• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy PID control system for hose pulse experiment based on LabVIEW

    2015-03-03 08:01:18LIULipingLIUXinfuGONGYujieGUOHuan
    關(guān)鍵詞:控制精度實(shí)驗(yàn)臺(tái)時(shí)變

    LIU Li-ping, LIU Xin-fu, GONG Yu-jie, GUO Huan

    (School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China)

    ?

    Fuzzy PID control system for hose pulse experiment based on LabVIEW

    LIU Li-ping, LIU Xin-fu, GONG Yu-jie, GUO Huan

    (SchoolofMechanicalEngineering,HebeiUniversityofTechnology,Tianjin300130,China)

    The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integration derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjustment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the paper. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.

    fuzzy control; servo system; proportional integration derivatiation (PID); hose pulse

    0 Introduction

    Hydraulic steering system is wildly used in industry field. It transfers energy by hydraulic pressure[1]. In industry, it is mainly used in position control, speed control and force control[2]. Now, the research on position control has developed fast. It is widely used both in large, heavy, special type of heavy industry and in robot micro driving. The self-adaptive fuzzy control has made progress in the position control system. At present, this technology has been very mature and reached a high level in accuracy and precision.

    However, for the force control of hydraulic equipment, especially hydraulic pulse and hydraulic blasting, the control mode is still the conventional way and there exist some problems such as low accuracy, serious lag and varied parameters[3]. With the development of industrial system and new quality control standards, the quality of hose for vehicles and aviation industry has become important and it is difficult for original control method of hydraulic equipment to meet the practical requirements. More rigorous experimental scheme and more accurate experimental data are needed to improve the tester in hardware and control mode.

    Since fuzzy set was first established by Zadeh L A in 1965, efforts have led to rapid development in fuzzy set theory and its applications[4]. The first known successful application of fuzzy set theory in control field was provided by Mamdani E H in 1974[5]. Compared with conventional control theory, fuzzy control does not rely on the analysis of mathematical model of the process. In essence, fuzzy logic can emulate human’s thinking and organize the approximate and indeterminate nature of the environment[6]. Fuzzy control rules frequently derive from expert knowledge and experience of workers. Considering poor stability, serious lag and time-varying parameters in hydraulic impulse test system, the paper introduces the concept of advanced fuzzy control that will strongly improve its operating performance and achieve better control effect.

    1 Development status of hydraulic pulse system

    Hydraulic test equipment mainly includes three parts: device under test (DUT), automated test equipment and auxiliary equipment (tooling, filtration devices, etc.)[7].

    1.1 Development of hydraulic pulse test equipment

    Hydraulic test equipment can be divided into three types: scientific equipment, teaching equipment and production test equipment. Scientific equipment is mainly used in scientific experiments to investigate the development of hydraulic system and hydraulic components[8]. It has been applies to the National Institute for Hydraulic Research and various hydraulic and pneumatic professional graduate schools, such as the design of twin car bombs cylinder synchronization system hydraulic test bench of Central South University, the gear pump performance test platform designed by Special Equipment Supervision and Inspection Center in Fujian and the hydraulic test bench based on LabVIEW designed by School of Mechanical Engineering of Guangxi University. Teaching hydraulic equipment is used in professional colleges and universities, such as the QCS003A hydraulic test designed by Southwest Jiaotong University. Production test equipment is used for batch testing of hydraulic components such as type test and release test. It is a also widely used in manufacturers for hydraulic components test, such as the CAT test-bed system of servo valve performance testing for a steel rolling mill equipment company designed by Zhejiang University.

    1.2 Development of fuzzy control in hydraulic systems

    So far, fuzzy control has been applied to various hydraulic system focusing on position control but rarely in output power control. The fuzzy control has many advantages, i.e. it is based on expert knowledge and experience of workers and it need not to establish specialized mathematical model[9]. The impact of interference and parameters on control will be greatly weakened. Therefore, it is particularly suitable for nonlinear, time-varying and time delay control system with a certain level of intelligence. Traditional PID control combined with fuzzy control will make the system both maintain the original accuracy and enhance the stability, resulting in the desired effect well.

    2 Hardware design

    The hydraulic servo test equipment contains machinery, electricity, hydraulics, computer and software control[10]. It consists of three components: hydraulic system, electrical control system and computer control system. The core technologies include electro-hydraulic servo control technology, electrical automatic control technology, data acquisition, data processing and measurement technology etc.[11].

