• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zirconium-mediated Synthesis and Crystal Structure of 3,6-Diiodo-4,5-dialkyl-phthalic Acid Dimethyl Ester

    2015-03-02 07:26:44LIXuDongWANGHuiLIJunQiuMENYiCanQUHongMei
    結(jié)構(gòu)化學(xué) 2015年9期

    LI Xu-Dong WANG Hui LI Jun-Qiu MEN Yi-Can QU Hong-Mei

    (Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Department of Pharmaceutical Engineering,School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China)

    1 INTRODUCTION

    Introducing different substituents efficiently to the ring to get desired benzene derivatives has become a research hotspot of organic chemistry. Poly-substituted benzene derivatives are important organic compounds which have great theoretical significance in synthetic chemistry, organic chemistry methodologies and other numerous applications[1-3]. Reppe[4,5]firstly discovered the Ni-catalyzed cyclization of ethyne affording benzene in 1948, which developed a new method to synthesize benzene derivatives.Subsequently, transition metal-mediated cyclotrimerization of alkynes had been extensively studied by Vollhardt, Schore, Yamamoto, et al[6-11].However, when unsymmetrical alkynes were used, a mixture of several benzene derivatives was obtained[12,13]. Therefore, one of the major problems for the reactions is the difficulty in region-selective intermolecular cyclotrimerization with unsymmetrical alkynes to give multi-substituted benzene derivatives[14].

    The pioneering studies on zirconocene chemistry from Takahashi, Xi and Liu et al.[15-21]groups were significant because benzene derivatives could be synthesized by intermolecular coupling of three alkynes mediated by zirconocene. Recently, we have reported the zirconocene-mediated synthesis of novel poly-substituted benzene derivatives from alkynes[22,23]. However, there are no reports on the preparation of 3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters.

    On the basis of our previous studies, a novel series of hexasubstituted benzene derivatives,3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters,were synthesized via cycloaddition of two TMS-substituted alkynes and dimethyl acetylenedicarboxylate, which was mediated by zirconocene.After diiodination, three new compounds of 3,6-diiodo-4,5-dimethyl-phthalic acid dimethyl ester(3a), 3,6-diiodo-4,5-dipropyl-phthalic acid dimethyl ester (3b) and 3,6-diiodo-4,5-dibutyl-phthalic acid dimethyl ester (3c) were obtained in high regioselectivity and yields, and their crystal structures were determined by single-crystal X-ray diffraction to confirm the configurations. By this means, specific substituents can be introduced to the benzene ring efficiently by changing the types of alkynes. Being reported as a critical raw material of oligo and polymeric phenylene ethynylene molecules(OPEs)[24], these para-diiodobenzene derivatives are widely used as molecular wires[25]and rigid scaffolds in the construction of nanometric architectures[26,27], dendrimers[28], foldamers[29]and sensors[30–32]. In addition, they can also decorate CBP derivatives applied in organic light-emitting diodes(OLEDs)[33,34].

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    All organic solvents and materials for synthesis were of reagent grade and used without further purification.1H-NMR spectra were acquired on a BRUKER AVANCE III 400MHz and13C-NMR on a 100MHz spectrometer in CDCl3solutions. X-ray diffractions were performed using a Rigaku Saturn CCD area detector diffractometer.

    2. 2 Synthesis of 3,6-diiodo-4,5-dimethyl(dipropyl,dibutyl)-phthalic acid dimethyl esters (3a, 3b, 3c)

    The title three new compounds were synthesized as shown in Scheme 1.

    Scheme 1. Synthetic procedure of 3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters

    2. 2. 1 Synthesis of 3,6-bis(trimethylsilyl)-4,5-dimethyl(dipropyl,dibutyl)-phthalic acid dimethyl esters (2a, 2b, 2c)

    The compounds 2a, 2b, and 2c were synthesized according to our previous work[35], as shown in Scheme 1. A solution of Cp2ZrCl2(365 mg, 1.25 mmol) in 10 mL of THF was cooled to -78 ℃ , and then n-BuLi (1.60 M hexane solution, 1.56 mL,2.50 mmol) was added. After stirring for 15 min,the solution was warmed to –40 ℃ for 30 min and then recooled to –78 ℃ . After 15 min, 1-trimethylsilyl-1-propyne (300 μL, 2.0 mmol) was added to the mixture, and it was warmed to room temperature. After 3 h, the solution was cooled to 0 ℃,and then CuCl (298 mg, 3.0 mmol) and DMAD(0.48 mL, 4.0 mmol) were added. The solution was warmed to room temperature and stirred for 6 h.The mixture was quenched with 3 N HCl and extracted with ethyl acetate. The combined organic phase was washed with water, saturated aqueous NaHCO3solution, and brine. The solution was dried over anhydrous Na2SO4. The solvent was evaporated, and the resulting brown viscous oil was purified by a flash chromatography (silica gel, hexane : ethyl acetate = 5:1 as eluent) to afford the title compounds 1a and 2a as colorless solids. When Dewar benzene 1a was heated in toluene at 100 ℃ for 3 h,benzene 2a was obtained in quantitative yield. So,the title compound 2a was obtained with a total isolated yield of 52%.

