• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of full-length deubiquitinating complex Ubp3/Bre5 and characterization of interaction with Cdc48

    2015-03-06 12:15:28SuWenchengLyuCaoShiLiliJingXiaofeiGaiYuanmingZhangJieTanHuanboWangPengjuXiaLixinZouPeijianandQinGang
    深圳大學學報(理工版) 2015年1期
    關鍵詞:文成深圳大學復合體

    Su Wencheng, Lyu Cao, Shi Lili, Jing Xiaofei,Gai Yuanming, Zhang Jie, Tan Huanbo, Wang Pengju,Xia Lixin, Zou Peijian, and Qin Gang?

    1) College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, P.R.China 2) National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences, Tianjin 300308, P.R.China 3) Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research,Tianjin 300193, P.R.China 4) Health Science Center, Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University,Shenzhen 518060, P.R.China

    ?

    【生物工程 / Bioengineering】

    Preparation of full-length deubiquitinating complex Ubp3/Bre5 and characterization of interaction with Cdc48

    Su Wencheng1,2, Lyu Cao1,2, Shi Lili3, Jing Xiaofei1,2,Gai Yuanming2, Zhang Jie2, Tan Huanbo2, Wang Pengju2,Xia Lixin4, Zou Peijian2, and Qin Gang2?

    1) College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, P.R.China 2) National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences, Tianjin 300308, P.R.China 3) Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research,Tianjin 300193, P.R.China 4) Health Science Center, Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University,Shenzhen 518060, P.R.China

    Ubiquitination modification is a dynamic process essential for eukaryotic cell physiology. Ubp3, theSaccharomycescerevisiaehomologueofhumandeubiquitinaseUSP10,togetherwithitscofactorBre5,playsanactiveroleinnumerouscellularprocesses.AlthoughBre5isessentialforUbp3functioninvivo,unfortunately,duetodifficultyinpreparingcriticalquantitiesofintactfunctionalUbp3andUbp3/Bre5reconstitute,systemiccharacterizationonthiscomplexislacking.Hence,howexactlyBre5regulatesUbp3activitystillremainselusive.Tofillthisgap,wereportthesuccessfulexpressionandpurificationofrecombinantUbp3andBre5inEscherichiacoliinmonomericandcomplexform.Toourknowledge,thisisthefirstreportthesuccessfulpreparationoffull-lengthUbp3/Bre5proteincomplexinlargescale,whichallowsustoobtainfurtherunderstandingofmolecularbases.ThestoichiometricinteractionbetweenpurifiedUbp3andBre5confirmedproperfoldingoftheseproteins.ToassesstheproposeddirectinteractionsbetweenUbp3andBre5withtheubiquitinselectiveATPaseassociatedwithavarietyofcellularactivities(AAAATPase)Cdc48,seriesofpull-downassaysareperformed;resultsrevealthat,neitherUbp3norBre5aloneisabletobindCdc48.However,theUbp3/Bre5complexcouldbindCdc48efficiently,whichprovidsnovelinsightonUbp3/Bre5-Cdc48interactionmode.Insummary,ourresultslaythefoundationforfuturemechanisticevaluationbybothbiochemicalandstructuralmeans.

    protein binding; deubiquitinase Ubp3; cofactor Bre5; ATPase Cdc48; deubiquitinating complex; GST-pulldown; direct interaction

    The dynamic balance between ubiquitination and deubiquitination, the two reversal post-translational regulation processes, plays a vital role in eukaryotic cell physiology facilitated by highly specific catalytic machinery[1]. Deubiquitination is catalyzed by deubiquitinating proteases (DUBs), which are mainly categorized into five groups based on structural homology: ubiquitin-specific processing proteases (USPs/UBPs), ubiquitin C-terminal hydrolases (UCHs), ovarian tumor domain-containing proteases (OTUs), Ataxin-3-like proteases and Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+)(JAmmol/L) proteases[2-3]. Among DUBs, UBPs represent the most abundant type. In theSaccharomycescerevisiaegenome,atleast16UBPencodingsequenceshavebeendiscovered.Noneofthemisessentialforcellviability,butcertainindividualmutantsexhibitpleiotropicabnormalities,implicatingimportantandwidespreadrolesincellularfunctions[4-5].

    Ubp3,theSaccharomycescerevisiaehomologueofhumanUSP10,hasbeenshowntobeinvolvedinregulatingmultiplecellularprocesses,includingDNArepair[6-7],transcriptionregulation[8-9],signaltransduction[10-11],anterograde/retrogradetransport[12]andribophagy[13].OnepositiveregulatornamedBre5directlyinteractswithUbp3andisindispensableforUbp3function[12].InitialstructuralcharacterizationhasrevealedthatUbp3andBre5formasymmetricheterotetramerinwhichtheBre5NTF2-likedomaindimerinteractswithtwoN-terminalmotifsofUbp3withapparent1∶1stoichiometry[14-15].TheeffectofcofactorBre5onUbp3istoeitherfacilitatesubstratetargeting,ortomodulateitscatalyticactivityortoachieveboth;unfortunately,directprooffrombiochemicalandstructuralaspectsisstilldeficientduetodifficultyinpreparingthelargeUbp3andfull-lengthfunctionalUbp3/Bre5reconstitute.Recently,oneintriguingconnectionoftheubiquitin-selectivechaperonCdc48,anditscofactorUfd3toUbp3/Bre5mediatedribophagywasproposed.Ubp3andBre5wereshowntointeractwithCdc48andUfd3directly[16].However,themolecularbasisontheseinteractionsandfunctionalmechanismunderlyingthemremaintobepreciselyevaluated.

    Priorattemptstopurifyrecombinantfull-lengthUbp3werenotverysuccessful[15].WefindthatthiswasmostlyduetotheintrinsicinstabilityofN-terminalregionofUbp3 (ourunpublisheddata).ToinitiatesystemiccharacterizationofthedeubiquitinatingcomplexUbp3/Bre5,wereportsuccessfulexpressionandpurificationofrecombinantUbp3andBre5inamonomericandcomplexform,throughtheEscherichiacoli(E.coli)expressionsystem.Utilizingthesepurifiedsamples,wecarefullyassesstheinteractionsbetweenCdc48andUbp3/Bre5invitro.Asfarasweknow,thisisthefirstreportonthesuccessfulpreparationofafull-lengthUbp3/Bre5complexinlargescale,whichallowsustoobtainfurtherunderstandingofmolecularbasisoftheUbp3/Bre5viabiochemicalandstructuralbiologymeans.

    1 Materials and methods

    1.1Materials

    E.coliDH5α,E.coliBL21 (DE3),E.colitrx(DE3)andT4DNALigasewerepurchasedfromBeijingTransGenBiotech(Beijing,China).pGEX-4T-1,pET-28aandpET-32-Bre5 were obtained from our laboratory. Restriction enzymes were purchased from Fermentas Life Sciences (Vilnius, Lithuania). Es Taq DNA Polymerases were purchased from Beijing CoWin Bioscience Co., Ltd (Beijing, China). Extraction Kit, Plasmid Mini Kit and Cycle-pure Kit were purchased from OMEGA Bio-Tek (Norcross,GA). Primers were ordered from Shanghai Sangon Biotechnology (Shanghai, China). IPTG was purchased from Sigma (CA, USA). Recombinant glutathione S-transferase (GST), GST-Cdc48 and 6×His-Cdc48 were previously prepared as reported[17].