    2.1 Electro-hydraulic servo system

    The energy backlogging, conversion, transmission and amplification rely on static pressure of the liquid medium in a certain electromechanical system to make sure the mechanical function is lightweight, scientific and maximized, which is called hydraulic principle[12]. Fig.1 is a simple hydraulic pulse generating device.

    Fig.1 Simple pulse generating device

    Hydraulic oil is pressed into the pipeline by pump, and then reaches the relief valve after the filter and flows through a check valve. Finally, it reaches servo valve. Excess hydraulic oil will flow back to the tank until the pressure in the pipe reaches the set pressure by relief valve. Then the energy is stored in accumulator. Therefore before servo valve, a constant pressure will be formed in pipes and accumulator, which is usually called system pressure. Servo valve can set the output pressure arbitrarily when receiving a certain voltage control signal. We can get precise waveform if we have the right control scheme.

    2.2 Pulse generation mechanism

    Fig.2 is the national standard for water hammer wave and Fig.3 is the national standard for trapezoidal wave. The shaded area represents that the hydraulic waveform must fluctuate within its scope.

    Fig.2 Standard water hammer wave

    Fig.3 Standard trapezoidal wave

    In simple terms, the pulse generation process can be divided into three stages: initial state, pulse generation and waveform disappearance[13].

    In the initial stage, as shown in Fig.4, the specimen with a volume ofV0has been pre-filled by the working medium. The specimen communicates with the tank through the servo valve, and at this time the pressure in the specimen isP0. The pump runs at the rated working pressurePand the discharge flow fills pressure for accumulator and excess oil flows back into the tank through relief valve.

    Fig.4 Initial stage

    The second stage is hydraulic pulse generation stage. As shown in Fig.5, the pump runs at the rated working pressurePand high-pressure oil enters specimen from the accumulator under the control of servo valve, finally a high hydraulic pressure pulse forms.

    Fig.5 Hydraulic pulse generation stage

    The last stage is that the pulse wave disappears andV0andP0are restored to the original state under the control of servo valve.

    2.3 Hardware design

    2.3.1 Technical specifications

    The technical requirements are shown in Table 1.

    Table 1 Tester’s technical requirements

    2.3.2 Hydraulic system design

    According to the control requirements, the system uses a closed-loop feedback control scheme. Hydraulic servo control system can adopt the form of mechanical feedback mechanism. It has advantages of simple and reliable structure, strong dirt capacity, low cost and small system damping. But its speed and accuracy is poor[14]. Unfortunately, once the design is determined, the gain is difficult to be adjusted. In addition, the fit clearance and ulnar gap that appears in the joints of mechanical parts are all nonlinear factors. That will affect control precision and stability.

    Compared with mechanical form, the feedback elements and comparing elements of electro-hydraulic servo control system are all electric components[15]. Amplifying element is also electro-hydraulic servo valve which handles signals fast and has small gain with open-loop gain regulated conveniently, thus the system can be corrected easily.

    In summary, this design uses electro-hydraulic servo control system. Mechanical feedback structure need not to be designed because general hydraulic system is good. Fig.6 is a hydraulic principle scheme.

    Fig.6 System schematic

    3 Control system design

    The traditional hydraulic servo pulse equipment commonly uses linear control or PID control[16]. Low precision and slow response are exist in linear control. Therefore, it is not suitable for high-speed pulse experiments. The traditional PID control largely alleviates the shortcomings of linear control, but PID parameters vary due to the influence of external factors. In severe cases, it will lead to the failure of the experiments.

    The paper describes the control scheme of the experimental system and introduces the fuzzy control theory and the software implementation.

    3.1 Fuzzy control

    PID controller is a very common feedback loop control mode in industrial control. It constantly compares the collected data with a given reference, then it uses this difference as a new input value. The difference will make the system be in the reference range. Its drawback is that the PID parameters can not be adjusted automatically when the specimen volume, test temperature or the external environment change during the experiment. Slow speed boosting and uncompleted bucking also exist in this system. Trials and experiences have shown that we can adjust the parameter values(generally only value ofp) to overcome these drawbacks.

    After repeated research, the system will calculatepconstantly with the change of test conditions on the basis of the original control mode. The adjustment ofpsolves the problems of slow boosting, uncompleted relief, etc. The overall control system scheme is shown in Fig.7.

    Fig.7 Overall control system scheme

    3.2 Fuzzy controller design

    To ensure a certain control precision without complex control rules which can increase the difficulty of the design, the control system uses a two-dimensional fuzzy controller commonly used in industry[17]. Input variables of fuzzy control system are the difference(e) between the given value and the actual pressure value and its rate of change(ec). The output variable is the value ofpof PID controller. Their corresponding linguistic variables areE,ECandP. The linguistic variables are described as seven values: PB(positive big), PM(positive middle), PS (positive small), Z(zero), NS(negative small), NM (negative medium), NB(negative big)[17]. And the triangle function is membership function.