    2a:1H NMR (CDCl3, Me4Si) δ: 0.32 (s, 18 H),2.37 (s, 6 H), 3.80 (s, 6 H).

    Preparation of 3,6-bis(trimethylsilyl)-4,5-dipropyl-phthalic acid dimethyl ester (2b). The synthesis was carried out according to the procedure of 2a with 1-trimethylsilyl-1-pentyne (366 μL, 2.0mmol)as a starting material.

    2b: pale-yellow solid; 61% total isolated yield.1H NMR (CDCl3, Me4Si) δ: 0.31 (s, 18 H), 1.01 (t, J =7.2 Hz, 6 H), 1.34~1.44 (m, 4 H), 2.77~2.81 (m, 4 H), 3.80 (s, 6 H).

    Preparation of 3,6-bis(trimethylsilyl)-4,5-dibutylphthalic acid dimethyl ester (2c). The synthesis was carried out according to the procedure of 2a with 1-trimethylsilyl-1-hexyne (404 μL, 2.0mmol) as a starting material.

    2c: pale-yellow oil; 65% total isolated yield.1H NMR (CDCl3, Me4Si) δ: 0.31 (s, 18 H), 0.95 (t, J =7.2 Hz, 6H), 1.31~1.46(m, 8 H), 2.80~2.84 (m,4H), 3.80 (s, 6 H).

    2. 2. 2 Synthesis of 3,6-diiodo-4,5-dimethyl(dipropyl,dibutyl)-phthalic acid dimethyl ester (3a, 3b, 3c)

    A solution of 4,5-dimethyl-3,6-bis(trimethylsilyl)phthalic acid dimethyl ester (2a, 367 mg, 1 mmol) in 5 mL of CH2Cl2was cooled to 0 ℃ with stirring, and a solution of ICl in dichloromethane(2.5 mL, 2.5 mmol) was added dropwise over 10 min. The reaction was kept at 0 ℃ for 6 h. The mixture was quenched with 10w% aqueous NaOH solution, and extracted with CH2Cl2. The combined organic layer was dried over MgSO4and evaporated to dryness. The residue was purified by a flash column chromatography (silica gel, hexane:ethyl acetate = 10:1 as eluent) to afford the title compound 3a as white solid (85% isolated yield).

    3a:1H NMR (CDCl3) δ: 2.67(s, 6H), 3.91(s, 6H).

    3b: colorless solid, 89% isolated yield.1H NMR(CDCl3) δ: 1.07 (t, J = 7.5 Hz, 6 H), 1.50~1.60 (m,4 H), 2.89~2.95 (m, 4 H), 3.89 (s, 6 H);13C NMR(CDCl3) δ: 14.3, 22.9, 42.1, 53.0, 100.4, 138.2,146.1, 167.6.

    3c: white solid, 80% isolated yield.1H NMR(CDCl3) δ: 1.01(t, J = 6.4 Hz, 6H), 1.44~1.58(m,8H), 2.92~3.03(m,4H), 3.92(s, 6H).

    2. 3 X-ray crystallographic analysis

    Compounds 3a, 3b and 3c were recrystallized by hexane and ethyl acetate to give colorless single crystals suitable for X-ray analysis.

