 国产成人精品在线电影| 亚洲av成人精品一二三区| 成人影院久久| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 欧美国产精品一级二级三级| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人久久精品综合| 亚洲国产欧美网| 精品亚洲成a人片在线观看| 精品少妇一区二区三区视频日本电影| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线观看99| 国产成人免费观看mmmm| 亚洲欧美一区二区三区久久| 男女午夜视频在线观看| 51午夜福利影视在线观看| 高清av免费在线| 老司机在亚洲福利影院| 国产精品久久久人人做人人爽| 免费看十八禁软件| 久久人人爽av亚洲精品天堂| 欧美日韩黄片免| 国产免费现黄频在线看| 操出白浆在线播放| 99久久99久久久精品蜜桃| 亚洲成人免费av在线播放| 国产精品久久久久久人妻精品电影 | 国产男人的电影天堂91| www.精华液| 国产1区2区3区精品| 超碰成人久久| 亚洲精品中文字幕在线视频| 国产野战对白在线观看| 国产精品久久久人人做人人爽| 性高湖久久久久久久久免费观看| 永久免费av网站大全| 观看av在线不卡| 一级片'在线观看视频| 高潮久久久久久久久久久不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品成人av观看孕妇| 国产在线一区二区三区精| 久久精品aⅴ一区二区三区四区| 捣出白浆h1v1| 国产女主播在线喷水免费视频网站| 成人黄色视频免费在线看| 国产成人免费观看mmmm| 精品一区在线观看国产| 大片免费播放器 马上看| 亚洲欧美中文字幕日韩二区| 午夜视频精品福利| 国产免费又黄又爽又色| 捣出白浆h1v1| 人成视频在线观看免费观看| 欧美日韩一级在线毛片| 亚洲精品国产一区二区精华液| 精品少妇久久久久久888优播| 久久人人爽人人片av| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| 一区二区三区乱码不卡18| 美女中出高潮动态图| 亚洲精品久久久久久婷婷小说| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 性色av乱码一区二区三区2| 国产精品三级大全| 欧美日韩黄片免| 亚洲人成77777在线视频| 精品欧美一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡 | tube8黄色片| 久久久亚洲精品成人影院| 50天的宝宝边吃奶边哭怎么回事| 亚洲图色成人| 男女之事视频高清在线观看 | 国产精品99久久99久久久不卡| 人妻一区二区av| 欧美日韩福利视频一区二区| 一区二区三区乱码不卡18| 国产主播在线观看一区二区 | 国产精品久久久久久精品古装| 国产精品.久久久| 两人在一起打扑克的视频| a 毛片基地| www.999成人在线观看| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 午夜免费观看性视频| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 午夜免费观看性视频| 久9热在线精品视频| 一本久久精品| 国产不卡av网站在线观看| 美女主播在线视频| 亚洲自偷自拍图片 自拍| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 午夜福利影视在线免费观看| 考比视频在线观看| 免费在线观看黄色视频的| 欧美性长视频在线观看| 尾随美女入室| 极品人妻少妇av视频| 国产黄色视频一区二区在线观看| 精品人妻熟女毛片av久久网站| 日韩大片免费观看网站| 亚洲五月色婷婷综合| 亚洲av日韩精品久久久久久密 | 久久国产精品影院| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 亚洲成人免费电影在线观看 | 亚洲欧美清纯卡通| 在线观看免费高清a一片| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 国产av国产精品国产| 国产日韩欧美在线精品| 久久性视频一级片| 丰满少妇做爰视频| 午夜福利一区二区在线看| bbb黄色大片| 老司机在亚洲福利影院| www.av在线官网国产| av网站在线播放免费| 婷婷色av中文字幕| 精品久久久久久久毛片微露脸 | 看免费av毛片| 男人舔女人的私密视频| 亚洲九九香蕉| 黄色怎么调成土黄色| 国产精品久久久人人做人人爽| 又大又黄又爽视频免费| 成人影院久久| 免费av中文字幕在线| 18禁观看日本| 精品国产乱码久久久久久男人| 激情五月婷婷亚洲| 国产欧美日韩一区二区三区在线| 在线看a的网站| 亚洲精品av麻豆狂野| 久久久精品免费免费高清| 精品熟女少妇八av免费久了| 国产老妇伦熟女老妇高清| 99国产精品免费福利视频| 可以免费在线观看a视频的电影网站| 日韩中文字幕欧美一区二区 | 美女脱内裤让男人舔精品视频| 国产欧美日韩综合在线一区二区| 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| 一级毛片女人18水好多 | 亚洲欧洲日产国产| 精品亚洲成a人片在线观看| 成年人黄色毛片网站| 手机成人av网站| 90打野战视频偷拍视频| 校园人妻丝袜中文字幕| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站 | 国产亚洲av高清不卡| 成在线人永久免费视频| 国产视频首页在线观看| 国产日韩欧美亚洲二区| 亚洲人成77777在线视频| 日本黄色日本黄色录像| 欧美人与性动交α欧美精品济南到| 精品久久久精品久久久| 人妻一区二区av| 欧美日韩福利视频一区二区| 后天国语完整版免费观看| 欧美 亚洲 国产 日韩一| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播 | 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 亚洲精品日韩在线中文字幕| 国产精品久久久久成人av| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 