    3.2.1 Determination of membership function

    Based on experiences, the triangular membership function in fuzzy domain [-3, +3] is shown in Fig.8.

    Fig.8 Membership of e

    Considering that the error and its change rate are just predicted or estimated values, both sides of the membership function are set as station type to ensure that the controller can still work when input value exceeds the set range. Memberships ofec,pare the same.

    3.2.2 Determination of fuzzy control rules

    The basic principle to establish fuzzy control rules is as follows: when the system error is large or larger, control amount should be selected to nullify the error as soon as possible; when the error is small or smaller, selection of control amount should prevent overshoot to ensure system stability[19]. The fuzzy control rules are shown in Fig.9.

    Fig.9 Fuzzy control rules table

    3.2.3 Defuzzification

    Control rules are described in Fig.1 and could also be described as the following fuzzy conditional statements:

    1) If E = NB and EC = NB then U = PB

    2) If E = NB and EC = NS then U = PB

    After calculation, the fuzzy control query table is shown in Fig.10.

    Fig.10 Fuzzy control query table

    4 Software design

    The design of control program is based on LabVIEW platform for friendly interactive interface, which is easy to be understood and operated.

    The software system of hydraulic pulse test equipment mainly includes data acquisition, waveform display, data retention, data communication etc. Its functional principle is shown in Fig.11.

    The control of servo valve and the data acquisition are completed by acquisition card of Advantech. The program is shown in Fig.12.

    Main interface of control panel is shown in Fig.13.

    Fig.11 Functional principle of software system

    Fig.12 Program of data acquisition

    Fig.13 Main interface of control panel

    5 Field test and analysis

    5.1 Experimental materials

    The materials in this test equipment are steel wire braided hoses with the maximum pressure about 60 MPa or less. It consists of four parts: inner layer, middle layer, steel wire braid and the outer layer. It is mainly used for engineering and construction, materials handling, and ships. Its products are shown in Fig.14.

    Fig.14 Steel wire braided hose

    5.2 Field test and analysis of results

    After repeated experiments and parameters adjustment, final results show that issues of slower boosting and lag are being addressed properly. As shown in Figs.15 and 16, abscissa represents the number of sampling, curve 1 represents the given waveform and curve 2 represents the experimental waveform. Lag and slow boosting are basically eliminated. Pressure control error is limited within 5%. Control accuracy is higher than the requirements of national standards.

    Fig.15 Water hammer results

    Fig.16 Experimental results

    6 Conclusions

    Focusing on the typical problems of parameter variability, slowly boosting and lagging, a new control method of hydraulic pulse equipment is presented and a hydraulic servo system with fuzzy control based on LabVIEW is proposed in this paper. It mainly include the following contents:

    1) Design of hydraulic test system. We have designed hydraulic schematics of the tester that includes the calculation of hydraulic test systems and complet selection of hydraulic components depending on the load requirements and related standards.

    2) By analyzing the original control method, a fuzzy control scheme is proposed and applied to the control system.

    3) Software program design and human-computer interface design based on LabVIEW. Through trial and error adjustments, the final result has met the requirements of technical protocols and related standards.

    Of course, there is quite a lot of research need to be studied in the future. For example, the fuzzy control rules generally come from the knowledge of experts and on-site commissioning experience, therefore some problems will exist inevitably due to subjective factors.

    [1] ZHAO Yong-lin, XU Qian-wen, WANG Ming-wei. Design and development trend of the hydraulic system. ST Marine Expo Story·Discovery Science and Technology, 2012.

    [2] ZHOU Yan-jing, YIN Jian-bo, GAN Lin. Study on electro-hydraulic servo control of certain artillery. Instrumental Technique, 2010, (9): 25-27.

    [3] LI Pan-wei, JIAN Xun. Application of PID and fuzzy control based on PLC in hydraulic servo synchronization control system. Machine Tool & Hydraulics, 2008, 36(8): 277-279.

    [4] GE Xin-cheng, HU Yong-xia. Present analysis and development trends of fuzzy control techniques. Modern Defence Technology, 2008, 36(3): 51-55.

    [5] ZHANG Wei-guo, YANG Guo-zhong. Fuzzy control theory and technical application. Xi’an: Northwestern Polytechnical University Press, 2000.