    Single crystals of the title compounds 3a(0.24mm × 0.12mm × 0.10mm), 3b (0.20mm ×0.18mm × 0.12mm) and 3c (0.26mm × 0.12mm ×0.10mm) were mounted on glass fibers in a random orientation for single crystal diffraction. The data were collected at 133(2) K on a Rigaku Saturn CCD area-detector diffractometer equipped with a graphite-monochromatic Mo-Kα (λ = 0.71073 ?)radiation by using an ω scan mode. The structure was solved by direct methods using SHELXS-97 program[36]and refined by full-matrix least-squares on F2with SHELXL-97 program[37]package. All non-hydrogen atoms were refined anisotropically,and hydrogen atoms were added according to theoretical models. For compound 3a, a total of 6953 reflections were collected in the range of 2.46≤θ≤27.83o (–10≤h≤9, –9≤k≤12, –14≤l≤14),and 3238 were independent with Rint= 0.0351, of which 2644 were observed with I > 2σ(I) and used in the succeeding refinements. The final R = 0.0229 and wR = 0.0547 (w = 1/[σ2(Fo2) + (0.0175P)2+0.0000P], where P = (Fo2+ 2Fc2)/3), S = 1.014,(Δ/σ)max= 0.001, (Δρ)max= 0.730 and (Δρ)min=–0.720 e/?3. For compound 3b, a total of 10618 reflections were collected in the range of 2.07≤θ≤30.03o (–13≤h≤13, –13≤k≤14, –15≤l≤14) by using an ω scan mode with 5339 independent ones(Rint= 0.0354), of which 3971 were observed with I > 2σ(I) and used in the succeeding refinements.The final refinement give R = 0.0428, wR = 0.1072(w = 1/[σ2(Fo2) + (0.0420P)2+ 2.8398P], where P =(Fo2+ 2Fc2)/3), S = 1.115, (Δ/σ)max= 0.004, (Δρ)max= 1.968 and (Δρ)min= –1.604 e/?3. For compound 3c, 55241 total reflections were collected in the range of 1.54≤θ≤27.88o (–34≤h≤34, –11≤k≤11, –33≤l≤33) by using an ω scan mode with 14208 independent ones (Rint= 0.0458), of which 13056 were observed with I > 2σ(I) and used in the succeeding refinements. The final refinement give R= 0.0424, wR = 0.0766 (w = 1/[σ2(Fo2) + (0.0222P)2+ 8.7030P], where P = (Fo2+ 2Fc2)/3), S = 1.154,(Δ/σ)max= 0.003, (Δρ)max= 2.429 and (Δρ)min=–2.289 e/?3.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis

    The strategy for the synthesis is shown in Scheme 1.The reaction of Cp2Zr(II) species with silylalkynes proceeds with excellent regioselectivity to afford the corresponding 2,5-disilylsubstituted zirconacyclopenta dienes as single products in high yields.Cycloaddition reaction of the 2,5-disilylzirconacyclopentadiene with an internal alkyne can afford para-disilylbenzene. Our group had reported the synthesis of a series of 1,2,4,5-tetrasubstituted benzenes by the removal of introduced silyl groups[22]. Herein, the 3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters were obtained by further iodination. Iodine, N-iodosuccinimide and iodine monochloride were demonstrated in this iodination process. When N-iodosuccinimide was used, no reaction occurred. Specially, the reaction proceeds as Scheme 2 when iodine was treated as iodination reagent. A desilylation product was got in 25%NMR yield. It suggests that iodine electric polarization is not strong enough for this iodination reaction. Consequently, when iodine monochloride was employed, the reaction proceeds almost completely with more than 80% isolated yield.

    Scheme 2. Iodination of para-disilylbenzene by iodine

    3. 2 X-ray crystallographic analysis

    The crystal structures of the three compounds were determined and studied. The crystals of the new three compounds are colorless and stable in air at room temperature. Fig. 2 depicts the molecular structures of the title three compounds.

    The 3,6-diiodo-4,5-dimethyl-phthalic acid dimethyl ester (3a) crystallizes in the triclinic P1 space group. The 3,6-diiodo-4,5-dipropyl-phthalic acid dimethyl ester (3b) crystallizes in the triclinic Pspace group. And the 3,6-diiodo-4,5-dibutyl-phthalic acid dimethyl ester (3c) crystallizes in the monoclinic P21/c space group.

    Selected bond lengths and bond angles for the compound are given in Tables 1~3 and Fig. 2.

    Fig 1. 1H NMR and 13C NMR of the three title compounds

    Fig. 2. Crystal structures of the title three compounds

    For the three title compounds, the bond lengths of C–I were 2.100(3) and 2.108(3) ? for 3a, 2.107(5)and 2.112(5) ? for 3b, and 2.106(4) and 2.110(4) ? for 3c, which are slightly longer than those in 2,5-dibenzoyl-1,4-diiodobenzene (2.091(9) and 2.099(9) ?)[38]. The lengths of C–I and C–O bonds of one of the three compounds agree with the corresponding values in the other two molecules. It seems that the bond lengths are influenced by the steric hindrance of substituents on the benzene ring.

