• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of full-length deubiquitinating complex Ubp3/Bre5 and characterization of interaction with Cdc48

    2015-03-06 12:15:28SuWenchengLyuCaoShiLiliJingXiaofeiGaiYuanmingZhangJieTanHuanboWangPengjuXiaLixinZouPeijianandQinGang
    深圳大學學報(理工版) 2015年1期
    關鍵詞:文成深圳大學復合體

    Su Wencheng, Lyu Cao, Shi Lili, Jing Xiaofei,Gai Yuanming, Zhang Jie, Tan Huanbo, Wang Pengju,Xia Lixin, Zou Peijian, and Qin Gang?

    1) College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, P.R.China 2) National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences, Tianjin 300308, P.R.China 3) Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research,Tianjin 300193, P.R.China 4) Health Science Center, Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University,Shenzhen 518060, P.R.China

    ?

    【生物工程 / Bioengineering】

    Preparation of full-length deubiquitinating complex Ubp3/Bre5 and characterization of interaction with Cdc48

    Su Wencheng1,2, Lyu Cao1,2, Shi Lili3, Jing Xiaofei1,2,Gai Yuanming2, Zhang Jie2, Tan Huanbo2, Wang Pengju2,Xia Lixin4, Zou Peijian2, and Qin Gang2?

    1) College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, P.R.China 2) National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences, Tianjin 300308, P.R.China 3) Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research,Tianjin 300193, P.R.China 4) Health Science Center, Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University,Shenzhen 518060, P.R.China

    Ubiquitination modification is a dynamic process essential for eukaryotic cell physiology. Ubp3, theSaccharomycescerevisiaehomologueofhumandeubiquitinaseUSP10,togetherwithitscofactorBre5,playsanactiveroleinnumerouscellularprocesses.AlthoughBre5isessentialforUbp3functioninvivo,unfortunately,duetodifficultyinpreparingcriticalquantitiesofintactfunctionalUbp3andUbp3/Bre5reconstitute,systemiccharacterizationonthiscomplexislacking.Hence,howexactlyBre5regulatesUbp3activitystillremainselusive.Tofillthisgap,wereportthesuccessfulexpressionandpurificationofrecombinantUbp3andBre5inEscherichiacoliinmonomericandcomplexform.Toourknowledge,thisisthefirstreportthesuccessfulpreparationoffull-lengthUbp3/Bre5proteincomplexinlargescale,whichallowsustoobtainfurtherunderstandingofmolecularbases.ThestoichiometricinteractionbetweenpurifiedUbp3andBre5confirmedproperfoldingoftheseproteins.ToassesstheproposeddirectinteractionsbetweenUbp3andBre5withtheubiquitinselectiveATPaseassociatedwithavarietyofcellularactivities(AAAATPase)Cdc48,seriesofpull-downassaysareperformed;resultsrevealthat,neitherUbp3norBre5aloneisabletobindCdc48.However,theUbp3/Bre5complexcouldbindCdc48efficiently,whichprovidsnovelinsightonUbp3/Bre5-Cdc48interactionmode.Insummary,ourresultslaythefoundationforfuturemechanisticevaluationbybothbiochemicalandstructuralmeans.

    protein binding; deubiquitinase Ubp3; cofactor Bre5; ATPase Cdc48; deubiquitinating complex; GST-pulldown; direct interaction

    The dynamic balance between ubiquitination and deubiquitination, the two reversal post-translational regulation processes, plays a vital role in eukaryotic cell physiology facilitated by highly specific catalytic machinery[1]. Deubiquitination is catalyzed by deubiquitinating proteases (DUBs), which are mainly categorized into five groups based on structural homology: ubiquitin-specific processing proteases (USPs/UBPs), ubiquitin C-terminal hydrolases (UCHs), ovarian tumor domain-containing proteases (OTUs), Ataxin-3-like proteases and Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+)(JAmmol/L) proteases[2-3]. Among DUBs, UBPs represent the most abundant type. In theSaccharomycescerevisiaegenome,atleast16UBPencodingsequenceshavebeendiscovered.Noneofthemisessentialforcellviability,butcertainindividualmutantsexhibitpleiotropicabnormalities,implicatingimportantandwidespreadrolesincellularfunctions[4-5].

    Ubp3,theSaccharomycescerevisiaehomologueofhumanUSP10,hasbeenshowntobeinvolvedinregulatingmultiplecellularprocesses,includingDNArepair[6-7],transcriptionregulation[8-9],signaltransduction[10-11],anterograde/retrogradetransport[12]andribophagy[13].OnepositiveregulatornamedBre5directlyinteractswithUbp3andisindispensableforUbp3function[12].InitialstructuralcharacterizationhasrevealedthatUbp3andBre5formasymmetricheterotetramerinwhichtheBre5NTF2-likedomaindimerinteractswithtwoN-terminalmotifsofUbp3withapparent1∶1stoichiometry[14-15].TheeffectofcofactorBre5onUbp3istoeitherfacilitatesubstratetargeting,ortomodulateitscatalyticactivityortoachieveboth;unfortunately,directprooffrombiochemicalandstructuralaspectsisstilldeficientduetodifficultyinpreparingthelargeUbp3andfull-lengthfunctionalUbp3/Bre5reconstitute.Recently,oneintriguingconnectionoftheubiquitin-selectivechaperonCdc48,anditscofactorUfd3toUbp3/Bre5mediatedribophagywasproposed.Ubp3andBre5wereshowntointeractwithCdc48andUfd3directly[16].However,themolecularbasisontheseinteractionsandfunctionalmechanismunderlyingthemremaintobepreciselyevaluated.

    Priorattemptstopurifyrecombinantfull-lengthUbp3werenotverysuccessful[15].WefindthatthiswasmostlyduetotheintrinsicinstabilityofN-terminalregionofUbp3 (ourunpublisheddata).ToinitiatesystemiccharacterizationofthedeubiquitinatingcomplexUbp3/Bre5,wereportsuccessfulexpressionandpurificationofrecombinantUbp3andBre5inamonomericandcomplexform,throughtheEscherichiacoli(E.coli)expressionsystem.Utilizingthesepurifiedsamples,wecarefullyassesstheinteractionsbetweenCdc48andUbp3/Bre5invitro.Asfarasweknow,thisisthefirstreportonthesuccessfulpreparationofafull-lengthUbp3/Bre5complexinlargescale,whichallowsustoobtainfurtherunderstandingofmolecularbasisoftheUbp3/Bre5viabiochemicalandstructuralbiologymeans.

    1 Materials and methods

    1.1Materials

    E.coliDH5α,E.coliBL21 (DE3),E.colitrx(DE3)andT4DNALigasewerepurchasedfromBeijingTransGenBiotech(Beijing,China).pGEX-4T-1,pET-28aandpET-32-Bre5 were obtained from our laboratory. Restriction enzymes were purchased from Fermentas Life Sciences (Vilnius, Lithuania). Es Taq DNA Polymerases were purchased from Beijing CoWin Bioscience Co., Ltd (Beijing, China). Extraction Kit, Plasmid Mini Kit and Cycle-pure Kit were purchased from OMEGA Bio-Tek (Norcross,GA). Primers were ordered from Shanghai Sangon Biotechnology (Shanghai, China). IPTG was purchased from Sigma (CA, USA). Recombinant glutathione S-transferase (GST), GST-Cdc48 and 6×His-Cdc48 were previously prepared as reported[17].