    [6] YANG Lun-biao, GAO Ying-jie. The principle of fuzzy mathematics and its application. Guangzhou: South China University of Technology Press, 2006.

    [7] JIN Guang-jun. Research design and research of the comprehensive hydraulic pressure test platform based on Labview. Yanshan University, 2009.

    [8] Laamanen A, Linjama M, Tammisto J, et al. Velocity control of water hydraulic motor. In: Proceedings of the JFPS International Symposium on Fluid Power, 2002, 5(1): 167-172.

    [9] Zimmermann A, Scholz D. Proportional hydraulics work basic level. Festo Didactic GmbH & Co., 1998.

    [10] ZHANG Chan. Design and research of heat alternating servo control testing system. Zhejiang University, 2006.

    [11] BIAN Jun. Study of control system based on FESTO hydraulic servo test bed. Shenyang University of University, 2011.

    [12] HUANG Wei-ling. Study on eight-station tube end forming machine control system based on PLC. Dongnan University, 2007.

    [13] CHEN Ze-ting. The generating technology of ultra-short pulse based on multi-mode laser. Journal of Guangdong radd & TV University, 2013, (3): 102-106.

    [14] SHI Wei-xiang. Status and new developments fluid power transmission and controlling. Fluid Power Transmission and Control, 2004, (1): 9-15.

    [15] LI Liang. Study of digital self-examined electro-hydraulic servo system by PROFIBUS. Wuhan University of Science and Technology, 2006.

    [16] ZHOU Jian-gang. Optimization for PID control method on hydraulic servo control system. Jiangnan University, 2009.

    [17] SHI Ning. Reach on the fuzzy control of electro-hydraulic velocity servo system. Liaoning Technical University, 2003.

    [18] ZHANG Qing. Reach on the intelligent temperature control system of sludge heat treatment furnace. Zhejiang University, 2005.

    [19] MA Ming. Design and research of fuzzy control of hydraulic servo control system. Taiyuan University of Technology, 2009.

    基于LabVIEW的軟管脈沖實(shí)驗(yàn)?zāi):齈ID控制系統(tǒng)研究

    劉力平, 劉新福, 宮玉潔, 郭 歡

    (河北工業(yè)大學(xué) 機(jī)械工程學(xué)院, 天津 300130)

    軟管脈沖實(shí)驗(yàn)臺(tái)一般使用電液伺服系統(tǒng), 占用空間小, 原理結(jié)構(gòu)簡單, 信號(hào)跟蹤能力強(qiáng), 在工業(yè)控制領(lǐng)域應(yīng)用廣泛。 然而, 由于液壓反應(yīng)速度慢、 干擾因素多, 因而控制精度低, 系統(tǒng)不穩(wěn)定; 而傳統(tǒng)的液壓脈沖實(shí)驗(yàn)臺(tái)單純PID的控制方式原理簡單, 但參數(shù)調(diào)節(jié)困難。 本文針對(duì)控制系統(tǒng)的特殊要求, 提出了一種模糊PID控制方法, 既保留了原控制系統(tǒng)的優(yōu)點(diǎn), 又改善了原系統(tǒng)存在的參數(shù)時(shí)變、 不穩(wěn)定、 滯后等缺點(diǎn), 提高了系統(tǒng)的適應(yīng)能力和精度。 經(jīng)反復(fù)調(diào)試和試驗(yàn), 結(jié)果表明, 該系統(tǒng)有效地解決了系統(tǒng)不穩(wěn)定、 滯后嚴(yán)重和參數(shù)時(shí)變等問題。

    模糊控制; 伺服; PID; 軟管脈沖

    LIU Li-ping, LIU Xin-fu, GONG Yu-jie, et al. Fuzzy PID control system for hose pulse experiment based on LabVIEW. Journal of Measurement Science and Instrumentation, 2015, 6(2): 161-168.