    In the benzene ring of compound 3a, the internal angles at the two carbon atoms differ by 2.7°(C(1)–C(2)–C(3) = 118.9(3)° and C(6)–C(1)–C(2) =121.6(3)°), 0.6° (C(1)–C(2)–C(3) = 118.9(3)° and C(1)–C(6)–C(5) = 119.5(3)°) and 2.1° (C(6)–C(1)–C(2) = 121.6(3)° and C(1)–C(6)–C(5) =119.5(3)°). In the benzene ring of compound 3b, the internal angles at the two carbon atoms differ by 2.3° (C(7)–C(6)–C(5) = 119.1(4)° and C(8)–C(7)–C(6) = 121.4(4)°), 0.7° (C(3)–C(8)–C(7) = 120.7(4)°and C(8)–C(7)–C(6) = 121.4(4)°) and 1.6°(C(7)–C(6)–C(5) = 119.1(4)° and C(3)–C(8)–C(7) =120.7(4)°). In the benzene ring of compound 3c, the internal angles at the two carbon atoms differ by 4.2° (C(1)–C(6)–C(5) = 122.0(4)° and C(6)–C(5)–C(4) = 117.8(4)°), 2.0° (C(6)–C(1)–C(2) = 119.8(3)°and C(6)–C(5)–C(4) = 117.8(4)°) and 2.2°(C(1)–C(6)–C(5) = 122.0(4)° and C(6)–C(1)–C(2) =119.8(4)°), which are expected for their different types.

    Intermolecular hydrogen bonding is important supramolecular force to link the layers into a 3D supramolecular structure. Non-classical hydrogenbond parameters and symmetry codes for different interactions are given in Table 4 and Fig. 3. In compound 3a, non-classical hydrogen bonding interactions linked by atom C(8) in the molecule at(x, y, z) serve as a hydrogen-bond donor via H(8B),to atom O(2) in the molecule at (–x, –y, 2–z ).Similarly, atom C(11) at (x, y, z) acts as a hydrogen donor via H(11C), to atom O(1) at (1–x, –y, 1–z ).In compound 3b, atom C(10) at (x, y, z) serves as a hydrogen-bond donor via H(10B), to atom O(2) in the molecule at (–x, 1–y, 1–z ). Atom C(13) at (x, y,z) serves as a hydrogen-bond donor via H(13B), to atom O(2) in the molecule at (1–x, 2–y, 2–z ). In compound 3c, atom C(53) at (x, y, z) acts as a hydrogen-bond donor via H(53C), to atom O(1) in the molecule at (x, 1/2–y, –1/2+z).

    Fig. 3. Packing diagram of the title compounds, showing the hydrogen bonds (dashed lines)

    In addition, in the crystal structure, the neighboring layers are linked by non-classical intermolecular C–H…O hydrogen bonds of ester oxygen atoms with C…O distances of 3.512(4) and 3.320(4)? for compound 3a, 3.224(10) and 3.497(9) ? for compound 3b, and 3.328(6) ? for compound 3c,respectively (Table 4). However, their contribution to the overall lattice energy must be very small. Thus the intermolecular hydrogen bonding plays an important role in stabilizing the structure.

    4 CONCLUSION

    In conclusion, we provide a method for the preparation of para-diiodobenzene derivatives via cycloaddition of two TMS-substituted alkynes and dimethyl acetylenedicarboxylate with zirconocene and sequentially diiodination in high regionselectivity and yields. Crystal structures were determined and analyzed by single-crystal X-ray diffraction. In addition, these novel compounds can be derived to give a series of compounds which are used as molecular wires, foldamers, sensors and luminescent materials.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Compound (3a)

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compound (3b)

    Angle (°) Angle (°)C(2)–O(1)–C(1) 115.1(4) C(7)–C(6)–C(11) 119.5(4)C(3)–C(4)–I(1) 117.1(3) C(7)–C(8)–C(9) 121.7(4)C(3)–C(8)–C(7) 120.7(4) C(8)–C(3)–C(2) 117.9(4)C(3)–C(8)–C(9) 117.5(4) C(8)–C(3)–C(4) 118.1(4)C(4)–C(3)–C(2) 123.9(4) C(8)–C(7)–C(6) 121.4(4)C(4)–C(5)–C(6) 118.2(4) C(8)–C(7)–I(2) 117.5(3)C(4)–C(5)–C(14) 120.9(4) C(9)–O(4)–C(10) 115.1(5)C(5)–C(4)–C(3) 122.4(4) C(13)–C(12)–C(11) 111.1(5)C(5)–C(4)–I(1) 120.2(3) C(16)–C(15)–C(14) 111.4(5)C(5)–C(6)–C(11) 121.4(4) O(1)–C(2)–C(3) 111.4(4)C(5)–C(14)–C(15) 114.8(4) O(2)–C(2)–O(1) 124.4(5)C(6)–C(5)–C(14) 120.8(4) O(2)–C(2)–C(3) 124.2(5)C(6)–C(7)–I(2) 121.0(3) O(3)–C(9)–O(4) 124.7(5)C(6)–C(11)–C(12) 114.4(4) O(3)–C(9)–C(8) 124.2(5)C(7)–C(6)–C(5) 119.1(4) O(4)–C(9)–C(8) 111.0(4)