    1.2 Construction of the expression plasmids

    TheUbp3encodingsequencewasamplifiedfromSaccharomycescerevisiaegenome,withprimersdesignedwithrestrictionendonucleasecloningsitesEcoRIandXhoI(Table1).ThePCRreactionswerecarriedoutas:Step1 94 ℃,2min;Step2 94 ℃,30s, 55 ℃,30s, 72 ℃,2min;Step3 72 ℃, 10min,with25cyclesofstep2.TherecoveredPCRproductandvectorpGEX-4T-1weredigestedwithEcoRIandXhoIrestrictionenzymesandwereligatedviaT4ligase,thentransformedintoE.coliDH5αcells.PositiveclonesdesignatedaspGEX-4T-1-Ubp3wereselectedbycolonyPCRandwereverifiedbyDNAsequencing.

    DNAfragmentsencodingBre5genewasamplifiedbyPCRfromapreviouslyconstructedpET-32-Bre5 plasmid with primers designed with restriction endonuclease cloning sitesNcoIandXhoI(Table1).PCRreactionswerecarriedoutas:Step1 95 ℃, 2min;Step2 94 ℃, 30s, 55 ℃, 30s, 72 ℃, 1min30s;Step3 72 ℃, 10min,with25cyclesofstep2.TheamplifiedBre5fragmentwasclonedintoapET-28avectorbythesimilarprocessdescribedabove.Positivecloneswereselectedviadoubledigestion,andthesequencingverifiedplasmidwasdesignatedaspET-28a-Bre5.

    Table 1 PCR primer sequences1)圖1 PCR擴增使用引物

    1)Restriction sites are underlined.

    1.3 Expression trials of recombinant Ubp3 and Bre5

    pGEX-4T-1-Ubp3 and pET-28a-Bre5 plasmids were transformed intoE.colitrx(DE3)andE.coliBL21(DE3)cellsrespectively.AsinglecolonywasinoculatedintoaLBmediumsupplementedwithproperantibiotics(100μg/mLampicillinor50μg/mLkanamycin)andcultivatedovernightat37 ℃withvigorousshaking.Theovernightculturesweredilutedinfreshpre-warmedmedium(includingproperantibiotics)andgrownat37 ℃withvigorousshaking,untiltheOD600reached0.5-0.7.ProteinexpressionwasinducedbyaddingIPTG(finalconcentrationat0.2mmol/LforGST-Ubp3 induction and 0.1 mmol/L for 6×His-Bre5 induction), and cultures were collected after overnight growth at either 25 ℃ or 16 ℃. Samples were sonicated and fractionated, and whole cell lysate, supernatant, and pellet fractions were analyzed by means of sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and Coomassie staining.

    The co-expression experiment was essentially described above, except that both pGEX-4T-1-Ubp3 and pET-28a-Bre5 were co-transformed intoE.coliBL21(DE3)inthepresenceofantibiotics(100μg/mLampicillinplus50μg/mLkanamycin).

    1.4PurificationofUbp3andBre5

    TopurifyrecombinantGST-Ubp3inlargescale,cultivatedcellswithoptimalinductionwereharvestedbycentrifugation(4 500r/min, 20min, 4 ℃)andre-suspendedinicecoldbuffer(PBS,pH=7.4, 0.4mmol/LofPMSF, 1×proteaseinhibitor, 3mmol/LDTT)andlysedviaFrenchpress.Thelysatewasthencentrifugedat15 000r/minfor30minat4 ℃,withthesupernatantappliedtoGlutathioneSepharoseresin(GEHealthcarecat. #17-5132-03)pre-equilibratedwithPBSandincubatedwithrotatingfor4hat4 ℃.Thecolumnwaswashedwithequilibrationbuffer(PBScontaining3mmol/LDTT, 0.1%TritonX-100),andtheproteinwaselutedwithelutionbuffer(50mmol/LTris-HCl,pH=8.0, 200mmol/LNaCl, 10mmol/Lglutathione).TheelutionfractionswereanalyzedviaSDS-PAGEandCoomassiestaining.Selectedelutionfractionswerecombinedanddialyzedagainstice-colddialysisbuffer(50mmol/LTris-HCl,pH=7.5, 50mmol/LNaCl, 5%glycerol),thenappliedtotheSPSepharoseFF(GEHealthcarecat. #17-0929-01)pre-equilibratedwithanice-colddialysisbuffer.Afterbeingwashedwith10bedvolumesofthesamebuffer,thecolumnwaselutedwithanelutionbuffercontainingastepwiseincreaseinsaltconcentration(0.2, 0.3and0.4mol/LNaCl,respectively).TheelutionfractionswereanalyzedviaSDS-PAGEandCoomassiestaining.TheconcentrationofpurifiedrecombinantGST-Ubp3 protein was determined by using bovine serum albumin as a standard.

    To purify recombinant 6×His-Bre5 on a in large scale, cells were harvested by centrifugation (4 500 r/min, 20 min, 4 ℃) and pellets were re-suspended in 100 mL of lysis buffer (50 mmol/L Tris-HCl, pH=7.5, 150 mmol/L NaCl and 20 mmol/L imidazole, 0.4 mmol/L of PMSF, 5 mmol/L β-mercaptoethanol). Cells were lysed via French Press. Lysates were clarified (15 000 r/min, 30 min, 4 ℃), and the supernatants were transferred to Ni Sepharose FF (GE Healthcare cat. #17-5318-03) pre-equilibrated with lysis buffer and rotated for 2 h at 4 ℃. The column was sequentially washed with a wash buffer (50 mmol/L Tris, pH=7.5, 150 mmol/L NaCl, 0.1% Triton X-100, 5 mmol/L β-mercaptoethanol) containing a stepwise increase of imidazole concentrations (20, 50 and 100 mmol/L). Then the 6×His-Bre5 protein was eluted with elution buffer (50 mmol/L Tris, pH=7.5, 150 mmol/L NaCl, 250 mmol/L imidazole, 5 mmol/L β-mercaptoethanol), and elution fractions were analyzed via SDS-PAGE and Coomassie staining. The concentration of purified recombinant 6×His-Bre5 protein was determined by using bovine serum albumin as a standard.

    1.5 Preparation of Ubp3 /Bre5 complex

    For the large-scale Ubp3/Bre5 complex purification, GST-Ubp3 was purified as described above, except that after GST-Ubp3 binding, sufficient amount of purified 6×His-Bre5 was applied to glutathione column and incubated for 1 h at 4 ℃.

    1.6 LC-MS/MS analysis of recombinant Ubp3 and Bre5

    For protein identification LC-MS/MS analysis was conducted using LTQ XL from Thermo Fisher (ESI-MS/MS). The instrument was operated with a spray voltage of 3.5 kV and an ion transfer tube temperature of 25 ℃. The information-dependent acquisition (IDA) mode of operation was employed in which a survey scan fromm/z400to1 800wasacquiredfollowedbycollision-induceddissociation(CID),andforMS/MS,usinganormalizedcollisionenergyof35%withanactivationqof0.25for30ms.IonselectionthresholdsforMSandMS/MSwere1 000and500counts,respectively.