    10.3969/j.issn.1674-8042.2015.02.009

    Foundation items: High Level Talented Person Funded Project of Hebei Province (No. C2013005003); Excellent Experts for Going Abroad Training Program of Hebei Province (No.10215601D)

    LIU Xin-fu (liuxf999@163.com)

    1674-8042(2015)02-0161-08 doi: 10.3969/j.issn.1674-8042.2015.02.009

    Received date: 2015-02-27

    CLD number: TP273+.4 Document code: A

    猜你喜歡
    控制精度實(shí)驗(yàn)臺(tái)時(shí)變
    基于多源異構(gòu)信息融合的采摘機(jī)械臂驅(qū)動(dòng)控制研究
    基于CDIO-E教學(xué)模式自制實(shí)驗(yàn)臺(tái)的研究
    MW級(jí)太空發(fā)電站微波能量波束指向控制精度分析
    基于安卓的智能車轉(zhuǎn)速系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
    基于時(shí)變Copula的股票市場相關(guān)性分析
    開放式機(jī)電液一體化綜合實(shí)驗(yàn)臺(tái)設(shè)計(jì)
    煙氣輪機(jī)復(fù)合故障時(shí)變退化特征提取
    模糊PID在離合器綜合性能實(shí)驗(yàn)臺(tái)中的應(yīng)用
    基于MEP法的在役橋梁時(shí)變可靠度研究
    一種汽車電器零部件檢測實(shí)驗(yàn)臺(tái)
    河南科技(2014年4期)2014-02-27 14:07:12
    丝瓜视频免费看黄片| 五月伊人婷婷丁香| 日韩成人av中文字幕在线观看| 亚洲欧美精品综合一区二区三区 | 亚洲成人av在线免费| 91国产中文字幕| 少妇的丰满在线观看| 免费观看性生交大片5| 国产 精品1| 欧美精品高潮呻吟av久久| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 卡戴珊不雅视频在线播放| 超碰97精品在线观看| 18禁国产床啪视频网站| 国产一区二区三区av在线| 大片电影免费在线观看免费| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 日本免费在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 午夜日韩欧美国产| 免费黄网站久久成人精品| 亚洲精品美女久久久久99蜜臀 | 免费观看av网站的网址| 中文精品一卡2卡3卡4更新| 精品久久久精品久久久| 国产野战对白在线观看| 在线天堂最新版资源| 亚洲国产av新网站| 夜夜骑夜夜射夜夜干| 女人高潮潮喷娇喘18禁视频| 免费观看av网站的网址| 国产成人91sexporn| 观看av在线不卡| 欧美黄色片欧美黄色片| 女人久久www免费人成看片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品酒店卫生间| 国产成人精品久久久久久| 青草久久国产| 精品人妻在线不人妻| 男女无遮挡免费网站观看| 成人免费观看视频高清| 丝袜美腿诱惑在线| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 精品一区在线观看国产| 黑人欧美特级aaaaaa片| 男男h啪啪无遮挡| 免费日韩欧美在线观看| 91精品国产国语对白视频| 日产精品乱码卡一卡2卡三| 观看av在线不卡| 哪个播放器可以免费观看大片| 日韩电影二区| 亚洲精品美女久久av网站| 你懂的网址亚洲精品在线观看| 最近最新中文字幕大全免费视频 | 欧美中文综合在线视频| 老司机亚洲免费影院| 国产精品麻豆人妻色哟哟久久| 丝袜美腿诱惑在线| 一级毛片电影观看| 老汉色∧v一级毛片| 99国产精品免费福利视频| 国产精品一国产av| 亚洲色图综合在线观看| 国产深夜福利视频在线观看| 寂寞人妻少妇视频99o| 欧美精品国产亚洲| 韩国高清视频一区二区三区| 黄色一级大片看看| 亚洲伊人久久精品综合| 中文乱码字字幕精品一区二区三区| 免费少妇av软件| 久久精品国产亚洲av高清一级| 大片电影免费在线观看免费| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 亚洲国产av影院在线观看| 咕卡用的链子| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 久久 成人 亚洲| 国产深夜福利视频在线观看| 中文天堂在线官网| 久久99热这里只频精品6学生| 少妇人妻精品综合一区二区| 少妇精品久久久久久久| 国产精品 国内视频| 中文字幕人妻熟女乱码| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 啦啦啦在线观看免费高清www| 国产片特级美女逼逼视频| 亚洲国产毛片av蜜桃av| 一区福利在线观看| 香蕉精品网在线| 一级毛片电影观看| 