    Table 3. Selected Bond Lengths (?) and Bond Angles (°) for Compound (3c)

    Table 4. Non-classical Hydrogen Bond Geometries (?, °) for Compounds 3a, 3b and 3c

    Symmetry codes: (i) –x, –y, 2–z; (ii) 1–x, –y, 1–z; (iii) –x, 1–y, 1–z; (iV) 1–x, 2–y, 2–z; (V) x, 1/2–y, –1/2+z

    (1) Batool, T.; Rasool, N.; Gull, Y.; Noreen, M.; Nasim, F. H.; Yaqoob, A.; Zubair, M.; Rana, U. A.; Khan, S. U. U.; Jaafar, H. Z. E. A convenient method for the synthesis of (prop-2-ynyloxy)benzene derivatives via reaction with propargyl bromide, their optimization, scope and biological Evaluation.PLoS ONE 2014, 9, 12–19.

    (2) Cai, S. Q.; Ye, J.; Xu, F.; Li, C.; Yang, H.; Wan, D.; Gao, X. L. Application of benzene derivatives in preparation of analgesic and anti-inflammatory agents. Faming Zhuanli Shenqing 2014, CN 104116723A.

    (3) Kim, H. M.; Seo, M. S.; Jeon, S. J.; Cho, B. R. Two-photon absorption properties of hexa-substituted benzene derivatives. Comparison between dipolar and octupolar molecules. Chem. Commun. 2009, 7422–7424.

    (4) Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Cyclizing polymerization of acetylene. I. Cyclo-octatetraene. Justus Liebigs Ann. Chem. 1948, 560,1–92.

    (5) Reppe, W.; Schweckendiek, W. J. Cyclisierende polymerisation von acetylen III benzol, benzolderivate und hydroaromatische verbindungen. Justus Liebigs Ann. Chem. 1948, 560, 104–116.

    (6) Vollhardt, K.; Peter, C. Transition-metal-catalyzed acetylene cyclizations in organic synthesis. Acc. Chem. Res. 1977, 10, 1–8.

    (7) Vollhardt, K.; Peter, C. Cobalt-mediated [2 + 2+ 2]-cyclo-additions: a maturing synthetic strategy. Angew. Chem. Int. Ed. Engl. 1984, 23, 539–556.

    (8) Schore, N. E. Transition-metal-mediated cyclo-addition reactions of alkynes in organic synthesis. Chem. Rev. 1988, 88, 1081–1119.

    (9) Schore, N. E.; Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis. Pergamon Press: Oxford 1991, 5, 1129–1162.

    (10) Saito, S.; Yamamoto, Y. Recent advances in the transition-metal-catalyzed region-selective approaches to poly-substituted benzene derivatives.Chem. Rev. 2000, 100, 2901–2915.

    (11) Yamamoto, Y. Recent advances in intra-molecular alkyne cyclotrimerization and its applications. Curr. Org. Chem. 2005, 9, 503–519.

    (12) Sauer, J. C.; Cairns, T. L. A mechanism study of the 2,4,6-heptatrienenitrile synthesis from acrylonitrile and acetylene. J. Am. Chem. Soc. 1957, 79,2659–2660.

    (13) Donda, A. F.; Moretti, G. Aromatization reactions of acetylenic hydrocarbons in the presence of the (Ph3P)2NiCl2-NaBH4catalyst. J. Org. Chem.1966, 31, 985–987.

    (14) Wakatsuki, Y.; Kuramitsu, T.; Yamazaki, H. Cobaltacyclopentadiene complexes as starting materials in the synthesis of substituted benzenes,cyclohexadienes, thiophenes, selenophenes and pyrroles. Tetrahedron Lett. 1974, 4549–4552. Perduon Press. Printed in Great Britain.

    (15) Takahashi, T.; Xi, Z. F.; Yamazak, A.; Liu, Y. H.; Nakajima, K.; Kotore, M. Cycloaddition reaction of zirconacyclopentadienes to alkynes: highly selective formation of benzene derivatives from three different alkynes. J. Am. Chem. Soc. 1998, 120, 1672–1680.

    (16) Takahashi, T.; Li, Y. Z. Titanium and zirconium in organic synthesis. I. Marek eds., Wiley-VCH, Weinheim 2002, 50–85.