    1.2 Construction of the expression plasmids

    TheUbp3encodingsequencewasamplifiedfromSaccharomycescerevisiaegenome,withprimersdesignedwithrestrictionendonucleasecloningsitesEcoRIandXhoI(Table1).ThePCRreactionswerecarriedoutas:Step1 94 ℃,2min;Step2 94 ℃,30s, 55 ℃,30s, 72 ℃,2min;Step3 72 ℃, 10min,with25cyclesofstep2.TherecoveredPCRproductandvectorpGEX-4T-1weredigestedwithEcoRIandXhoIrestrictionenzymesandwereligatedviaT4ligase,thentransformedintoE.coliDH5αcells.PositiveclonesdesignatedaspGEX-4T-1-Ubp3wereselectedbycolonyPCRandwereverifiedbyDNAsequencing.

    DNAfragmentsencodingBre5genewasamplifiedbyPCRfromapreviouslyconstructedpET-32-Bre5 plasmid with primers designed with restriction endonuclease cloning sitesNcoIandXhoI(Table1).PCRreactionswerecarriedoutas:Step1 95 ℃, 2min;Step2 94 ℃, 30s, 55 ℃, 30s, 72 ℃, 1min30s;Step3 72 ℃, 10min,with25cyclesofstep2.TheamplifiedBre5fragmentwasclonedintoapET-28avectorbythesimilarprocessdescribedabove.Positivecloneswereselectedviadoubledigestion,andthesequencingverifiedplasmidwasdesignatedaspET-28a-Bre5.

    Table 1 PCR primer sequences1)圖1 PCR擴增使用引物

    1)Restriction sites are underlined.

    1.3 Expression trials of recombinant Ubp3 and Bre5

    pGEX-4T-1-Ubp3 and pET-28a-Bre5 plasmids were transformed intoE.colitrx(DE3)andE.coliBL21(DE3)cellsrespectively.AsinglecolonywasinoculatedintoaLBmediumsupplementedwithproperantibiotics(100μg/mLampicillinor50μg/mLkanamycin)andcultivatedovernightat37 ℃withvigorousshaking.Theovernightculturesweredilutedinfreshpre-warmedmedium(includingproperantibiotics)andgrownat37 ℃withvigorousshaking,untiltheOD600reached0.5-0.7.ProteinexpressionwasinducedbyaddingIPTG(finalconcentrationat0.2mmol/LforGST-Ubp3 induction and 0.1 mmol/L for 6×His-Bre5 induction), and cultures were collected after overnight growth at either 25 ℃ or 16 ℃. Samples were sonicated and fractionated, and whole cell lysate, supernatant, and pellet fractions were analyzed by means of sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and Coomassie staining.

    The co-expression experiment was essentially described above, except that both pGEX-4T-1-Ubp3 and pET-28a-Bre5 were co-transformed intoE.coliBL21(DE3)inthepresenceofantibiotics(100μg/mLampicillinplus50μg/mLkanamycin).

    1.4PurificationofUbp3andBre5

    TopurifyrecombinantGST-Ubp3inlargescale,cultivatedcellswithoptimalinductionwereharvestedbycentrifugation(4 500r/min, 20min, 4 ℃)andre-suspendedinicecoldbuffer(PBS,pH=7.4, 0.4mmol/LofPMSF, 1×proteaseinhibitor, 3mmol/LDTT)andlysedviaFrenchpress.Thelysatewasthencentrifugedat15 000r/minfor30minat4 ℃,withthesupernatantappliedtoGlutathioneSepharoseresin(GEHealthcarecat. #17-5132-03)pre-equilibratedwithPBSandincubatedwithrotatingfor4hat4 ℃.Thecolumnwaswashedwithequilibrationbuffer(PBScontaining3mmol/LDTT, 0.1%TritonX-100),andtheproteinwaselutedwithelutionbuffer(50mmol/LTris-HCl,pH=8.0, 200mmol/LNaCl, 10mmol/Lglutathione).TheelutionfractionswereanalyzedviaSDS-PAGEandCoomassiestaining.Selectedelutionfractionswerecombinedanddialyzedagainstice-colddialysisbuffer(50mmol/LTris-HCl,pH=7.5, 50mmol/LNaCl, 5%glycerol),thenappliedtotheSPSepharoseFF(GEHealthcarecat. #17-0929-01)pre-equilibratedwithanice-colddialysisbuffer.Afterbeingwashedwith10bedvolumesofthesamebuffer,thecolumnwaselutedwithanelutionbuffercontainingastepwiseincreaseinsaltconcentration(0.2, 0.3and0.4mol/LNaCl,respectively).TheelutionfractionswereanalyzedviaSDS-PAGEandCoomassiestaining.TheconcentrationofpurifiedrecombinantGST-Ubp3 protein was determined by using bovine serum albumin as a standard.

    To purify recombinant 6×His-Bre5 on a in large scale, cells were harvested by centrifugation (4 500 r/min, 20 min, 4 ℃) and pellets were re-suspended in 100 mL of lysis buffer (50 mmol/L Tris-HCl, pH=7.5, 150 mmol/L NaCl and 20 mmol/L imidazole, 0.4 mmol/L of PMSF, 5 mmol/L β-mercaptoethanol). Cells were lysed via French Press. Lysates were clarified (15 000 r/min, 30 min, 4 ℃), and the supernatants were transferred to Ni Sepharose FF (GE Healthcare cat. #17-5318-03) pre-equilibrated with lysis buffer and rotated for 2 h at 4 ℃. The column was sequentially washed with a wash buffer (50 mmol/L Tris, pH=7.5, 150 mmol/L NaCl, 0.1% Triton X-100, 5 mmol/L β-mercaptoethanol) containing a stepwise increase of imidazole concentrations (20, 50 and 100 mmol/L). Then the 6×His-Bre5 protein was eluted with elution buffer (50 mmol/L Tris, pH=7.5, 150 mmol/L NaCl, 250 mmol/L imidazole, 5 mmol/L β-mercaptoethanol), and elution fractions were analyzed via SDS-PAGE and Coomassie staining. The concentration of purified recombinant 6×His-Bre5 protein was determined by using bovine serum albumin as a standard.

    1.5 Preparation of Ubp3 /Bre5 complex

    For the large-scale Ubp3/Bre5 complex purification, GST-Ubp3 was purified as described above, except that after GST-Ubp3 binding, sufficient amount of purified 6×His-Bre5 was applied to glutathione column and incubated for 1 h at 4 ℃.

    1.6 LC-MS/MS analysis of recombinant Ubp3 and Bre5

    For protein identification LC-MS/MS analysis was conducted using LTQ XL from Thermo Fisher (ESI-MS/MS). The instrument was operated with a spray voltage of 3.5 kV and an ion transfer tube temperature of 25 ℃. The information-dependent acquisition (IDA) mode of operation was employed in which a survey scan fromm/z400to1 800wasacquiredfollowedbycollision-induceddissociation(CID),andforMS/MS,usinganormalizedcollisionenergyof35%withanactivationqof0.25for30ms.IonselectionthresholdsforMSandMS/MSwere1 000and500counts,respectively.