    TandemmassspectrawereextractedbytheXcaliburversion1.0.0.2.AllMS/MSsampleswereanalyzedusingSequest.IodoacetamidederivativeofCys,de-amidationofAsnandGln,oxidationofMetwerespecifiedinSequestasvariablemodifications.ProteomeDiscoverer1.2wasusedtovalidateMS/MSbasedpeptideandproteinidentifications.Peptideidentificationswereacceptediftheycouldbeestablishedatprobabilitygreaterthan95.0%asspecifiedbytheresultfilter,whichisXcorr> 1.9 if the charge is 1,Xcorr> 2.2 if the charge is 2,Xcorr> 3.75 if the charge is 3. Protein identifications were accepted if they were established at probability greater than 99.0% and contained at least 2 identified unique peptides.

    1.7 GST-pulldown experiments

    For pull-down assays, GST or GST fusion proteins were first incubated with 50 μL of pre-equilibrated glutathione-Sepharose beads in buffer A (50 mmol/L Tris, 100 mmol/L NaCl, 1 mmol/L DTT, 0.1% triton X-100, pH=7.5) for 1 h at 4 ℃. The beads were washed once with 500 μL of buffer A to remove unbound material and then incubated with prey proteins for 1 h at 4 ℃. Beads were washed three times with 1 mL of buffer A, followed by three times of wash with buffer B (50 mmol/L Tris, 100 mmol/L NaCl, 1 mmol/L DTT, pH=7.5), then mixed with an SDS-PAGE loading buffer and analyzed on SDS-PAGE.

    2 Results

    2.1 Construction of the expression plasmids

    Due to the exceptional ability of GST tag to greatly enhance the solubility and stability of fused proteins, GST tag has been widely used for facilitating recombinant protein preparation; therefore we introduce a GST domain fused at the N-term ofUbp3. TheUpb3 gene was amplified usingSaccharomycescerevisiaegenomeDNAasatemplate,asinglebandatabout2.8kbwasobtained,inaccordancewiththesizeofUpb3 coding region (Fig.1(a)); the encoding fragment was inserted into bacterial expression vector pGEX-4T-1, and a positive plasmid designated as pGEX-4T-1-Ubp3 was selected via colony PCR (Fig.1(b)) and verified via DNA sequencing. TheBre5genewasamplifiedsimilarly,withafragmentofabout1.5kbobtained(Fig.1(c)),theencodingfragmentwasinsertedintopET-28atointroducea6×HistagatN-termofBre5.Thepositiveplasmid,designatedpET-28a-Bre5, was selected by double restriction enzyme digestion (Fig.1(d)) and confirmed via DNA sequencing.

    (a) PCR amplification of Ubp3 coding region from Saccharomyces cerevisiae genome. Lane 1, DNA marker; Lane 2, PCR product. (b) Verification of expression plasmids pGEX-4T-1-Ubp3 by colony PCR. Lane 1, DNA marker; Lane 2-3, PCR amplified fragments verifying two positive clones. (c) PCR amplification of Bre5 coding region from a previously constructed plasmid pET-32-Bre5. Lane 1, DNA marker; Lane 2, PCR product. (d) Verification of expression plasmids pET-28a-Bre5 by restriction enzyme digestion. Lane 1, DNA marker; Lane 2-3, two positive clones digested with Nco I and Xho I.Fig.1 Ubp3 and Bre5 coding fragments amplified by PCR and verification of recombinant expression plasmids圖1 PCR擴增Ubp3和Bre5編碼片段及質粒構建驗證

    2.2 Expression and purification of Ubp3

    Small scale expression trials of Ubp3 inE.colitrx(DE3)wereperformedatvariousinductionconditions.Comparedtonon-inducedcondition,onebandmigratingatabout130kDabecameapparentafterIsopropylβ-D-1-thiogalactopyranoside(IPTG)inductionwith0.2mmol/LIPTGat16 ℃,whichcorrespondstotheGST-Ubp3fusion,thusresultedinarelativelyhighersolubilityoftheinducedprotein(Fig.2(a));therefore,wechosethesameinductionconditionforlargescalepreparation.AsshowninFig.2(b),afterasingle-stepglutathionecolumnpurification,GST-Ubp3wasenrichedinelutionfractions.However,thesamefractionsalsocontainedseveralcontaminatingcomponentsofdiversemolecularweight.Thesizeofaprominentcontaminantwasabout26kDa(Fig.2(b),Lane6),similartoanintactGSTdomain,whichisnotsurprisingsinceGSTtruncatesarefrequentlyco-purifiedwithGSTfusionproteins,especiallywhenthefusedpartnercontainsdegradation-proneareas.OthermajorcontaminatingproteinsappearedtobethedegradationintermediatesofUbp3,sincethesebandsremainedratherunstable,almostdisappearedduringdialysis(comparedFig.2(b),Lane6withFig.2(c),Lane1).TofurtherimprovethepurityofcombinedGST-Ubp3poolandespeciallytoremoveGSTtruncates,wecontinuedwithion-exchangechromatography.BasedontheestimatedpIsforUbp3andGST(7.9forUbp3versus4.5forGST),SPsepharosewasselected,andtheefficacyofcontaminantremovalwasshowninFig.2(c).GSTtruncatesindialysisbufferremainedpoorlyboundtoSPresinclearlyhencelargelyexistedinflowthrough(Fig.2(c),Lane2);incontrast,mostGST-Ubp3adsorbedtoSPresinatthesamecondition,andwasabletobeefficientlyelutedwhenNaClconcentrationwasincreasedto0.2-0.3mol/L(Fig.2(c),Lane6-9).Recoveredfull-lengthGST-Ubp3exhibitedsignificantimprovementonpurity(>85%),itsidentitywasuniquelyverifiedbyLC-MS/MS(Fig.3).TotalyieldsofrecombinantGST-Ubp3arelistedinTable2.

    (a)Small scale expression trials of GST-Ubp3 induced at 16 ℃ (Lane 1-4) and 25 ℃ (Lane 5-8) respectively. Lane 1 and 5, total proteins of uninduced cells; Lane 2 and 6, total proteins of induced cells; Lane 3 and 7, soluble fraction of induced cells; Lane 4 and 8, insoluble fraction of induced cells. (b) GST-Ubp3 purification through glutathione column chromatography. Lane 1, soluble fraction of induced cells; Lane 2, flowthrough; Lane 3-4, wash; Lane 5-8, elution fraction. (c) Further purification of GST-Ubp3 through SP cation-exchange chromatography. Lane 1, dialyzed GST-Ubp3 pool from glutathione column chromatography; Lane 2, flowthrough; Lane 3, wash; Lane 4-6, 0.2 mol/L NaCl elution fraction; Lane 7-9, 0.3 mol/L NaCl elution fraction; Lane 10, 0.4 mol/L NaCl elution fraction.Fig.2 SDS-PAGE analysis on expression and purification of Ubp3 in E.coli圖2 蛋白電泳分析 Ubp3在大腸桿菌內的表達及純化

    Amino acid sequence corresponding to Ubp3 was shown, with identified unique peptides highlighted in gray.Fig.3 (Color online) Identity verification of purified Ubp3 via tandem MS/MS圖3 MS/MS鑒定純化的Ubp3蛋白

    proteinnamepurificationstagesV/mLm(targetprotein)/mgyield/%celllysate10060100glutathioneaffini-tychromatography161627GST-Ubp3Spcation-ex-changechromatography2010176×His-Bre5celllysate100150100nickleaffinitychromatography246040