    (17) Xi, Z. F.; Zhang, W. X. Synthetic methods for multiply substituted butadiene-containing building blocks. Synlett. 2008, 17, 2557–2570.

    (18) Xi, Z. F.; Li, Z. P. Construction of carbocycles via zirconacycles and titanacycles. Topics in Organometallic Chem. 2005, 8, 27–56.

    (19) Chen, C.; Xi, C. J.; Jiang, Y. F.; Hong, X. Y. 1,1-Cycloaddition of oxalyl dichloride with ialkenylmetal compounds: formation of cyclopentadienone derivatives by the reaction of 1,4-dilithio-1,3-dienes or zirconacyclopentadienes with oxalyl chloride in the presence of CuCl. J. Am. Chem. Soc.2005, 127, 8024–8025.

    (20) Liu, Y. H.; Gao, H. J.; Zhou, L. S. Highly stereoselective synthesis of TMS-, alkyl-, or aryl-substituted cis-[3]cumulenols via α-alkynylated zirconacyclopentenes. Angew. Chem. Int. Ed. 2006, 45, 4163–4167.

    (21) Xi, Z. F.; Takahashi, T. Strategy for selective one-pot aromatization of three different alkynes by organometallic compounds. Acta Chimica Sinica 2000, 58, 1177–1185.

    (22) Li, S.; Qu, H. M.; Zhou, L. S.; Kamo, K.; Guo, Q. X.; Shen, B, J.; Takahashi, T. Zircomium-mediated selective synthesis of 1,2,4,5-tetrasubstituted benzenes from two sily-substituted alkynes and one internal alkyne. Organic Letters 2009, 11, 3318–3321.

    (23) Zhang, J.; Qu, H. M.; Zhang, Z. Y.; Zhou, L. S. Diethyl 4,5-diphenyl-3,6-bis(trimethylsilyl)benzene-1,2-dicarboxylate. Acta Cryst. 2011, E67,o1864.

    (24) Zhou, C. Z.; Liu, T. X.; Xu, J. M.; Chen, Z. K. Synthesis, characterization, and physical properties of monodisperse oligo(p-phenyleneethynylene)s.Macromolecules 2003, 36, 1457–1464

    (25) Tour, J. M. Molecular electronics. synthesis and testing of components. Acc. Chem. Res. 2000, 33, 791–804.

    (26) Mayor, M.; Didschies, C. A giant conjugated molecular ring. Angew. Chem., Int. Ed. 2003, 42, 3176–3179.

    (27) Lehmann, M.; Levin, J. Rigid phenylene ethynylene units linked by a V-shaped centre. an approach to biaxial nematogens. Mol. Cryst. Liq. Cryst.2004, 411, 1315–1323.

    (28) Beinhoff, M.; Karakaya, B.; Schluter, A. D. Synthesis of low generation phenylenealkylene dendrons as nonpolar building blocks for a dendrimer construction set. Synthesis 2003, 79–90.

    (29) Ray, C. R.; Moore, J. S. Supramolecular organization of foldable phenylene ethynylene oligomers. Adv. Polym. Sci. 2005, 177, 91–149.

    (30) Bunz, U. H. F. Synthesis and structure of PAEs. Adv. Polym. Sci. 2005, 177, 1–52.

    (31) Hill, E. H.; Zhang, Y.; Evans, D. G.; Whitten, D. G. Enzyme-specific sensors via aggregation of charged p-phenylene ethynylenes. ACS Applied Materials & Interfaces (2015), Ahead of Print.

    (32) Hill, E. H.; Zhang, Y.; Whitten, D. G. Aggregation of cationic p-phenylene ethynylenes on laponite clay in aqueous dispersions and solid films. J.Colloid Interface Sci. (2014), http://dx.doi.org/10.1016/j.jcis.2014.12.006.

    (33) Wang, Y.; Wang, D. X.; Xu, C. H.; Wang, R.; Han, J. J. Click polymerization: synthesis of novel σ-π conjugated organosilicon polymers. Journal of Organometallic Chemistry 2011, 696, 3000–3005.

    (34) Deng, L. J.; Wang, X. Z.; Zhang, Z. C.; Li, J. Y. Durene-decorated CBP derivatives as phosphorescent hosts and exciton-blocking materials for efficient blue OLEDs. J. Mater. Chem. 2012, 22, 19700–19708.

    (35) Li, S.; Qu, H.; Zhou, L.; Kanno, K. I.; Guo, Q.; Shen, B.; Takahashi, T. Zirconium-mediated selective synthesis of 1,2,4,5-tetrasubstituted benzenes,from two silyl-substituted alkynes and one internal alkyne. Org. Lett. 2009, 11, 3318–3321.