    TandemmassspectrawereextractedbytheXcaliburversion1.0.0.2.AllMS/MSsampleswereanalyzedusingSequest.IodoacetamidederivativeofCys,de-amidationofAsnandGln,oxidationofMetwerespecifiedinSequestasvariablemodifications.ProteomeDiscoverer1.2wasusedtovalidateMS/MSbasedpeptideandproteinidentifications.Peptideidentificationswereacceptediftheycouldbeestablishedatprobabilitygreaterthan95.0%asspecifiedbytheresultfilter,whichisXcorr> 1.9 if the charge is 1,Xcorr> 2.2 if the charge is 2,Xcorr> 3.75 if the charge is 3. Protein identifications were accepted if they were established at probability greater than 99.0% and contained at least 2 identified unique peptides.

    1.7 GST-pulldown experiments

    For pull-down assays, GST or GST fusion proteins were first incubated with 50 μL of pre-equilibrated glutathione-Sepharose beads in buffer A (50 mmol/L Tris, 100 mmol/L NaCl, 1 mmol/L DTT, 0.1% triton X-100, pH=7.5) for 1 h at 4 ℃. The beads were washed once with 500 μL of buffer A to remove unbound material and then incubated with prey proteins for 1 h at 4 ℃. Beads were washed three times with 1 mL of buffer A, followed by three times of wash with buffer B (50 mmol/L Tris, 100 mmol/L NaCl, 1 mmol/L DTT, pH=7.5), then mixed with an SDS-PAGE loading buffer and analyzed on SDS-PAGE.

    2 Results

    2.1 Construction of the expression plasmids

    Due to the exceptional ability of GST tag to greatly enhance the solubility and stability of fused proteins, GST tag has been widely used for facilitating recombinant protein preparation; therefore we introduce a GST domain fused at the N-term ofUbp3. TheUpb3 gene was amplified usingSaccharomycescerevisiaegenomeDNAasatemplate,asinglebandatabout2.8kbwasobtained,inaccordancewiththesizeofUpb3 coding region (Fig.1(a)); the encoding fragment was inserted into bacterial expression vector pGEX-4T-1, and a positive plasmid designated as pGEX-4T-1-Ubp3 was selected via colony PCR (Fig.1(b)) and verified via DNA sequencing. TheBre5genewasamplifiedsimilarly,withafragmentofabout1.5kbobtained(Fig.1(c)),theencodingfragmentwasinsertedintopET-28atointroducea6×HistagatN-termofBre5.Thepositiveplasmid,designatedpET-28a-Bre5, was selected by double restriction enzyme digestion (Fig.1(d)) and confirmed via DNA sequencing.

    (a) PCR amplification of Ubp3 coding region from Saccharomyces cerevisiae genome. Lane 1, DNA marker; Lane 2, PCR product. (b) Verification of expression plasmids pGEX-4T-1-Ubp3 by colony PCR. Lane 1, DNA marker; Lane 2-3, PCR amplified fragments verifying two positive clones. (c) PCR amplification of Bre5 coding region from a previously constructed plasmid pET-32-Bre5. Lane 1, DNA marker; Lane 2, PCR product. (d) Verification of expression plasmids pET-28a-Bre5 by restriction enzyme digestion. Lane 1, DNA marker; Lane 2-3, two positive clones digested with Nco I and Xho I.Fig.1 Ubp3 and Bre5 coding fragments amplified by PCR and verification of recombinant expression plasmids圖1 PCR擴增Ubp3和Bre5編碼片段及質粒構建驗證

    2.2 Expression and purification of Ubp3

    Small scale expression trials of Ubp3 inE.colitrx(DE3)wereperformedatvariousinductionconditions.Comparedtonon-inducedcondition,onebandmigratingatabout130kDabecameapparentafterIsopropylβ-D-1-thiogalactopyranoside(IPTG)inductionwith0.2mmol/LIPTGat16 ℃,whichcorrespondstotheGST-Ubp3fusion,thusresultedinarelativelyhighersolubilityoftheinducedprotein(Fig.2(a));therefore,wechosethesameinductionconditionforlargescalepreparation.AsshowninFig.2(b),afterasingle-stepglutathionecolumnpurification,GST-Ubp3wasenrichedinelutionfractions.However,thesamefractionsalsocontainedseveralcontaminatingcomponentsofdiversemolecularweight.Thesizeofaprominentcontaminantwasabout26kDa(Fig.2(b),Lane6),similartoanintactGSTdomain,whichisnotsurprisingsinceGSTtruncatesarefrequentlyco-purifiedwithGSTfusionproteins,especiallywhenthefusedpartnercontainsdegradation-proneareas.OthermajorcontaminatingproteinsappearedtobethedegradationintermediatesofUbp3,sincethesebandsremainedratherunstable,almostdisappearedduringdialysis(comparedFig.2(b),Lane6withFig.2(c),Lane1).TofurtherimprovethepurityofcombinedGST-Ubp3poolandespeciallytoremoveGSTtruncates,wecontinuedwithion-exchangechromatography.BasedontheestimatedpIsforUbp3andGST(7.9forUbp3versus4.5forGST),SPsepharosewasselected,andtheefficacyofcontaminantremovalwasshowninFig.2(c).GSTtruncatesindialysisbufferremainedpoorlyboundtoSPresinclearlyhencelargelyexistedinflowthrough(Fig.2(c),Lane2);incontrast,mostGST-Ubp3adsorbedtoSPresinatthesamecondition,andwasabletobeefficientlyelutedwhenNaClconcentrationwasincreasedto0.2-0.3mol/L(Fig.2(c),Lane6-9).Recoveredfull-lengthGST-Ubp3exhibitedsignificantimprovementonpurity(>85%),itsidentitywasuniquelyverifiedbyLC-MS/MS(Fig.3).TotalyieldsofrecombinantGST-Ubp3arelistedinTable2.

    (a)Small scale expression trials of GST-Ubp3 induced at 16 ℃ (Lane 1-4) and 25 ℃ (Lane 5-8) respectively. Lane 1 and 5, total proteins of uninduced cells; Lane 2 and 6, total proteins of induced cells; Lane 3 and 7, soluble fraction of induced cells; Lane 4 and 8, insoluble fraction of induced cells. (b) GST-Ubp3 purification through glutathione column chromatography. Lane 1, soluble fraction of induced cells; Lane 2, flowthrough; Lane 3-4, wash; Lane 5-8, elution fraction. (c) Further purification of GST-Ubp3 through SP cation-exchange chromatography. Lane 1, dialyzed GST-Ubp3 pool from glutathione column chromatography; Lane 2, flowthrough; Lane 3, wash; Lane 4-6, 0.2 mol/L NaCl elution fraction; Lane 7-9, 0.3 mol/L NaCl elution fraction; Lane 10, 0.4 mol/L NaCl elution fraction.Fig.2 SDS-PAGE analysis on expression and purification of Ubp3 in E.coli圖2 蛋白電泳分析 Ubp3在大腸桿菌內的表達及純化

    Amino acid sequence corresponding to Ubp3 was shown, with identified unique peptides highlighted in gray.Fig.3 (Color online) Identity verification of purified Ubp3 via tandem MS/MS圖3 MS/MS鑒定純化的Ubp3蛋白

    proteinnamepurificationstagesV/mLm(targetprotein)/mgyield/%celllysate10060100glutathioneaffini-tychromatography161627GST-Ubp3Spcation-ex-changechromatography2010176×His-Bre5celllysate100150100nickleaffinitychromatography246040