亚洲国产最新在线播放| 一边摸一边做爽爽视频免费| 成年av动漫网址| 亚洲美女视频黄频| 成人毛片a级毛片在线播放| 一区二区三区精品91| 如日韩欧美国产精品一区二区三区| 欧美精品国产亚洲| 丝袜脚勾引网站| 国产xxxxx性猛交| 免费观看在线日韩| 精品久久蜜臀av无| 99久国产av精品国产电影| 日韩制服丝袜自拍偷拍| 考比视频在线观看| 免费大片黄手机在线观看| 国产精品偷伦视频观看了| 亚洲欧洲精品一区二区精品久久久 | 免费黄频网站在线观看国产| 18+在线观看网站| 男女免费视频国产| 亚洲av福利一区| 婷婷色综合www| 在线观看人妻少妇| 欧美激情 高清一区二区三区| 精品少妇黑人巨大在线播放| 欧美激情高清一区二区三区 | 免费高清在线观看日韩| 一级片免费观看大全| 精品国产乱码久久久久久小说| √禁漫天堂资源中文www| 精品卡一卡二卡四卡免费| 水蜜桃什么品种好| 老汉色∧v一级毛片| 欧美97在线视频| 亚洲精品一二三| 你懂的网址亚洲精品在线观看| 成人黄色视频免费在线看| 国产男人的电影天堂91| 一区二区三区四区激情视频| 欧美 亚洲 国产 日韩一| 老汉色∧v一级毛片| 波多野结衣av一区二区av| www.av在线官网国产| 亚洲激情五月婷婷啪啪| 日日摸夜夜添夜夜爱| videos熟女内射| 男的添女的下面高潮视频| 国产成人av激情在线播放| 久久人人97超碰香蕉20202| 国产熟女欧美一区二区| 国产一区二区 视频在线| 在线亚洲精品国产二区图片欧美| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| www.自偷自拍.com| 久久人妻熟女aⅴ| 精品午夜福利在线看| 欧美成人午夜精品| 在线天堂最新版资源| 男女高潮啪啪啪动态图| 97在线人人人人妻| 欧美亚洲 丝袜 人妻 在线| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av | 久久影院123| 黑人巨大精品欧美一区二区蜜桃| 亚洲av国产av综合av卡| 美国免费a级毛片| 午夜免费男女啪啪视频观看| 免费播放大片免费观看视频在线观看| 少妇 在线观看| 黄色一级大片看看| 777米奇影视久久| 亚洲精品在线美女| 美女脱内裤让男人舔精品视频| 国产精品 欧美亚洲| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| 日本av手机在线免费观看| 新久久久久国产一级毛片| 精品福利永久在线观看| 精品第一国产精品| 欧美在线黄色| 观看av在线不卡| 在现免费观看毛片| 性高湖久久久久久久久免费观看| www.熟女人妻精品国产| 丝瓜视频免费看黄片| 国产精品 国内视频| 高清不卡的av网站| 亚洲视频免费观看视频| 一级毛片 在线播放| 少妇熟女欧美另类| 成年美女黄网站色视频大全免费| 黄色毛片三级朝国网站| 亚洲精华国产精华液的使用体验| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 在线天堂最新版资源| 久久影院123| 久久人人97超碰香蕉20202| 90打野战视频偷拍视频| 视频在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美日韩另类电影网站| 女人久久www免费人成看片| 有码 亚洲区| 999久久久国产精品视频| 久久99一区二区三区| xxxhd国产人妻xxx| 精品人妻在线不人妻| 亚洲欧洲国产日韩| 国产精品久久久久久精品古装| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| 精品亚洲成a人片在线观看| 国产精品偷伦视频观看了| 最近手机中文字幕大全| 亚洲成av片中文字幕在线观看 | 亚洲美女搞黄在线观看| 免费人妻精品一区二区三区视频| 五月天丁香电影| 亚洲精品美女久久久久99蜜臀 | 99热网站在线观看| 丝袜在线中文字幕| av在线观看视频网站免费| 免费在线观看视频国产中文字幕亚洲 | 亚洲av福利一区| 美女视频免费永久观看网站| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 人妻一区二区av| 日韩中文字幕视频在线看片| 久久久久久人人人人人| 只有这里有精品99| 国产精品久久久久成人av| 亚洲精品美女久久av网站| www.精华液| 国产爽快片一区二区三区| av网站免费在线观看视频| 精品少妇内射三级| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 人妻少妇偷人精品九色| 狠狠婷婷综合久久久久久88av| 久久综合国产亚洲精品| 久久这里有精品视频免费| 极品人妻少妇av视频| 热re99久久精品国产66热6| 国产成人精品久久二区二区91 | 午夜激情av网站| 国产成人精品在线电影| 青春草亚洲视频在线观看| 欧美av亚洲av综合av国产av | 国产精品久久久久久av不卡| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 久久精品国产a三级三级三级| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 美女xxoo啪啪120秒动态图| 国产xxxxx性猛交| 久久久精品国产亚洲av高清涩受| 韩国高清视频一区二区三区| 国产极品天堂在线| 欧美日韩精品网址| 亚洲一码二码三码区别大吗| 