    2.3 Expression and purification of Bre5

    In experiments parallel to Ubp3, expression trials of Bre5 inE.coliBL21(DE3)werealsoperformed.Uponinduction,oneproteinwithamolecularweightofabout70kDaappears(Fig.4(a)),whichislargerthantheexpectedsizeof6×His-Bre5 (about58kDa);thisismostlikelyduetounusualmobilityofBre5inSDS-PAGE,sincetheidentityofpurifiedproteinwasconfidentlyverifiedasBre5byLC-MS/MS(Fig.5).Targetproteininducedwith0.1mmol/LIPTGat16 ℃exhibitedrelativelybettersolubility(Fig.4(a)),sameinductionconditionwasalsoappliedtolargescalepurification. 6×His-Bre5waspreparedaccordingtostandardone-stepnickelaffinitychromatographyprocedure,asshowninFig.4(b).Theimidazoleelutionfractionswerepooledanddialyzed,totalyieldsofrecombinant6×His-Bre5aresummarizedinTable2.

    (a) Small scale expression trials of 6×His-Bre5 induced at 16 ℃ (Lane 1-4) and 25 ℃ (Lane 5-8) respectively. Lane 1 and 5, total proteins of uninduced cells; Lane 2 and 6, total proteins of induced cells; Lane 3 and 7, soluble fraction of induced cells; Lane 4 and 8, insoluble fraction of induced cells. (b) 6×His-Bre5 purification through nickel affinity chromatography. Lane 1, soluble fraction of induced cells; Lane 2, flowthrough; Lane 3, wash; Lane 4, 50 mmol/L imidazole elution fraction; Lane 5-6, 80 mmol/L imidazole elution fraction; Lane 7-9, 100 mmol/L imidazole elution fraction; Lane 10-12, 250 mmol/L imidazole elution fraction; Lane 13, 500 mmol/L imidazole elution fraction.Fig.4 SDS-PAGE analysis on expression and purification of Bre5 in E.coli圖4 蛋白電泳分析Bre5蛋白在大腸桿菌內的表達及純化

    Amino acid sequence corresponding to Bre5 was shown, with identified unique peptides highlighted in gray.Fig.5 (Color online) Identity verification of purified Bre5 via tandem MS/MS圖5 MS/MS鑒定純化的Bre5蛋白

    2.4FunctionaltestofrecombinantUbp3andBre5

    HavingsuccessfullyobtainedsolubleUbp3andBre5inhighpurity,wesoughttoconfirmwhethertheyareproperlyfoldedornot.Previously,ithasbeenwellestablishedthatUbp3andBre5physicallyinteractwitheachotherinvivoandinvitro[12, 14-15];thus,weperformedaGST-pulldowntodirectlyexaminetheinteraction.AsshowninFig.6,incontrasttoGST(Lane4),GST-Ubp3displaysastoichiometricinteractionwithBre5 (Lane5),consistentwithpreviousreports[14-15].Basedonthesedata,weconcludthatourpreparedrecombinantUbp3andBre5arefunctional.

    Lane 1, GST; Lane 2, GST-Ubp3; Lane 3, 6×His-Bre5; Lane 4, pulldown sample using GST as bait and 6×His-Bre5 as prey; Lane 5, pulldown sample using GST-Ubp3 as bait and 6×His-Bre5 as prey.Fig.6 GST-pulldown assay between recombinant Ubp3 and Bre5圖6 GST-pulldown 檢測Ubp3與Bre5結合

    2.5Large-scalepreparationofUbp3/Bre5complex

    ThesuccessfulpurificationoffunctionalUbp3andBre5individuallypromptedustotrypreparingUbp3/Bre5complexdirectly,whichisessentialforfurtherfunctionalandstructuralcharacterization.Initially,wetookoureffortonco-expressingpGEX-4T-1-Ubp3 and pET-28a-Bre5 inE.coli.UnfortunatelytheinductionofUbp3andBre5isnotatcomparablelevel(Fig.7(a)),GST-Ubp3inductionisnearlyundetectable),preventingproductivecomplexassemblyinvivo.Tosolvethisproblem,wedevelopeda‘hybrid’procedureasshowninFig.7(b),GST-Ubp3waspurifiedaccordingtotheestablishedtwo-stepproceduredescribedabove,exceptthatafterGST-Ubp3bindingtoglutathionecolumn,sufficientamountofrecombinant6×His-Bre5wasaddedtotriggertheon-columncomplexassembly.Byfollowingthisstrategy,theglutathioneelutionfractionsdisplayednearlystoichiometricdistributions

    ofUbp3andBre5,indicatingsuccessfulcomplexformationonglutathionecolumn(Fig.7(c)).Moreover,successiveSPcation-exchangechromatographysignificantlyenhancedthepurityofUbp3/Bre5complexbyefficientlyremovingGSTtruncatesandothercontaminants,aprocedurecomparabletoindividualUbp3purification(Fig.7(d));interestingly,thepreformedUbp3/Bre5complexwelltoleratedhighsaltelutioncondition(0.4-0.5mol/LNaCl),presentingexceptionalstability.

    (a) Small-scale co-expression trials of GST-Ubp3 and 6×His-Bre5 induced at 16 ℃ (Lane 1-4) and 25 ℃ (Lane 5-8) respectively. Lane 1 and 5, total proteins of un-induced cells; Lane 2 and 6, total proteins of induced cells; Lane 3 and 7, soluble fraction of induced cells; Lane 4 and 8, insoluble fraction of induced cells. (b) Procedure for two-round GST-Ubp3/6×His-Bre5 complex preparation. (c) The first round of GST-Ubp3/6×His-Bre5 complex preparation through glutathione column chromatography. Lane 1, soluble fraction of induced cells; Lane 2, flowthrough after 6×His-Bre5 incubation with glutathione column ; Lane 3-7, wash; Lane 8-11, elution fraction. (d) The second round of GST-Ubp3/6×His-Bre5 complex purification through SP cation-exchange chromatography. Lane 1, dialyzed GST-Ubp3/6×His-Bre5 pool from glutathione column chromatography; Lane 2, flowthrough; Lane 3-4, wash; Lane 5, 0.2 mol/L NaCl elution fraction; Lane 6-7, 0.3 mol/L NaCl elution fraction; Lane 8-10, 0.4 mol/L NaCl elution fraction.Fig.7 Preparation of recombinant Ubp3/Bre5 complex圖7 重組Ubp3/Bre5復合體的制備

    2.6 Assessment of interactions between Ubp3 and Bre5 with Cdc48

    Recently, the Ubp3/Bre5 complex has been linked to the ATPase associated with a variety of cellular activities (AAA ATPase) Cdc48. Ossareh-Nazari et al[16]proposed a direct interaction between Ubp3 and Bre5 with Cdc48 respectively, hence providing further evidence that Cdc48 has close crosstalk with deubiquitinating pathways. Taking advantages of Ubp3, Bre5 and Ubp3/Bre5 preparations, we directly examined the proposed interactions by performing a series of GST-pulldown experiments. To our surprise, we could hardly observe any interaction between GST-Ubp3 and Cdc48 (Fig.8(a), Lane 5), consistently. GST-Cdc48 also failed to pulldown Bre5 (Fig.8(b), Lane 3); these results are obviously contradictory to the former finding from Ossareh-Nazari et al[16]. Intriguingly, however, when the preformed GST-Ubp3/Bre5 complex was used as pulldown bait, a significant binding of Cdc48 was observed (Fig.8(c), Lane 3), indicating the assembled Ubp3/Bre5 complex is indeed able to physically interact with Cdc48. At this moment, we could not explain the discrepancy, but our results strongly suggest that more careful experiments need to be performed to uncover the real Ubp3/Bre5-Cdc48 interaction mode.