    2.3 Expression and purification of Bre5

    In experiments parallel to Ubp3, expression trials of Bre5 inE.coliBL21(DE3)werealsoperformed.Uponinduction,oneproteinwithamolecularweightofabout70kDaappears(Fig.4(a)),whichislargerthantheexpectedsizeof6×His-Bre5 (about58kDa);thisismostlikelyduetounusualmobilityofBre5inSDS-PAGE,sincetheidentityofpurifiedproteinwasconfidentlyverifiedasBre5byLC-MS/MS(Fig.5).Targetproteininducedwith0.1mmol/LIPTGat16 ℃exhibitedrelativelybettersolubility(Fig.4(a)),sameinductionconditionwasalsoappliedtolargescalepurification. 6×His-Bre5waspreparedaccordingtostandardone-stepnickelaffinitychromatographyprocedure,asshowninFig.4(b).Theimidazoleelutionfractionswerepooledanddialyzed,totalyieldsofrecombinant6×His-Bre5aresummarizedinTable2.

    (a) Small scale expression trials of 6×His-Bre5 induced at 16 ℃ (Lane 1-4) and 25 ℃ (Lane 5-8) respectively. Lane 1 and 5, total proteins of uninduced cells; Lane 2 and 6, total proteins of induced cells; Lane 3 and 7, soluble fraction of induced cells; Lane 4 and 8, insoluble fraction of induced cells. (b) 6×His-Bre5 purification through nickel affinity chromatography. Lane 1, soluble fraction of induced cells; Lane 2, flowthrough; Lane 3, wash; Lane 4, 50 mmol/L imidazole elution fraction; Lane 5-6, 80 mmol/L imidazole elution fraction; Lane 7-9, 100 mmol/L imidazole elution fraction; Lane 10-12, 250 mmol/L imidazole elution fraction; Lane 13, 500 mmol/L imidazole elution fraction.Fig.4 SDS-PAGE analysis on expression and purification of Bre5 in E.coli圖4 蛋白電泳分析Bre5蛋白在大腸桿菌內的表達及純化

    Amino acid sequence corresponding to Bre5 was shown, with identified unique peptides highlighted in gray.Fig.5 (Color online) Identity verification of purified Bre5 via tandem MS/MS圖5 MS/MS鑒定純化的Bre5蛋白

    2.4FunctionaltestofrecombinantUbp3andBre5

    HavingsuccessfullyobtainedsolubleUbp3andBre5inhighpurity,wesoughttoconfirmwhethertheyareproperlyfoldedornot.Previously,ithasbeenwellestablishedthatUbp3andBre5physicallyinteractwitheachotherinvivoandinvitro[12, 14-15];thus,weperformedaGST-pulldowntodirectlyexaminetheinteraction.AsshowninFig.6,incontrasttoGST(Lane4),GST-Ubp3displaysastoichiometricinteractionwithBre5 (Lane5),consistentwithpreviousreports[14-15].Basedonthesedata,weconcludthatourpreparedrecombinantUbp3andBre5arefunctional.

    Lane 1, GST; Lane 2, GST-Ubp3; Lane 3, 6×His-Bre5; Lane 4, pulldown sample using GST as bait and 6×His-Bre5 as prey; Lane 5, pulldown sample using GST-Ubp3 as bait and 6×His-Bre5 as prey.Fig.6 GST-pulldown assay between recombinant Ubp3 and Bre5圖6 GST-pulldown 檢測Ubp3與Bre5結合

    2.5Large-scalepreparationofUbp3/Bre5complex

    ThesuccessfulpurificationoffunctionalUbp3andBre5individuallypromptedustotrypreparingUbp3/Bre5complexdirectly,whichisessentialforfurtherfunctionalandstructuralcharacterization.Initially,wetookoureffortonco-expressingpGEX-4T-1-Ubp3 and pET-28a-Bre5 inE.coli.UnfortunatelytheinductionofUbp3andBre5isnotatcomparablelevel(Fig.7(a)),GST-Ubp3inductionisnearlyundetectable),preventingproductivecomplexassemblyinvivo.Tosolvethisproblem,wedevelopeda‘hybrid’procedureasshowninFig.7(b),GST-Ubp3waspurifiedaccordingtotheestablishedtwo-stepproceduredescribedabove,exceptthatafterGST-Ubp3bindingtoglutathionecolumn,sufficientamountofrecombinant6×His-Bre5wasaddedtotriggertheon-columncomplexassembly.Byfollowingthisstrategy,theglutathioneelutionfractionsdisplayednearlystoichiometricdistributions

    ofUbp3andBre5,indicatingsuccessfulcomplexformationonglutathionecolumn(Fig.7(c)).Moreover,successiveSPcation-exchangechromatographysignificantlyenhancedthepurityofUbp3/Bre5complexbyefficientlyremovingGSTtruncatesandothercontaminants,aprocedurecomparabletoindividualUbp3purification(Fig.7(d));interestingly,thepreformedUbp3/Bre5complexwelltoleratedhighsaltelutioncondition(0.4-0.5mol/LNaCl),presentingexceptionalstability.

    (a) Small-scale co-expression trials of GST-Ubp3 and 6×His-Bre5 induced at 16 ℃ (Lane 1-4) and 25 ℃ (Lane 5-8) respectively. Lane 1 and 5, total proteins of un-induced cells; Lane 2 and 6, total proteins of induced cells; Lane 3 and 7, soluble fraction of induced cells; Lane 4 and 8, insoluble fraction of induced cells. (b) Procedure for two-round GST-Ubp3/6×His-Bre5 complex preparation. (c) The first round of GST-Ubp3/6×His-Bre5 complex preparation through glutathione column chromatography. Lane 1, soluble fraction of induced cells; Lane 2, flowthrough after 6×His-Bre5 incubation with glutathione column ; Lane 3-7, wash; Lane 8-11, elution fraction. (d) The second round of GST-Ubp3/6×His-Bre5 complex purification through SP cation-exchange chromatography. Lane 1, dialyzed GST-Ubp3/6×His-Bre5 pool from glutathione column chromatography; Lane 2, flowthrough; Lane 3-4, wash; Lane 5, 0.2 mol/L NaCl elution fraction; Lane 6-7, 0.3 mol/L NaCl elution fraction; Lane 8-10, 0.4 mol/L NaCl elution fraction.Fig.7 Preparation of recombinant Ubp3/Bre5 complex圖7 重組Ubp3/Bre5復合體的制備

    2.6 Assessment of interactions between Ubp3 and Bre5 with Cdc48

    Recently, the Ubp3/Bre5 complex has been linked to the ATPase associated with a variety of cellular activities (AAA ATPase) Cdc48. Ossareh-Nazari et al[16]proposed a direct interaction between Ubp3 and Bre5 with Cdc48 respectively, hence providing further evidence that Cdc48 has close crosstalk with deubiquitinating pathways. Taking advantages of Ubp3, Bre5 and Ubp3/Bre5 preparations, we directly examined the proposed interactions by performing a series of GST-pulldown experiments. To our surprise, we could hardly observe any interaction between GST-Ubp3 and Cdc48 (Fig.8(a), Lane 5), consistently. GST-Cdc48 also failed to pulldown Bre5 (Fig.8(b), Lane 3); these results are obviously contradictory to the former finding from Ossareh-Nazari et al[16]. Intriguingly, however, when the preformed GST-Ubp3/Bre5 complex was used as pulldown bait, a significant binding of Cdc48 was observed (Fig.8(c), Lane 3), indicating the assembled Ubp3/Bre5 complex is indeed able to physically interact with Cdc48. At this moment, we could not explain the discrepancy, but our results strongly suggest that more careful experiments need to be performed to uncover the real Ubp3/Bre5-Cdc48 interaction mode.