国产精品久久久久久精品古装| 人成视频在线观看免费观看| 亚洲欧美一区二区三区久久| 午夜福利一区二区在线看| 首页视频小说图片口味搜索 | 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区 | 日韩 亚洲 欧美在线| 成在线人永久免费视频| av国产精品久久久久影院| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站| 亚洲专区中文字幕在线| 两性夫妻黄色片| 国产精品免费视频内射| 99九九在线精品视频| 尾随美女入室| √禁漫天堂资源中文www| 国产精品麻豆人妻色哟哟久久| 最黄视频免费看| 一区二区三区激情视频| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 亚洲情色 制服丝袜| 精品一品国产午夜福利视频| 亚洲精品乱久久久久久| 老熟女久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 秋霞在线观看毛片| 伊人亚洲综合成人网| 婷婷色综合www| 亚洲成色77777| 91老司机精品| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 亚洲av成人不卡在线观看播放网 | 国产成人91sexporn| 亚洲精品国产区一区二| 中国美女看黄片| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| netflix在线观看网站| 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 下体分泌物呈黄色| 亚洲av美国av| 日本wwww免费看| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 最近手机中文字幕大全| 考比视频在线观看| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 最黄视频免费看| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三 | 日本欧美视频一区| 久久精品亚洲av国产电影网| 热re99久久国产66热| 亚洲国产看品久久| 人人澡人人妻人| 纯流量卡能插随身wifi吗| 欧美xxⅹ黑人| 一区二区三区乱码不卡18| 夫妻性生交免费视频一级片| 午夜福利视频精品| 国产精品九九99| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看| 制服人妻中文乱码| 宅男免费午夜| 久久久久精品国产欧美久久久 | 丝瓜视频免费看黄片| bbb黄色大片| 日韩制服丝袜自拍偷拍| 黄色片一级片一级黄色片| 国产成人欧美| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 国产精品一国产av| 国产精品一二三区在线看| 久久99精品国语久久久| 99热全是精品| 只有这里有精品99| 一区二区三区激情视频| 大香蕉久久成人网| 秋霞在线观看毛片| 超色免费av| 麻豆乱淫一区二区| 十八禁人妻一区二区| 麻豆乱淫一区二区| 亚洲人成电影观看| 天堂俺去俺来也www色官网| 青草久久国产| 美女视频免费永久观看网站| 亚洲熟女精品中文字幕| 免费看av在线观看网站| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 亚洲五月婷婷丁香| 蜜桃国产av成人99| av福利片在线| 亚洲av成人不卡在线观看播放网 | www.精华液| 国产精品国产av在线观看| 成人影院久久| 国产精品二区激情视频| 午夜免费鲁丝| 五月开心婷婷网| 99九九在线精品视频| 少妇裸体淫交视频免费看高清 | 国产免费福利视频在线观看| 成年人午夜在线观看视频| 久久免费观看电影| 午夜两性在线视频| 青草久久国产| 纯流量卡能插随身wifi吗| 亚洲国产av新网站| 免费黄频网站在线观看国产| 啦啦啦在线观看免费高清www| 亚洲精品久久成人aⅴ小说| svipshipincom国产片| 国产91精品成人一区二区三区 | 免费人妻精品一区二区三区视频| 久久精品久久久久久久性| 日本色播在线视频| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 国产精品香港三级国产av潘金莲 | 久久av网站| 国产成人免费无遮挡视频| 亚洲av日韩精品久久久久久密 | 国产主播在线观看一区二区 | 高清视频免费观看一区二区| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看| 丝袜美足系列| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 欧美在线一区亚洲| 侵犯人妻中文字幕一二三四区| 青草久久国产| 成年av动漫网址| 成人国语在线视频| 男人添女人高潮全过程视频| 男女国产视频网站| 午夜福利,免费看| av在线播放精品| 成在线人永久免费视频| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 色网站视频免费| 在线 av 中文字幕| 99精国产麻豆久久婷婷| av在线播放精品| 午夜福利免费观看在线| netflix在线观看网站| 国产三级黄色录像| 精品一区二区三区av网在线观看 | 亚洲国产精品一区三区| 捣出白浆h1v1| 精品少妇内射三级| 天堂中文最新版在线下载| 九色亚洲精品在线播放| 欧美成狂野欧美在线观看| 18禁观看日本| 桃花免费在线播放| 欧美av亚洲av综合av国产av| 欧美日韩亚洲国产一区二区在线观看 | 大型av网站在线播放| 嫩草影视91久久| 9色porny在线观看| 男女下面插进去视频免费观看| 99久久人妻综合| 丰满迷人的少妇在线观看| 男女下面插进去视频免费观看| av线在线观看网站| 我的亚洲天堂| 天天躁夜夜躁狠狠久久av| 自线自在国产av| 久久久久久久久免费视频了| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av蜜桃| 在线观看国产h片| 岛国毛片在线播放| 最近手机中文字幕大全| 麻豆av在线久日| 国产精品免费视频内射| 亚洲天堂av无毛| 亚洲av在线观看美女高潮| 大码成人一级视频| 亚洲第一青青草原|