    (36) Sheldrick, G. M. S HELXS-97, Program for Crystal Structure Solution. University of G?ttingen, Germany 1997.

    (37) Sheldrick , G. M. SHELXL-97, Program for Crystal Structure Refinement. university of G?ttingen, Germany 1997

    (38) Xiao, Q.; Liu, R.; Chen, H. B.; Chang, J.; Zhu, H. J. Synthesis and crystal structure of 2,5-dibenzoyl-1,4diiodobenzene. JOURNAL OF NAN JING UNIVERSITY OF TECHNOLOGY (NaturalScience Edition) 2010, 32, 81–85.

    免费观看a级毛片全部| 777米奇影视久久| 十分钟在线观看高清视频www| 精品久久蜜臀av无| 制服人妻中文乱码| av在线播放精品| 国产成人a∨麻豆精品| 一本大道久久a久久精品| 91字幕亚洲| 午夜影院在线不卡| 天天添夜夜摸| 夜夜夜夜夜久久久久| 啦啦啦在线免费观看视频4| 一区二区三区激情视频| 人人妻人人爽人人添夜夜欢视频| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| 亚洲一区中文字幕在线| 成年动漫av网址| 少妇裸体淫交视频免费看高清 | 青春草亚洲视频在线观看| 久久久久网色| 精品国产一区二区三区四区第35| 高清视频免费观看一区二区| 黄片大片在线免费观看| 淫妇啪啪啪对白视频 | 性色av乱码一区二区三区2| 精品久久久久久电影网| 国产免费一区二区三区四区乱码| 欧美日本中文国产一区发布| 欧美xxⅹ黑人| 久久久久久亚洲精品国产蜜桃av| 一区二区三区乱码不卡18| 老司机在亚洲福利影院| 亚洲视频免费观看视频| 久久九九热精品免费| 亚洲精品国产色婷婷电影| 老熟妇乱子伦视频在线观看 | 99热国产这里只有精品6| 我的亚洲天堂| 婷婷色av中文字幕| 国产一区二区激情短视频 | 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 成人国产av品久久久| 日韩 亚洲 欧美在线| 啦啦啦免费观看视频1| 狠狠婷婷综合久久久久久88av| 精品一区二区三区四区五区乱码| 一本大道久久a久久精品| av在线app专区| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 午夜福利影视在线免费观看| 精品亚洲成国产av| 日韩欧美免费精品| 免费久久久久久久精品成人欧美视频| 黑人巨大精品欧美一区二区mp4| 午夜免费观看性视频| 伊人亚洲综合成人网| 美女扒开内裤让男人捅视频| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 国产av又大| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩亚洲高清精品| 久久精品人人爽人人爽视色| 成年女人毛片免费观看观看9 | 18禁裸乳无遮挡动漫免费视频| 女人爽到高潮嗷嗷叫在线视频| 精品人妻一区二区三区麻豆| 亚洲av日韩在线播放| 成人三级做爰电影| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 国产欧美日韩一区二区精品| 国产免费一区二区三区四区乱码| 精品视频人人做人人爽| 桃红色精品国产亚洲av| 黄色毛片三级朝国网站| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区二区三区在线| 夫妻午夜视频| 亚洲三区欧美一区| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 91精品伊人久久大香线蕉| 嫩草影视91久久| 黑丝袜美女国产一区| 日本撒尿小便嘘嘘汇集6| 精品少妇内射三级| 国产野战对白在线观看| 大陆偷拍与自拍| 女人精品久久久久毛片| 老司机在亚洲福利影院| 在线精品无人区一区二区三| 国产区一区二久久| 欧美性长视频在线观看| 巨乳人妻的诱惑在线观看| 99国产精品一区二区蜜桃av | 两人在一起打扑克的视频| 天天躁日日躁夜夜躁夜夜| 午夜福利视频在线观看免费| 亚洲av日韩在线播放| 亚洲欧洲日产国产| 国产成人欧美| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 老司机深夜福利视频在线观看 | 黄色怎么调成土黄色| 中文字幕制服av| 久久精品人人爽人人爽视色| 欧美一级毛片孕妇| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲第一欧美日韩一区二区三区 | 欧美日韩黄片免| 捣出白浆h1v1| 日韩制服骚丝袜av| 国产精品久久久久成人av| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 男女国产视频网站| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜制服| 日本猛色少妇xxxxx猛交久久| 欧美精品亚洲一区二区| 91精品三级在线观看| 午夜精品久久久久久毛片777| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 