    (a) GST-Ubp3 fails to interact with 6×His-Cdc48. Lane 1, 6×His-Bre5; Lane 2, 6×His-Cdc48; Lane 3, pulldown sample using GST as bait and 6×His-Cdc48 as prey; Lane 4, pulldown sample using GST-Ubp3 as bait and 6×His-Bre5 as prey; Lane 5, pulldown sample using GST-Ubp3 as bait and 6×His-Cdc48 as prey. (b) GST-Cdc48 fails to interact with 6×His-Bre5. Lane 1, 6×His-Bre5; Lane 2, pulldown sample using GST as bait and 6×His-Bre5 as prey; Lane 3, pulldown sample using GST-Cdc48 as bait and 6×His-Bre5 as prey. (c) GST-Ubp3 /6×His-Bre5 complex interacts with 6×His-Cdc48. Lane 1, 6×His-Cdc48; Lane 2, pulldown sample using GST as bait and 6×His-Cdc48 as prey; Lane 3, pulldown sample using GST-Ubp3/6×His-Bre5 complex as bait and 6×His-Cdc48 as prey.Fig.8 GST-pulldown assays between Ubp3 and Bre5 with Cdc48圖8 GST-pulldown檢測Ubp3 /Bre5 與Cdc48的結合

    3 Discussions and conclusions

    The pleiotropic defects ofubp3mutantindicateitswidespreadcellularfunctions.DespitetheinvolvementofdeubiquitinatingactivityofUbp3/Bre5inmultiplecellularprocessesandpartialresolutionofUbp3/Bre5interactionmode,themolecularbasisonhowBre5regulatesUbp3activityisstilllargelyunknown.TopreciselydissectthepotentialroleofBre5instepofsubstraterecognition,catalyticactivationorcrosstalkwithotherinteractingpartners,asophisticatedinvitroreconstitutionsystemishighlydemanding.ObviouslythesuccessfulpreparationoffunctionalUbp3/Bre5complexinhighhomogeneityisaprerequisite.Inthiswork,wehaveestablishedanexpressionandpurificationsystemtofulfillthisrequirement.Withthedevelopmentofasimpleandefficientpurificationstrategywecouldobtainrecombinantfull-lengthUbp3,Bre5andalsoUbp3/Bre5complexinlargescale,whichtoourknowledgehasnotbeenreportedbefore.

    Cdc48,ahighlyconservedcomponentinAAAATPasefamily,wasnoticedandstudiedrecently,becauseofitsdistinctubiquitin-selectiveproperty:thehomohexamerofCdc48canactasageneralplatformformulti-purposedecisionmakingofmolecularevents,dependingonitsabilitytointeractwithplentyofcofactors,amongwhichbothubiquitinligasesandDUBsareincluded[18-19].ThediscoveryofUbp3-Cdc48interactionfurtherenrichesthetoolboxofCdc48andextendsitsactioninribophagypathway.Toconfirmthisimportantnotionandobtaindeeperinsight,wesetupaseriesofinteractionassaystoassesstheproposedone-to-oneinteractionsbetweenUbp3,Bre5andCdc48.Importantly,inoursystemwecouldnotreproducethediscoveredphysicalinteractionbetweenUbp3andBre5withCdc48,however,wecoulddetectastableinteractionbetweenUbp3/Bre5complexandCdc48,implicatingsynergisticactionofUbp3andBre5uponCdc48binding.ThisperspectivecouldpotentiallyexplaintheobligatoryroleofBre5inUbp3functioning.Undoubtedly,revisionofthecurrentworkingmodelawaitsmorecarefulexperiments.

    WebelievethatthehighpurityreconstitutesofrecombinantUbp3/Bre5willcontinuouslybringdeeperinsightonmolecularpropertiesofthiscomplexinfuture.Importantly,inanestablishedinvitroenzymaticactivityassay,theUbp3/Bre5complexcanexhibittypicaldeubiquitinatingenzymeactivity(manuscriptinpreparation),whichopensupapathforsystemiccatalyticmechanismcharacterizationofUbp3.

    [1] Wilkinson K D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome[J]. Seminars in Cell & Developmental Biology, 2000, 11(3):141-148.

    [2] Nijman S M,Luna-Vargas M P,Velds A,et al.A genomic and functional inventory of deubiquitinating enzymes[J]. Cell, 2005, 123(5):773-786.

    [3] Reyes-Turcu F E, Ventii K H, Wilkinson K D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes[J]. Annual Review of Biochemistry, 2009,78:363-397.

    [4] Amerik A Y, Li S J, Hochstrasser M. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry, 2000, 381(9/10): 981 -992.

    [5] Poulsen J W, Madsen C T, Young C, et al. Comprehensive profiling of proteome changes upon sequential deletion of deubiquitylating enzymes[J]. Journal of Proteomics, 2012, 75(13):3886-3897.

    [6] Bilsland E, Hult M, Bell S D, et al. The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage[J]. DNA Repair (Amst), 2007, 6(10):1471-1484.

    [7] Mao P, Smerdon M J. Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation[J]. Journal of Biological Chemistry, 2010, 285(48): 37542-37550.

    [8] Chew B S, Siew W L, Xiao B, et al. Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3[J]. Biochemical Journal, 2010, 431(3):391-399.

    [9] Kvint K, Uhler J P, Taschner M J, et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3[J]. Molecular Cell, 2008, 30(4):498-506.

    [10] Li Y, Wang Y. Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast[J]. Journal of Biological Chemistry, 2013, 288(16):11358-11365.

    [11] Wang Y, Zhu M, Ayalew M, et al. Down-regulation of Pkc1-mediated signaling by the deubiquitinating enzyme Ubp3[J]. Journal of Biological Chemistry, 2008, 283(4):1954-1961.

    [12] Cohen M, Stutz F, Belgareh N, et al. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23[J]. Nature Cell Biology, 2003, 5(7):661-667.

    [13] Kraft C, Deplazes A, Sohrmann M, et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease[J]. Nature Cell Biology, 2008, 10(5):602-610.

    [14] Li K, Ossareh-Nazari B, Liu X, et al. Molecular basis for bre5 cofactor recognition by the ubp3 deubiquitylating enzyme[J]. Journal of Molecular Biology, 2007,372(1):194-204.

    [15] Li K, Zhao K, Ossareh-Nazari B, et al. Structural basis for interaction between the Ubp3 deubiquitinating enzyme and its Bre5 cofactor[J]. Journal of Biological Chemistry, 2005, 280(32):29176-29185.

    [16] Ossareh-Nazari B, Bonizec M, Cohen M, et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy[J]. EMBO reports, 2010, 11(7): 548-554.

    [17] Rumpf S, Jentsch S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone[J]. Molecular Cell, 2006, 21(2):261-269.