    (a) GST-Ubp3 fails to interact with 6×His-Cdc48. Lane 1, 6×His-Bre5; Lane 2, 6×His-Cdc48; Lane 3, pulldown sample using GST as bait and 6×His-Cdc48 as prey; Lane 4, pulldown sample using GST-Ubp3 as bait and 6×His-Bre5 as prey; Lane 5, pulldown sample using GST-Ubp3 as bait and 6×His-Cdc48 as prey. (b) GST-Cdc48 fails to interact with 6×His-Bre5. Lane 1, 6×His-Bre5; Lane 2, pulldown sample using GST as bait and 6×His-Bre5 as prey; Lane 3, pulldown sample using GST-Cdc48 as bait and 6×His-Bre5 as prey. (c) GST-Ubp3 /6×His-Bre5 complex interacts with 6×His-Cdc48. Lane 1, 6×His-Cdc48; Lane 2, pulldown sample using GST as bait and 6×His-Cdc48 as prey; Lane 3, pulldown sample using GST-Ubp3/6×His-Bre5 complex as bait and 6×His-Cdc48 as prey.Fig.8 GST-pulldown assays between Ubp3 and Bre5 with Cdc48圖8 GST-pulldown檢測Ubp3 /Bre5 與Cdc48的結合

    3 Discussions and conclusions

    The pleiotropic defects ofubp3mutantindicateitswidespreadcellularfunctions.DespitetheinvolvementofdeubiquitinatingactivityofUbp3/Bre5inmultiplecellularprocessesandpartialresolutionofUbp3/Bre5interactionmode,themolecularbasisonhowBre5regulatesUbp3activityisstilllargelyunknown.TopreciselydissectthepotentialroleofBre5instepofsubstraterecognition,catalyticactivationorcrosstalkwithotherinteractingpartners,asophisticatedinvitroreconstitutionsystemishighlydemanding.ObviouslythesuccessfulpreparationoffunctionalUbp3/Bre5complexinhighhomogeneityisaprerequisite.Inthiswork,wehaveestablishedanexpressionandpurificationsystemtofulfillthisrequirement.Withthedevelopmentofasimpleandefficientpurificationstrategywecouldobtainrecombinantfull-lengthUbp3,Bre5andalsoUbp3/Bre5complexinlargescale,whichtoourknowledgehasnotbeenreportedbefore.

    Cdc48,ahighlyconservedcomponentinAAAATPasefamily,wasnoticedandstudiedrecently,becauseofitsdistinctubiquitin-selectiveproperty:thehomohexamerofCdc48canactasageneralplatformformulti-purposedecisionmakingofmolecularevents,dependingonitsabilitytointeractwithplentyofcofactors,amongwhichbothubiquitinligasesandDUBsareincluded[18-19].ThediscoveryofUbp3-Cdc48interactionfurtherenrichesthetoolboxofCdc48andextendsitsactioninribophagypathway.Toconfirmthisimportantnotionandobtaindeeperinsight,wesetupaseriesofinteractionassaystoassesstheproposedone-to-oneinteractionsbetweenUbp3,Bre5andCdc48.Importantly,inoursystemwecouldnotreproducethediscoveredphysicalinteractionbetweenUbp3andBre5withCdc48,however,wecoulddetectastableinteractionbetweenUbp3/Bre5complexandCdc48,implicatingsynergisticactionofUbp3andBre5uponCdc48binding.ThisperspectivecouldpotentiallyexplaintheobligatoryroleofBre5inUbp3functioning.Undoubtedly,revisionofthecurrentworkingmodelawaitsmorecarefulexperiments.

    WebelievethatthehighpurityreconstitutesofrecombinantUbp3/Bre5willcontinuouslybringdeeperinsightonmolecularpropertiesofthiscomplexinfuture.Importantly,inanestablishedinvitroenzymaticactivityassay,theUbp3/Bre5complexcanexhibittypicaldeubiquitinatingenzymeactivity(manuscriptinpreparation),whichopensupapathforsystemiccatalyticmechanismcharacterizationofUbp3.

    [1] Wilkinson K D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome[J]. Seminars in Cell & Developmental Biology, 2000, 11(3):141-148.

    [2] Nijman S M,Luna-Vargas M P,Velds A,et al.A genomic and functional inventory of deubiquitinating enzymes[J]. Cell, 2005, 123(5):773-786.

    [3] Reyes-Turcu F E, Ventii K H, Wilkinson K D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes[J]. Annual Review of Biochemistry, 2009,78:363-397.

    [4] Amerik A Y, Li S J, Hochstrasser M. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry, 2000, 381(9/10): 981 -992.

    [5] Poulsen J W, Madsen C T, Young C, et al. Comprehensive profiling of proteome changes upon sequential deletion of deubiquitylating enzymes[J]. Journal of Proteomics, 2012, 75(13):3886-3897.

    [6] Bilsland E, Hult M, Bell S D, et al. The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage[J]. DNA Repair (Amst), 2007, 6(10):1471-1484.

    [7] Mao P, Smerdon M J. Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation[J]. Journal of Biological Chemistry, 2010, 285(48): 37542-37550.

    [8] Chew B S, Siew W L, Xiao B, et al. Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3[J]. Biochemical Journal, 2010, 431(3):391-399.

    [9] Kvint K, Uhler J P, Taschner M J, et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3[J]. Molecular Cell, 2008, 30(4):498-506.

    [10] Li Y, Wang Y. Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast[J]. Journal of Biological Chemistry, 2013, 288(16):11358-11365.

    [11] Wang Y, Zhu M, Ayalew M, et al. Down-regulation of Pkc1-mediated signaling by the deubiquitinating enzyme Ubp3[J]. Journal of Biological Chemistry, 2008, 283(4):1954-1961.

    [12] Cohen M, Stutz F, Belgareh N, et al. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23[J]. Nature Cell Biology, 2003, 5(7):661-667.

    [13] Kraft C, Deplazes A, Sohrmann M, et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease[J]. Nature Cell Biology, 2008, 10(5):602-610.

    [14] Li K, Ossareh-Nazari B, Liu X, et al. Molecular basis for bre5 cofactor recognition by the ubp3 deubiquitylating enzyme[J]. Journal of Molecular Biology, 2007,372(1):194-204.

    [15] Li K, Zhao K, Ossareh-Nazari B, et al. Structural basis for interaction between the Ubp3 deubiquitinating enzyme and its Bre5 cofactor[J]. Journal of Biological Chemistry, 2005, 280(32):29176-29185.

    [16] Ossareh-Nazari B, Bonizec M, Cohen M, et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy[J]. EMBO reports, 2010, 11(7): 548-554.