99久久精品国产国产毛片| www.av在线官网国产| 国产精品一区二区在线不卡| 久久婷婷青草| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 丝袜脚勾引网站| 国产av码专区亚洲av| 国精品久久久久久国模美| 午夜免费男女啪啪视频观看| 97在线视频观看| 国产亚洲av片在线观看秒播厂| 免费观看a级毛片全部| 欧美精品亚洲一区二区| 欧美精品一区二区大全| av不卡在线播放| 90打野战视频偷拍视频| 男男h啪啪无遮挡| 亚洲在久久综合| 伦理电影免费视频| 午夜免费观看性视频| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 又大又黄又爽视频免费| 欧美日韩亚洲高清精品| 国产精品无大码| 最近2019中文字幕mv第一页| 久久久久久久久久久久大奶| 人妻少妇偷人精品九色| 一级片免费观看大全| 亚洲四区av| 免费高清在线观看日韩| videossex国产| 在线天堂中文资源库| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免| 欧美另类一区| 午夜免费男女啪啪视频观看| 国产片内射在线| 激情视频va一区二区三区| 纵有疾风起免费观看全集完整版| 国产片特级美女逼逼视频| 日本免费在线观看一区| 午夜日韩欧美国产| 成人亚洲欧美一区二区av| 久久国产亚洲av麻豆专区| 尾随美女入室| 两个人看的免费小视频| 赤兔流量卡办理| 亚洲综合色网址| 国产亚洲精品第一综合不卡| 成人国语在线视频| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 亚洲美女搞黄在线观看| 国产一区二区在线观看av| 精品99又大又爽又粗少妇毛片| 91国产中文字幕| 国产日韩欧美视频二区| 国产黄频视频在线观看| 国产日韩欧美视频二区| 国产精品成人在线| 亚洲精品在线美女| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 久久韩国三级中文字幕| 免费高清在线观看日韩| 男男h啪啪无遮挡| 精品酒店卫生间| 亚洲色图综合在线观看| 久久久久久久久久久免费av| videossex国产| 免费高清在线观看日韩| 亚洲国产欧美网| 人人妻人人澡人人爽人人夜夜| 国产av国产精品国产| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 丰满少妇做爰视频| 香蕉丝袜av| 99九九在线精品视频| 国产成人精品在线电影| 国产在视频线精品| 亚洲第一区二区三区不卡| 丝袜美足系列| 亚洲成人av在线免费| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| 丰满少妇做爰视频| 久久精品国产亚洲av高清一级| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费| 成年人午夜在线观看视频| 国产成人精品无人区| av女优亚洲男人天堂| 欧美精品一区二区大全| 少妇熟女欧美另类| 男人操女人黄网站| 日韩制服丝袜自拍偷拍| 国产精品亚洲av一区麻豆 | 亚洲第一区二区三区不卡| 我要看黄色一级片免费的| 免费观看在线日韩| 欧美日韩av久久| 日韩一本色道免费dvd| 免费黄色在线免费观看| 如日韩欧美国产精品一区二区三区| 999精品在线视频| 观看av在线不卡| 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| www.自偷自拍.com| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av | 亚洲国产精品成人久久小说| 一级,二级,三级黄色视频| 韩国av在线不卡| 久久精品亚洲av国产电影网| 纯流量卡能插随身wifi吗| 最新中文字幕久久久久| 亚洲伊人色综图| 亚洲av男天堂| 国产日韩欧美在线精品| 男女高潮啪啪啪动态图| 亚洲在久久综合| 啦啦啦在线免费观看视频4| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 国产成人精品久久久久久| 亚洲国产精品成人久久小说| 国产精品国产三级专区第一集| 久久精品久久久久久久性| 男人操女人黄网站| 久久精品国产a三级三级三级| av免费在线看不卡| 日韩一区二区视频免费看| av一本久久久久| 熟女av电影| 久久精品久久精品一区二区三区| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 91午夜精品亚洲一区二区三区| 一边摸一边做爽爽视频免费| 中文字幕人妻熟女乱码| 在线观看人妻少妇| 97在线视频观看| 国产毛片在线视频| 毛片一级片免费看久久久久| 日本免费在线观看一区| 久久精品夜色国产| 欧美人与性动交α欧美精品济南到 | 91精品三级在线观看| 一二三四中文在线观看免费高清| 熟女电影av网| 9热在线视频观看99| 2022亚洲国产成人精品| 女人被躁到高潮嗷嗷叫费观| 99久久中文字幕三级久久日本| 亚洲三级黄色毛片| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 天天躁日日躁夜夜躁夜夜| 国产成人精品久久二区二区91 | 老熟女久久久| 大片电影免费在线观看免费| 尾随美女入室| 黄片无遮挡物在线观看| 晚上一个人看的免费电影| 