    [18] Hanzelmann P, Buchberger A, Schindelin H. Hierarchical binding of cofactors to the AAA ATPase p97[J]. Structure, 2011, 19(6):833-843.

    [19] Stolz A, Hilt W, Buchberger A, et al. Cdc48: a power machine in protein degradation[J]. Trends in Biochemical Sciences, 2011, 36(10):515-523.

    【中文責編:晨 兮;英文責編:艾 琳】

    去泛素酶復合體Ubp3/Bre5的制備及與Cdc48作用

    蘇文成1, 2,呂 操1,2,時麗麗3,景曉飛1,2,蓋園明2,張 潔2,譚煥波2,王鵬舉2, 夏立新4,鄒培建2,秦 剛2

    1)天津工業(yè)技術大學生物技術學院, 天津 300457; 2)中國科學院天津工業(yè)生物技術研究所,國家工業(yè)酶重點實驗室,天津300308; 3)天津藥物研究院天津分子設計與藥物發(fā)現重點實驗室, 天津300193;4)深圳大學醫(yī)學部,呼吸疾病國家重點實驗室深圳大學變態(tài)反應分室, 深圳 518060

    泛素化是一種存在于真核細胞中與生理功能密切相關的蛋白修飾,泛素化與去泛素化處于動態(tài)調節(jié)過程中. Ubp3是與人USP10同源的酵母去泛素化酶,結合輔引子Bre5在細胞內發(fā)揮廣泛作用.為研究該復合體的工作機制,制備重組蛋白復合體,在大腸桿菌中成功表達并純化重組Ubp3與Bre5單體及Ubp3/Bre5復合體,首次成功大規(guī)模制備重組Ubp3/Bre5復合體.通過一系列pulldown實驗,檢驗Ubp3/Bre5與AAA家族中泛素選擇性ATP酶Cdc48的相互作用模式,結果發(fā)現,Ubp3及Bre5無法單獨與Cdc48結合,但Ubp3/Bre5復合體可以有效與Cdc48相互作用.提出了Ubp3/Bre5-Cdc48相互作用的新模式,制備了高質量重組Ubp3/Bre5復合體.該研究為通過生化及結構生物學進行分子機制探索奠定了基礎.

    結合蛋白質;Ubp3去泛素化酶;結合輔因子Bre5;ATP酶Cdc48;去泛素化復合體;與谷光苷肽巰基轉移酶沉淀試驗;直接相互作用

    天津市科技支撐計劃資助項目(11ZCZDSY08100); 中國科學院百人計劃資助項目(KSCW2-YW-BR-4) ;國家自然科學基金資助項目(81273275)

    蘇文成(1987—),女(漢族),內蒙古自治區(qū)呼和浩特市人,天津工業(yè)技術大學碩士,E-mail:woshisuwenc@yahoo.com

    /References:

    :Su Wencheng, Lyu Cao, Shi Lili, et al.Preparation of full-length deubiquitinating complex Ubp3/Bre5 and characterization of interaction with Cdc48[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 58-67.

    Q 513 Document code:A

    10.3724/SP.J.1249.2015.01058

    Received:2014-01-17;Revised:2014-12-24;Accepted:2014-12-26

    Foundation:The Program of Tianjin Municipal Science & Technology Project (11ZCZDSY08100); The Program of “One Hundred Talented People” of the Chinese Academy of Sciences (KSCW2-YW-BR-4); National Natural Science Foundation of China (81273275)

    ? Corresponding author:Associate professor Qin Gang, E-mail: qing@genequantum.com

    引 文:蘇文成,呂 操,時麗麗,等. 去泛素酶復合體Ubp3/Bre5的制備及與Cdc48作用[J]. 深圳大學學報理工版,2015,32(1):58-67.(英文版)