    [17] Rumpf S, Jentsch S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone[J]. Molecular Cell, 2006, 21(2):261-269.

    [18] Hanzelmann P, Buchberger A, Schindelin H. Hierarchical binding of cofactors to the AAA ATPase p97[J]. Structure, 2011, 19(6):833-843.

    [19] Stolz A, Hilt W, Buchberger A, et al. Cdc48: a power machine in protein degradation[J]. Trends in Biochemical Sciences, 2011, 36(10):515-523.

    【中文責編:晨 兮;英文責編:艾 琳】

    去泛素酶復合體Ubp3/Bre5的制備及與Cdc48作用

    蘇文成1, 2,呂 操1,2,時麗麗3,景曉飛1,2,蓋園明2,張 潔2,譚煥波2,王鵬舉2, 夏立新4,鄒培建2,秦 剛2

    1)天津工業(yè)技術大學生物技術學院, 天津 300457; 2)中國科學院天津工業(yè)生物技術研究所,國家工業(yè)酶重點實驗室,天津300308; 3)天津藥物研究院天津分子設計與藥物發(fā)現重點實驗室, 天津300193;4)深圳大學醫(yī)學部,呼吸疾病國家重點實驗室深圳大學變態(tài)反應分室, 深圳 518060

    泛素化是一種存在于真核細胞中與生理功能密切相關的蛋白修飾,泛素化與去泛素化處于動態(tài)調節(jié)過程中. Ubp3是與人USP10同源的酵母去泛素化酶,結合輔引子Bre5在細胞內發(fā)揮廣泛作用.為研究該復合體的工作機制,制備重組蛋白復合體,在大腸桿菌中成功表達并純化重組Ubp3與Bre5單體及Ubp3/Bre5復合體,首次成功大規(guī)模制備重組Ubp3/Bre5復合體.通過一系列pulldown實驗,檢驗Ubp3/Bre5與AAA家族中泛素選擇性ATP酶Cdc48的相互作用模式,結果發(fā)現,Ubp3及Bre5無法單獨與Cdc48結合,但Ubp3/Bre5復合體可以有效與Cdc48相互作用.提出了Ubp3/Bre5-Cdc48相互作用的新模式,制備了高質量重組Ubp3/Bre5復合體.該研究為通過生化及結構生物學進行分子機制探索奠定了基礎.

    結合蛋白質;Ubp3去泛素化酶;結合輔因子Bre5;ATP酶Cdc48;去泛素化復合體;與谷光苷肽巰基轉移酶沉淀試驗;直接相互作用

    天津市科技支撐計劃資助項目(11ZCZDSY08100); 中國科學院百人計劃資助項目(KSCW2-YW-BR-4) ;國家自然科學基金資助項目(81273275)

    蘇文成(1987—),女(漢族),內蒙古自治區(qū)呼和浩特市人,天津工業(yè)技術大學碩士,E-mail:woshisuwenc@yahoo.com

    /References:

    :Su Wencheng, Lyu Cao, Shi Lili, et al.Preparation of full-length deubiquitinating complex Ubp3/Bre5 and characterization of interaction with Cdc48[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 58-67.

    Q 513 Document code:A

    10.3724/SP.J.1249.2015.01058

    Received:2014-01-17;Revised:2014-12-24;Accepted:2014-12-26

    Foundation:The Program of Tianjin Municipal Science & Technology Project (11ZCZDSY08100); The Program of “One Hundred Talented People” of the Chinese Academy of Sciences (KSCW2-YW-BR-4); National Natural Science Foundation of China (81273275)

    ? Corresponding author:Associate professor Qin Gang, E-mail: qing@genequantum.com

    引 文:蘇文成,呂 操,時麗麗,等. 去泛素酶復合體Ubp3/Bre5的制備及與Cdc48作用[J]. 深圳大學學報理工版,2015,32(1):58-67.(英文版)