精品一区二区免费观看| 成年女人在线观看亚洲视频| 在线观看国产h片| 免费大片黄手机在线观看| 丰满少妇做爰视频| 久久免费观看电影| 女人被躁到高潮嗷嗷叫费观| 一本—道久久a久久精品蜜桃钙片| 久久狼人影院| 综合色丁香网| 人体艺术视频欧美日本| 亚洲欧美一区二区三区国产| 观看av在线不卡| 女人高潮潮喷娇喘18禁视频| 亚洲欧洲日产国产| 日韩,欧美,国产一区二区三区| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠久久av| 成人二区视频| 成人国产av品久久久| 丝袜喷水一区| 桃花免费在线播放| 高清在线视频一区二区三区| 波多野结衣一区麻豆| 一区二区三区激情视频| 日韩av在线免费看完整版不卡| 一级片'在线观看视频| 亚洲精品第二区| 一级片免费观看大全| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 久久99蜜桃精品久久| 超碰97精品在线观看| 一区在线观看完整版| 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| 国产爽快片一区二区三区| 日韩中字成人| 伊人久久大香线蕉亚洲五| 亚洲av男天堂| 欧美在线黄色| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 男人操女人黄网站| 婷婷成人精品国产| 国产国语露脸激情在线看| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| 老熟女久久久| 日韩三级伦理在线观看| 在线观看免费视频网站a站| 男女国产视频网站| 亚洲人成电影观看| 老司机亚洲免费影院| 午夜福利在线观看免费完整高清在| 春色校园在线视频观看| 欧美xxⅹ黑人| 亚洲一区中文字幕在线| 久久免费观看电影| 精品少妇一区二区三区视频日本电影 | 中文乱码字字幕精品一区二区三区| 成人毛片a级毛片在线播放| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 一边摸一边做爽爽视频免费| 免费高清在线观看视频在线观看| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 国产精品免费视频内射| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 中文天堂在线官网| a 毛片基地| 精品福利永久在线观看| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 国产黄色视频一区二区在线观看| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 日韩一本色道免费dvd| 777久久人妻少妇嫩草av网站| 国产黄色免费在线视频| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 午夜av观看不卡| 男人舔女人的私密视频| 菩萨蛮人人尽说江南好唐韦庄| 丝瓜视频免费看黄片| 亚洲av.av天堂| 在线观看一区二区三区激情| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆 | 亚洲精华国产精华液的使用体验| 人人澡人人妻人| 欧美人与善性xxx| 国精品久久久久久国模美| 午夜福利在线免费观看网站| 最近手机中文字幕大全| 亚洲国产精品一区二区三区在线| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 最近的中文字幕免费完整| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 亚洲美女黄色视频免费看| www.自偷自拍.com| 成人国产av品久久久| 大码成人一级视频| 午夜福利乱码中文字幕| 国产亚洲最大av| 人妻一区二区av| 久久 成人 亚洲| 叶爱在线成人免费视频播放| 亚洲国产色片| 精品人妻偷拍中文字幕| 三级国产精品片| 最黄视频免费看| 极品少妇高潮喷水抽搐| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 搡老乐熟女国产| 久久av网站| 免费观看性生交大片5| 国产一区二区激情短视频 | 久久影院123| 亚洲久久久国产精品| 欧美精品国产亚洲| 亚洲少妇的诱惑av| 亚洲精品乱久久久久久| 久热这里只有精品99| 制服人妻中文乱码| 黄色配什么色好看| 免费观看性生交大片5| 久久女婷五月综合色啪小说| 免费日韩欧美在线观看| 日韩一本色道免费dvd| 免费看av在线观看网站| 亚洲国产av新网站| 亚洲三级黄色毛片| av天堂久久9| 国产精品.久久久| 不卡av一区二区三区| 中文欧美无线码| 免费黄频网站在线观看国产| 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜| 中文乱码字字幕精品一区二区三区| 青草久久国产| 丁香六月天网| 国产人伦9x9x在线观看 | 久久ye,这里只有精品| 美女高潮到喷水免费观看| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 免费黄网站久久成人精品| 欧美精品国产亚洲| 99国产精品免费福利视频| 性色avwww在线观看| 亚洲av国产av综合av卡| 老熟女久久久| 丰满乱子伦码专区|