    猜你喜歡
    文成深圳大學復合體
    《深圳大學學報理工版》2023 年分類總目次
    背詩學寫話
    《深圳大學學報理工版》2021 年分類總目次
    《深圳大學學報理工版》2020年分類總目次
    靳文成作品欣賞
    大眾文藝(2019年16期)2019-08-24 07:53:44
    《深圳大學學報理工版》2017年征稿細則
    三千世界
    三千世界
    CoFe2O4/空心微球復合體的制備與吸波性能
    3種多糖復合體外抗腫瘤協同增效作用
    食品科學(2013年15期)2013-03-11 18:25:51
    免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 老女人水多毛片| 看免费成人av毛片| 久久国产乱子免费精品| 激情 狠狠 欧美| 禁无遮挡网站| 成人综合一区亚洲| 欧美日韩综合久久久久久| 国产一区二区在线观看日韩| 亚洲国产精品成人综合色| 日本黄色片子视频| 亚洲国产日韩欧美精品在线观看| 日本与韩国留学比较| 色综合站精品国产| 久久人人爽人人片av| 亚洲在线自拍视频| 久久精品91蜜桃| 国产伦精品一区二区三区视频9| 免费观看人在逋| 韩国av在线不卡| 真人做人爱边吃奶动态| 国产精品综合久久久久久久免费| 久久久久久国产a免费观看| 久久九九热精品免费| 尤物成人国产欧美一区二区三区| 国产黄片美女视频| 婷婷六月久久综合丁香| 性色avwww在线观看| 亚洲不卡免费看| 久久久久国产精品人妻aⅴ院| 日韩欧美精品v在线| 乱人视频在线观看| 夜夜夜夜夜久久久久| 久久久欧美国产精品| 成人av一区二区三区在线看| 亚洲内射少妇av| 亚洲国产色片| 日日摸夜夜添夜夜添小说| 国产免费一级a男人的天堂| 久久99热这里只有精品18| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 老熟妇乱子伦视频在线观看| 搡女人真爽免费视频火全软件 | 亚洲av成人精品一区久久| 欧美区成人在线视频| 色综合亚洲欧美另类图片| av视频在线观看入口| 国产精品久久久久久久久免| 网址你懂的国产日韩在线| 少妇丰满av| 99热这里只有是精品50| 日韩欧美 国产精品| 国产精品一区二区三区四区久久| 久久精品夜色国产| 国产精品99久久久久久久久| 午夜a级毛片| 丝袜美腿在线中文| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 长腿黑丝高跟| 麻豆乱淫一区二区| 国产亚洲精品av在线| 99国产极品粉嫩在线观看| 久久久久久大精品| 国产视频内射| av在线亚洲专区| av在线观看视频网站免费| 中国国产av一级| 99热这里只有是精品在线观看| 日韩成人伦理影院| 成人国产麻豆网| av卡一久久| 国产久久久一区二区三区| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 午夜爱爱视频在线播放| 欧美日韩国产亚洲二区| 婷婷六月久久综合丁香| 国产淫片久久久久久久久| 可以在线观看毛片的网站| 国产高潮美女av| 日韩强制内射视频| 欧美另类亚洲清纯唯美| 亚洲电影在线观看av| 亚洲18禁久久av| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 91午夜精品亚洲一区二区三区| 噜噜噜噜噜久久久久久91| 夜夜夜夜夜久久久久| 久久精品国产亚洲av涩爱 | 综合色丁香网| 精品人妻一区二区三区麻豆 | 欧美zozozo另类| 亚洲精品乱码久久久v下载方式| 在线a可以看的网站| 色吧在线观看| 美女 人体艺术 gogo| 中文资源天堂在线| av国产免费在线观看| 免费人成视频x8x8入口观看| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕日韩| 综合色av麻豆| 日本在线视频免费播放| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 欧美潮喷喷水| 日日啪夜夜撸| 国产精品久久视频播放| 看片在线看免费视频| 蜜臀久久99精品久久宅男| 一个人免费在线观看电影| 午夜福利成人在线免费观看| 免费av不卡在线播放| 国产精品无大码| 波多野结衣高清作品| 俺也久久电影网| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区 | 欧美zozozo另类| 国产乱人偷精品视频| 国产成人精品久久久久久| 国产成人福利小说| 色av中文字幕| 一区二区三区高清视频在线| 69人妻影院| 在线播放国产精品三级| 日韩精品青青久久久久久| 99热只有精品国产| 99久久无色码亚洲精品果冻| 可以在线观看毛片的网站| 精品人妻一区二区三区麻豆 | 麻豆久久精品国产亚洲av| 日日撸夜夜添| 亚洲高清免费不卡视频| 又爽又黄无遮挡网站| 亚洲中文日韩欧美视频| 午夜福利在线观看免费完整高清在 | 亚洲经典国产精华液单| www.色视频.com| 一区二区三区免费毛片| 国产又黄又爽又无遮挡在线| av福利片在线观看| 国产一区二区三区av在线 | 亚洲国产欧美人成| 男人和女人高潮做爰伦理| 欧美另类亚洲清纯唯美| 日韩在线高清观看一区二区三区| 国产高清激情床上av| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 国产高清激情床上av| 国产亚洲精品久久久com| 午夜日韩欧美国产| 我的女老师完整版在线观看| 桃色一区二区三区在线观看| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 晚上一个人看的免费电影| 成人特级黄色片久久久久久久| 欧美性猛交黑人性爽| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线 | 18禁黄网站禁片免费观看直播| 一级毛片我不卡| 免费一级毛片在线播放高清视频| 亚洲国产精品sss在线观看| 亚洲婷婷狠狠爱综合网| 在线国产一区二区在线| 丰满人妻一区二区三区视频av| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 国产一区二区亚洲精品在线观看| 久久久久久久久久久丰满| 成人综合一区亚洲| av国产免费在线观看| 最近手机中文字幕大全| 亚洲最大成人中文| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 麻豆久久精品国产亚洲av| 免费观看人在逋| 最近最新中文字幕大全电影3| 波多野结衣高清无吗| 免费搜索国产男女视频| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 亚洲色图av天堂| 有码 亚洲区| 老司机福利观看| 日本-黄色视频高清免费观看| 乱人视频在线观看| 联通29元200g的流量卡| 日韩制服骚丝袜av| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 免费观看人在逋| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 亚洲国产精品成人久久小说 | 日韩中字成人| 久久人人爽人人片av| 在线a可以看的网站| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 日韩高清综合在线| 少妇熟女aⅴ在线视频| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 日韩成人伦理影院| 国产精品三级大全| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 麻豆乱淫一区二区| 老熟妇仑乱视频hdxx| 丝袜美腿在线中文| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 国产精品永久免费网站| 国产精品无大码| 久久久色成人| 99视频精品全部免费 在线| 舔av片在线| 观看免费一级毛片| 美女免费视频网站| 麻豆乱淫一区二区| 日本免费一区二区三区高清不卡| 久久国内精品自在自线图片| 三级经典国产精品| 午夜亚洲福利在线播放| 91在线观看av| 精品乱码久久久久久99久播| 高清毛片免费看| 97碰自拍视频| 欧美色视频一区免费| 婷婷亚洲欧美| 激情 狠狠 欧美| 久久久久久久亚洲中文字幕| 日韩制服骚丝袜av| 人妻久久中文字幕网| 国产三级中文精品| 国产真实乱freesex| 白带黄色成豆腐渣| 嫩草影院新地址| 国产精品野战在线观看| 日韩欧美三级三区| 精品人妻一区二区三区麻豆 | 久久精品夜色国产| 12—13女人毛片做爰片一| 嫩草影院入口| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 99久国产av精品| 国产乱人视频| 最近在线观看免费完整版| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 亚洲欧美成人精品一区二区| 97在线视频观看| 观看免费一级毛片| 免费av毛片视频| 91精品国产九色| 亚洲精品日韩在线中文字幕 | 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 国产亚洲精品久久久久久毛片| 国产黄色小视频在线观看| 欧美潮喷喷水| 97超视频在线观看视频| 精品人妻一区二区三区麻豆 | 麻豆乱淫一区二区| 亚洲av中文av极速乱| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久| 日本爱情动作片www.