    猜你喜歡
    文成深圳大學復合體
    《深圳大學學報理工版》2023 年分類總目次
    背詩學寫話
    《深圳大學學報理工版》2021 年分類總目次
    《深圳大學學報理工版》2020年分類總目次
    靳文成作品欣賞
    大眾文藝(2019年16期)2019-08-24 07:53:44
    《深圳大學學報理工版》2017年征稿細則
    三千世界
    三千世界
    CoFe2O4/空心微球復合體的制備與吸波性能
    3種多糖復合體外抗腫瘤協同增效作用
    食品科學(2013年15期)2013-03-11 18:25:51
    久久久久久久久久黄片| 久久久久久久久大av| 日本色播在线视频| 一进一出好大好爽视频| 亚洲av成人av| 国产精品爽爽va在线观看网站| 久久综合国产亚洲精品| 免费观看人在逋| 成人午夜高清在线视频| 国产成人影院久久av| 可以在线观看的亚洲视频| 啦啦啦啦在线视频资源| 成年女人毛片免费观看观看9| 成人二区视频| 成人鲁丝片一二三区免费| 国产91av在线免费观看| 亚洲人成网站高清观看| 中文字幕av在线有码专区| 日韩,欧美,国产一区二区三区 | 日本一二三区视频观看| 熟女人妻精品中文字幕| 如何舔出高潮| 真实男女啪啪啪动态图| 赤兔流量卡办理| 亚洲欧美日韩东京热| 你懂的网址亚洲精品在线观看 | 国产高清三级在线| 超碰av人人做人人爽久久| 国产黄色小视频在线观看| 天天躁日日操中文字幕| 1024手机看黄色片| 蜜桃亚洲精品一区二区三区| 国产av一区在线观看免费| 日韩一区二区视频免费看| 国产精品99久久久久久久久| av福利片在线观看| 成人毛片a级毛片在线播放| 人人妻人人澡欧美一区二区| 欧美bdsm另类| 成年女人永久免费观看视频| 国产精品日韩av在线免费观看| 免费大片18禁| 中国美女看黄片| 午夜爱爱视频在线播放| 男人狂女人下面高潮的视频| 久久久久久久久久久丰满| 啦啦啦韩国在线观看视频| 欧美激情国产日韩精品一区| 在线a可以看的网站| 精品人妻偷拍中文字幕| 色在线成人网| 精品久久久久久久久亚洲| 亚洲av.av天堂| 亚洲精品国产成人久久av| 亚洲国产精品成人综合色| 国内精品宾馆在线| 欧美丝袜亚洲另类| 内地一区二区视频在线| 青春草视频在线免费观看| 黄色配什么色好看| 亚洲中文字幕一区二区三区有码在线看| av天堂在线播放| 九九久久精品国产亚洲av麻豆| 国产一区二区亚洲精品在线观看| 淫秽高清视频在线观看| 一个人免费在线观看电影| 男女视频在线观看网站免费| 日本欧美国产在线视频| 97超级碰碰碰精品色视频在线观看| 成年av动漫网址| 国内精品久久久久精免费| 亚洲成人av在线免费| 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 亚洲av成人精品一区久久| 国产精品久久久久久久电影| 色哟哟·www| 日韩 亚洲 欧美在线| 麻豆一二三区av精品| 日韩一本色道免费dvd| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 成人特级av手机在线观看| av视频在线观看入口| 97热精品久久久久久| 99久国产av精品| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 观看免费一级毛片| 日韩av不卡免费在线播放| 噜噜噜噜噜久久久久久91| 97超级碰碰碰精品色视频在线观看| 亚洲,欧美,日韩| 搡老岳熟女国产| av视频在线观看入口| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲综合色惰| 精品一区二区三区视频在线| 久久久久免费精品人妻一区二区| 久久这里只有精品中国| 午夜免费激情av| 欧美最黄视频在线播放免费| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 校园人妻丝袜中文字幕| 级片在线观看| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 欧美成人精品欧美一级黄| 国产毛片a区久久久久| 丰满的人妻完整版| 成人性生交大片免费视频hd| 午夜免费男女啪啪视频观看 | 我要看日韩黄色一级片| 欧美激情在线99| 国产黄色视频一区二区在线观看 | 美女黄网站色视频| 91久久精品国产一区二区三区| 国产精品三级大全| 69人妻影院| 国产美女午夜福利| 老师上课跳d突然被开到最大视频| 欧美人与善性xxx| 国产高潮美女av| 欧美bdsm另类| 欧美性感艳星| 在现免费观看毛片| 欧美成人免费av一区二区三区| 99久久精品一区二区三区| h日本视频在线播放| 欧美日本亚洲视频在线播放| 波多野结衣高清作品| 亚洲国产精品成人综合色| 久久精品国产亚洲网站| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影| 国产三级中文精品| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久久久久久久久| 国内精品久久久久精免费| 国产伦在线观看视频一区| 国产极品精品免费视频能看的| 男人舔女人下体高潮全视频| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 亚洲性久久影院| 一区福利在线观看| 乱系列少妇在线播放| 久久久久久久久久成人| 久久久成人免费电影| 亚洲精品国产av成人精品 | 国产一区二区激情短视频| 日本黄色片子视频| 亚洲电影在线观看av| 国国产精品蜜臀av免费| 高清毛片免费看| 我的老师免费观看完整版| 成人漫画全彩无遮挡| 蜜桃久久精品国产亚洲av| 永久网站在线| 亚洲最大成人av| 别揉我奶头~嗯~啊~动态视频| 日本黄色片子视频| 国产精品永久免费网站| 久久鲁丝午夜福利片| 嫩草影视91久久| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 色吧在线观看| 亚洲精品456在线播放app| 在线观看免费视频日本深夜| 97在线视频观看| 欧美极品一区二区三区四区| 男人舔奶头视频| 日日摸夜夜添夜夜爱| av在线老鸭窝| 在线观看一区二区三区| 99热6这里只有精品| 少妇高潮的动态图| 亚洲国产欧美人成| 观看免费一级毛片| 国产不卡一卡二| 欧美色视频一区免费| 国产伦在线观看视频一区| 91麻豆精品激情在线观看国产| 三级毛片av免费| 精品少妇黑人巨大在线播放 | 一a级毛片在线观看| 99久国产av精品国产电影| 亚洲无线观看免费| 久久久久久伊人网av| 最近的中文字幕免费完整| 国产精品国产高清国产av| 长腿黑丝高跟| 在线播放国产精品三级| 少妇人妻一区二区三区视频| 99久久精品国产国产毛片| 亚洲欧美成人精品一区二区| 亚洲自拍偷在线| 一夜夜www| 中文字幕精品亚洲无线码一区| 中文在线观看免费www的网站| 久久久久久久久久成人| 久久欧美精品欧美久久欧美| 亚洲熟妇中文字幕五十中出| 在线观看午夜福利视频| 欧美成人精品欧美一级黄| a级一级毛片免费在线观看| 在线a可以看的网站| 亚洲乱码一区二区免费版| 国产亚洲91精品色在线| 日本欧美国产在线视频| 国产精品久久电影中文字幕| 久久鲁丝午夜福利片| 一级a爱片免费观看的视频| 日本爱情动作片www.在线观看 | 男女啪啪激烈高潮av片| 日韩强制内射视频| 99久国产av精品国产电影| 色尼玛亚洲综合影院| 人人妻人人澡人人爽人人夜夜 | 99热只有精品国产| 毛片女人毛片| 亚洲在线自拍视频| 亚洲成人久久性| 亚洲熟妇熟女久久| 国产真实乱freesex| 天堂av国产一区二区熟女人妻| 男女啪啪激烈高潮av片| 色哟哟·www| 国产中年淑女户外野战色| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 国产精品伦人一区二区| 国产午夜精品论理片| 我的老师免费观看完整版| 精品乱码久久久久久99久播| 性插视频无遮挡在线免费观看| 国产精品久久电影中文字幕| 免费无遮挡裸体视频| 一区福利在线观看| 欧美在线一区亚洲| 成年女人毛片免费观看观看9| 免费看光身美女| 一a级毛片在线观看| 少妇猛男粗大的猛烈进出视频 | 婷婷亚洲欧美| 乱人视频在线观看| 亚洲人成网站在线观看播放| 哪里可以看免费的av片| 久久久a久久爽久久v久久| av国产免费在线观看| 国产精品一区www在线观看| 国语自产精品视频在线第100页| 中文字幕熟女人妻在线| 国产色婷婷99| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 日本五十路高清| 好男人在线观看高清免费视频| 少妇高潮的动态图| 国产男人的电影天堂91| 少妇猛男粗大的猛烈进出视频 | 精品人妻一区二区三区麻豆 | 国产男人的电影天堂91| 亚洲成人久久爱视频| 欧美人与善性xxx| 搡老岳熟女国产| 亚洲五月天丁香| 观看免费一级毛片| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 国产精品久久久久久久久免| 亚洲色图av天堂| 精品午夜福利在线看| 免费人成视频x8x8入口观看| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品色激情综合| 狂野欧美白嫩少妇大欣赏| 欧美绝顶高潮抽搐喷水| 丰满的人妻完整版| 亚洲国产精品成人久久小说 | 成年版毛片免费区| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 日韩在线高清观看一区二区三区| 久久国产乱子免费精品| 国产精品久久久久久av不卡| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费| 久久精品影院6| 国产69精品久久久久777片| 大香蕉久久网| 黑人高潮一二区| 能在线免费观看的黄片| 搞女人的毛片| 一进一出好大好爽视频| 亚洲成人久久爱视频| 国产探花极品一区二区| 久久婷婷人人爽人人干人人爱| 1024手机看黄色片| 搡老熟女国产l中国老女人| 少妇丰满av| 久久九九热精品免费| 亚洲成av人片在线播放无| 婷婷色综合大香蕉| 插阴视频在线观看视频| 真人做人爱边吃奶动态| 美女免费视频网站| 亚洲va在线va天堂va国产| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频| av国产免费在线观看| 插阴视频在线观看视频| 国产欧美日韩精品一区二区| 国产一区二区三区av在线 | 精品人妻熟女av久视频| 伊人久久精品亚洲午夜| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 欧美激情久久久久久爽电影| 日韩三级伦理在线观看| 国产视频内射| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 久久久精品94久久精品| 亚洲av电影不卡..