在线观看 | 99国产精品一区二区蜜桃av| 久久精品国产亚洲av涩爱 | 国产精品一二三区在线看| 99久久久亚洲精品蜜臀av| 97热精品久久久久久| 国内精品一区二区在线观看| 69人妻影院| 91在线观看av| 91久久精品国产一区二区三区| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 亚洲不卡免费看| 一级a爱片免费观看的视频| 久久精品夜色国产| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 老熟妇仑乱视频hdxx| 免费观看的影片在线观看| 三级经典国产精品| 天天躁日日操中文字幕| 看十八女毛片水多多多| 夜夜爽天天搞| 精品福利观看| 久久韩国三级中文字幕| 老熟妇乱子伦视频在线观看| 99久久无色码亚洲精品果冻| h日本视频在线播放| 日韩成人av中文字幕在线观看 | 卡戴珊不雅视频在线播放| 亚洲无线观看免费| 亚洲最大成人av| 可以在线观看毛片的网站| 黑人高潮一二区| 99久久成人亚洲精品观看| 久久精品久久久久久噜噜老黄 | 国产黄色视频一区二区在线观看 | 欧美最新免费一区二区三区| 色播亚洲综合网| 欧美+日韩+精品| 狂野欧美激情性xxxx在线观看| 免费人成在线观看视频色| 亚洲精品色激情综合| 在线播放国产精品三级| 国产精品一及| 观看免费一级毛片| 日本精品一区二区三区蜜桃| 亚洲在线观看片| 免费av毛片视频| 亚洲国产精品久久男人天堂| 久久久成人免费电影| 女的被弄到高潮叫床怎么办| 男人舔女人下体高潮全视频| 亚洲不卡免费看| 男人舔女人下体高潮全视频| 亚洲美女搞黄在线观看 | 亚洲在线自拍视频| 天堂√8在线中文| 99热这里只有是精品50| 长腿黑丝高跟| 亚洲av中文字字幕乱码综合| or卡值多少钱| 亚洲av电影不卡..在线观看| 日韩中字成人| 欧美高清性xxxxhd video| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 无遮挡黄片免费观看| 麻豆精品久久久久久蜜桃| 亚洲欧美精品自产自拍| 国产欧美日韩一区二区精品| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产| 精品人妻偷拍中文字幕| 三级毛片av免费| 97碰自拍视频| 国产69精品久久久久777片| 久久热精品热| 97超级碰碰碰精品色视频在线观看| 欧美又色又爽又黄视频| 色视频www国产| 亚洲真实伦在线观看| 国产日本99.免费观看| 亚洲激情五月婷婷啪啪| a级毛色黄片| av在线观看视频网站免费| 国产精品一二三区在线看| 日本与韩国留学比较| 欧美3d第一页| avwww免费| 成年av动漫网址| 亚洲美女视频黄频| 中文在线观看免费www的网站| 我的女老师完整版在线观看| 国产色婷婷99| 久久久久久大精品| 亚洲,欧美,日韩| 欧美日韩乱码在线| 99久久九九国产精品国产免费| 亚洲国产精品成人综合色| 精品福利观看| 禁无遮挡网站| 在线观看av片永久免费下载| 少妇熟女欧美另类| 2021天堂中文幕一二区在线观| 夜夜夜夜夜久久久久| 欧美日韩在线观看h| 男人狂女人下面高潮的视频| 午夜a级毛片| 国产精品永久免费网站| 亚洲精品色激情综合| 日韩大尺度精品在线看网址| 成人特级av手机在线观看| 国产精品人妻久久久久久| 亚洲性夜色夜夜综合| 日日摸夜夜添夜夜添av毛片| 69人妻影院| 成年版毛片免费区| 最近手机中文字幕大全| 1000部很黄的大片| aaaaa片日本免费| 国产午夜精品久久久久久一区二区三区 | 尾随美女入室| 岛国在线免费视频观看| 在线a可以看的网站| 99久久精品国产国产毛片| 亚洲成人久久性| 久久精品夜色国产| 一级a爱片免费观看的视频| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 国产av一区在线观看免费| 国产精品久久久久久精品电影| 久久久a久久爽久久v久久| 全区人妻精品视频| 99热只有精品国产| av.在线天堂| 亚洲乱码一区二区免费版| 12—13女人毛片做爰片一| 亚洲成人精品中文字幕电影| 国产亚洲91精品色在线| 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 久久久精品大字幕| 欧美日本亚洲视频在线播放| 日韩高清综合在线| 国产高清三级在线| 成人国产麻豆网| 久久综合国产亚洲精品| 亚洲人成网站高清观看| 嫩草影视91久久| 99国产精品一区二区蜜桃av| 国产伦精品一区二区三区四那| eeuss影院久久| 插阴视频在线观看视频| 国产精品永久免费网站| 嫩草影视91久久| 欧美zozozo另类| 一级毛片aaaaaa免费看小| 成人国产麻豆网| 中文字幕精品亚洲无线码一区| 欧美不卡视频在线免费观看| 精品午夜福利在线看| 久久草成人影院| 一区二区三区高清视频在线| 亚洲精品国产成人久久av| 日本三级黄在线观看| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 搡老熟女国产l中国老女人| 日本与韩国留学比较| 秋霞在线观看毛片| 中文资源天堂在线| 亚洲精品粉嫩美女一区| 亚洲图色成人| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 少妇的逼水好多| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 精品少妇黑人巨大在线播放 | 国内精品美女久久久久久| 男女边吃奶边做爰视频| 97超级碰碰碰精品色视频在线观看| 成人午夜高清在线视频| 如何舔出高潮| 日日啪夜夜撸| 美女高潮的动态| 九九久久精品国产亚洲av麻豆| 观看免费一级毛片| 久久久久久久午夜电影| 色综合色国产| 久久九九热精品免费| 亚洲精品亚洲一区二区| 欧美成人精品欧美一级黄| 草草在线视频免费看| 精品一区二区三区av网在线观看| a级毛片免费高清观看在线播放| 欧美日本视频| 男女视频在线观看网站免费| 国产高潮美女av| 国产精品一二三区在线看| 在线观看一区二区三区| 精品久久久久久久久久免费视频| 亚洲最大成人av| 久久精品国产亚洲av涩爱 | 亚洲av电影不卡..在线观看| 亚州av有码| 久久久欧美国产精品| 91在线精品国自产拍蜜月| 国产老妇女一区| 三级毛片av免费| 3wmmmm亚洲av在线观看| 老女人水多毛片| 麻豆国产97在线/欧美| 国产精品99久久久久久久久| 最后的刺客免费高清国语| 国产精品综合久久久久久久免费| 一级av片app| 99久久精品热视频| 看黄色毛片网站| av视频在线观看入口| 全区人妻精品视频| 夜夜夜夜夜久久久久| 99久久精品热视频| 亚洲中文日韩欧美视频| 欧美在线一区亚洲| 亚洲成人久久性| 久久久国产成人精品二区| 国产成人91sexporn| 免费一级毛片在线播放高清视频| а√天堂www在线а√下载| 国产午夜福利久久久久久| 啦啦啦啦在线视频资源| 国产精品一及| 国产精品人妻久久久久久| 成人午夜高清在线视频| 国产高潮美女av| 成熟少妇高潮喷水视频| 国产成人福利小说| 人妻制服诱惑在线中文字幕| 99久国产av精品国产电影| 亚洲精品一区av在线观看| 欧美国产日韩亚洲一区| 亚洲无线在线观看| h日本视频在线播放| 欧美xxxx性猛交bbbb| 色噜噜av男人的天堂激情| 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 亚洲成人久久性| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 人人妻人人澡人人爽人人夜夜 | 在线观看免费视频日本深夜| 在线免费观看不下载黄p国产| avwww免费| 99精品在免费线老司机午夜| 岛国在线免费视频观看| 免费在线观看影片大全网站| 91精品国产九色| АⅤ资源中文在线天堂| 亚洲最大成人中文| 日韩亚洲欧美综合| 久久精品国产自在天天线| 啦啦啦观看免费观看视频高清| 两个人视频免费观看高清| 日韩欧美 国产精品| 晚上一个人看的免费电影| 国产黄a三级三级三级人| 又黄又爽又免费观看的视频| 99在线视频只有这里精品首页| 91av网一区二区| 成人一区二区视频在线观看| 天天躁日日操中文字幕| 91午夜精品亚洲一区二区三区| 亚洲美女搞黄在线观看 | 国产毛片a区久久久久| 精品一区二区三区视频在线| 精品国产三级普通话版| 亚洲av中文字字幕乱码综合| 国产精品久久久久久av不卡| 国产乱人视频| 国内久久婷婷六月综合欲色啪| 91久久精品国产一区二区三区| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 国产一区亚洲一区在线观看| 免费看光身美女| 国产精品美女特级片免费视频播放器| 精品国产三级普通话版| 亚洲欧美成人精品一区二区| 俺也久久电影网| 国产午夜精品久久久久久一区二区三区 | 欧洲精品卡2卡3卡4卡5卡区| 一级毛片电影观看 | 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交黑人性爽| 亚洲专区国产一区二区| 国产日本99.免费观看| 亚洲自偷自拍三级| 人妻制服诱惑在线中文字幕| 最近的中文字幕免费完整| 国产精品免费一区二区三区在线| 久久久久久久久久成人| 亚洲欧美日韩高清专用| 男人舔女人下体高潮全视频| 免费一级毛片在线播放高清视频| 亚洲婷婷狠狠爱综合网| 国内少妇人妻偷人精品xxx网站| 国产久久久一区二区三区| 激情 狠狠 欧美| 欧美三级亚洲精品| 亚洲一区高清亚洲精品| 久久久久久久久久黄片| 国产精品乱码一区二三区的特点| 国产真实乱freesex| 久久精品国产亚洲av香蕉五月| 亚洲成av人片在线播放无| 国产亚洲av嫩草精品影院| av国产免费在线观看|