在线观看| 免费观看在线日韩| 我要看日韩黄色一级片| 尤物成人国产欧美一区二区三区| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av天美| 国产精品一区二区性色av| 校园人妻丝袜中文字幕| 亚洲av成人精品一区久久| 午夜福利18| 在线观看午夜福利视频| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 天天躁日日操中文字幕| 免费av观看视频| 久久精品夜夜夜夜夜久久蜜豆| 麻豆国产av国片精品| 国产精品国产高清国产av| 床上黄色一级片| 联通29元200g的流量卡| 色哟哟·www| 日韩一区二区视频免费看| 色哟哟·www| 国产精品野战在线观看| 欧美性猛交黑人性爽| a级一级毛片免费在线观看| 日韩av在线大香蕉| 亚洲国产日韩欧美精品在线观看| 我的女老师完整版在线观看| 国产麻豆成人av免费视频| 国产白丝娇喘喷水9色精品| 淫秽高清视频在线观看| 午夜久久久久精精品| 免费在线观看影片大全网站| 亚洲国产精品成人综合色| 黄色欧美视频在线观看| 91av网一区二区| 在线免费十八禁| 国产毛片a区久久久久| 成人特级av手机在线观看| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区 | 欧美成人免费av一区二区三区| eeuss影院久久| 精品日产1卡2卡| 亚洲精品成人久久久久久| 如何舔出高潮| 丰满的人妻完整版| 国产色婷婷99| 露出奶头的视频| 尾随美女入室| av视频在线观看入口| 白带黄色成豆腐渣| 日韩高清综合在线| 成人av一区二区三区在线看| 久久久久性生活片| 深夜a级毛片| 成熟少妇高潮喷水视频| 精品一区二区免费观看| 天堂网av新在线| 国产欧美日韩精品亚洲av| 欧美潮喷喷水| 舔av片在线| 国产午夜精品论理片| 99久久精品国产国产毛片| 三级经典国产精品| 国产亚洲精品久久久com| 免费在线观看影片大全网站| 少妇熟女欧美另类| 18禁黄网站禁片免费观看直播| 亚洲av电影不卡..在线观看| 高清日韩中文字幕在线| 国产 一区 欧美 日韩| 亚洲18禁久久av| 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 干丝袜人妻中文字幕| 亚洲成人av在线免费| 日韩成人av中文字幕在线观看 | 亚洲精品色激情综合| 免费黄网站久久成人精品| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 精品久久久久久久人妻蜜臀av| 五月玫瑰六月丁香| 久久久久久久久久久丰满| 成人三级黄色视频| 国产麻豆成人av免费视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲在线观看片| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 1000部很黄的大片| videossex国产| 少妇高潮的动态图| a级毛片免费高清观看在线播放| 国产精品永久免费网站| 日本与韩国留学比较| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| 超碰av人人做人人爽久久| 国产欧美日韩精品一区二区| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 午夜激情福利司机影院| 身体一侧抽搐| 俺也久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影| 午夜精品一区二区三区免费看| 久久亚洲精品不卡| 最新在线观看一区二区三区| 嫩草影视91久久| 麻豆成人午夜福利视频| av国产免费在线观看| 亚洲人成网站在线播| 丰满的人妻完整版| 国产激情偷乱视频一区二区| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 日本一二三区视频观看| 久久欧美精品欧美久久欧美| 三级毛片av免费| 日本免费一区二区三区高清不卡| 日本一二三区视频观看| 一级黄色大片毛片| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 欧美精品国产亚洲| 亚洲第一电影网av| 亚洲自拍偷在线| 日本撒尿小便嘘嘘汇集6| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 亚洲av美国av| 尾随美女入室| 在线观看午夜福利视频| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色| 国产蜜桃级精品一区二区三区| 日韩大尺度精品在线看网址| 日韩成人av中文字幕在线观看 | 别揉我奶头~嗯~啊~动态视频| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 国产男人的电影天堂91| 欧美绝顶高潮抽搐喷水| 99久久精品国产国产毛片| 1000部很黄的大片| 国产精品久久久久久久久免| 久久婷婷人人爽人人干人人爱| 欧美一级a爱片免费观看看| 国产一区二区三区在线臀色熟女| 人人妻人人澡人人爽人人夜夜 | 真实男女啪啪啪动态图| 亚洲最大成人av| 欧美不卡视频在线免费观看| 六月丁香七月| 精品不卡国产一区二区三区| 简卡轻食公司| 在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲av.av天堂| 国产综合懂色| 少妇人妻一区二区三区视频| 老司机午夜福利在线观看视频| 久久人人精品亚洲av| 日本黄色片子视频| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 色在线成人网| 亚洲欧美精品综合久久99| 婷婷色综合大香蕉| 老司机福利观看| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩| 老司机午夜福利在线观看视频| 一级a爱片免费观看的视频| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 校园春色视频在线观看| 亚洲美女视频黄频| 亚洲久久久久久中文字幕| 亚洲美女视频黄频| 又爽又黄a免费视频| 精品乱码久久久久久99久播| 久久久久久久亚洲中文字幕| 国产一区亚洲一区在线观看| 亚洲在线自拍视频| 国产av不卡久久| 麻豆一二三区av精品| 国产精品女同一区二区软件| 国产精品99久久久久久久久| 69人妻影院| h日本视频在线播放| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| 免费观看在线日韩| 久久久国产成人免费| 两个人的视频大全免费| 国产真实乱freesex| 男人舔奶头视频| 啦啦啦啦在线视频资源| www日本黄色视频网| 直男gayav资源| 我的女老师完整版在线观看| 大又大粗又爽又黄少妇毛片口| 精品久久国产蜜桃| 老熟妇乱子伦视频在线观看| 久久精品夜色国产| 亚洲av.av天堂| 国产伦在线观看视频一区| 亚洲四区av| 美女免费视频网站| 成人一区二区视频在线观看| 免费搜索国产男女视频| 神马国产精品三级电影在线观看| 老师上课跳d突然被开到最大视频| 深爱激情五月婷婷| 精品熟女少妇av免费看| 晚上一个人看的免费电影| 国产成人福利小说| 亚洲精品一卡2卡三卡4卡5卡| 99热全是精品| 亚洲av免费在线观看| 伊人久久精品亚洲午夜| 午夜爱爱视频在线播放| 精品一区二区免费观看| 欧美+日韩+精品| 国产片特级美女逼逼视频| 欧美bdsm另类| 在线国产一区二区在线| 一本久久中文字幕| av国产免费在线观看| 一本精品99久久精品77| 长腿黑丝高跟| av专区在线播放| 我要看日韩黄色一级片| 熟妇人妻久久中文字幕3abv| 99久久无色码亚洲精品果冻| 国产熟女欧美一区二区| 亚洲国产精品成人久久小说 | 搡老岳熟女国产| 级片在线观看| 国产精品免费一区二区三区在线| 不卡视频在线观看欧美| 能在线免费观看的黄片| 香蕉av资源在线| 中文字幕久久专区| 免费观看人在逋| 一级黄色大片毛片| 国产片特级美女逼逼视频| 午夜福利18| 日本在线视频免费播放| 少妇的逼好多水| 久久精品国产亚洲av涩爱 | 日本欧美国产在线视频| 亚洲乱码一区二区免费版| 非洲黑人性xxxx精品又粗又长| 亚洲乱码一区二区免费版| 九九爱精品视频在线观看| 亚洲18禁久久av| 搡老熟女国产l中国老女人| 免费搜索国产男女视频| 国内精品美女久久久久久| 日本撒尿小便嘘嘘汇集6| 热99在线观看视频| 亚洲av成人精品一区久久| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清|