永久免费av网站大全| 精品一区在线观看国产| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 精品久久久久久电影网| 久久国产精品影院| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av| 中文欧美无线码| 亚洲精品av麻豆狂野| 91字幕亚洲| 男女之事视频高清在线观看| 久久ye,这里只有精品| 蜜桃国产av成人99| 丝袜美腿诱惑在线| av一本久久久久| 超碰97精品在线观看| 久久久国产精品麻豆| 一本—道久久a久久精品蜜桃钙片| 老司机在亚洲福利影院| 国产精品九九99| 夜夜夜夜夜久久久久| 午夜激情av网站| 十八禁网站免费在线| 三级毛片av免费| 我要看黄色一级片免费的| 欧美黑人精品巨大| 三级毛片av免费| 一本大道久久a久久精品| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲精品日韩在线中文字幕| 中文字幕av电影在线播放| 在线观看人妻少妇| 久久精品成人免费网站| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 久久女婷五月综合色啪小说| 国产亚洲午夜精品一区二区久久| 不卡一级毛片| 亚洲欧美精品自产自拍| 9色porny在线观看| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 亚洲成人手机| 他把我摸到了高潮在线观看 | 日本av手机在线免费观看| 亚洲av成人不卡在线观看播放网 | 另类精品久久| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 每晚都被弄得嗷嗷叫到高潮| 男女免费视频国产| 丰满迷人的少妇在线观看| 丝瓜视频免费看黄片| 满18在线观看网站| 精品国产乱子伦一区二区三区 | 成人影院久久| 无遮挡黄片免费观看| 欧美日韩成人在线一区二区| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av电影在线进入| 国产激情久久老熟女| 每晚都被弄得嗷嗷叫到高潮| 亚洲av欧美aⅴ国产| 日日夜夜操网爽| 国产xxxxx性猛交| 久久性视频一级片| 欧美精品啪啪一区二区三区 | 亚洲国产中文字幕在线视频| 亚洲全国av大片| 中文字幕另类日韩欧美亚洲嫩草| 青青草视频在线视频观看| 久久久国产欧美日韩av| 91国产中文字幕| 搡老熟女国产l中国老女人| 精品一区二区三卡| 国产成人精品久久二区二区91| av福利片在线| 女性被躁到高潮视频| 精品视频人人做人人爽| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 亚洲国产欧美日韩在线播放| 一二三四社区在线视频社区8| 亚洲色图 男人天堂 中文字幕| 黄色毛片三级朝国网站| av线在线观看网站| 最近中文字幕2019免费版| 少妇的丰满在线观看| 五月天丁香电影| 精品人妻在线不人妻| 欧美精品一区二区免费开放| 啦啦啦在线免费观看视频4| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 别揉我奶头~嗯~啊~动态视频 | 亚洲伊人色综图| 久久国产精品大桥未久av| 在线av久久热| 手机成人av网站| kizo精华| 一级,二级,三级黄色视频| av天堂久久9| 91字幕亚洲| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 久久av网站| 日本撒尿小便嘘嘘汇集6| 精品福利观看| 亚洲第一青青草原| 亚洲激情五月婷婷啪啪| 青春草亚洲视频在线观看| 18禁观看日本| 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 亚洲va日本ⅴa欧美va伊人久久 | 男女下面插进去视频免费观看| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 99久久人妻综合| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 美国免费a级毛片| 在线观看人妻少妇| 国产免费福利视频在线观看| 中文精品一卡2卡3卡4更新| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 91老司机精品| 国产av一区二区精品久久| 成人国产av品久久久| 日韩视频在线欧美| 狂野欧美激情性xxxx| 天天躁夜夜躁狠狠躁躁| 两性夫妻黄色片| a 毛片基地| 国产av精品麻豆| 久久青草综合色| 人妻 亚洲 视频| 十分钟在线观看高清视频www| 女人被躁到高潮嗷嗷叫费观| tocl精华| 另类精品久久| 中文欧美无线码| 国产精品99久久99久久久不卡| 一个人免费在线观看的高清视频 | 日韩欧美一区视频在线观看| 777米奇影视久久| 亚洲精品一区蜜桃| 日韩有码中文字幕| 飞空精品影院首页| 免费观看a级毛片全部| 秋霞在线观看毛片| 久久精品成人免费网站| 亚洲专区国产一区二区| 免费观看av网站的网址| 国产在视频线精品| 久久中文字幕一级| 日本av手机在线免费观看| 国产野战对白在线观看| 久久久久久久大尺度免费视频| 男人舔女人的私密视频| 欧美午夜高清在线| 久久国产精品影院| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 亚洲av成人不卡在线观看播放网 | 男女高潮啪啪啪动态图| 99热全是精品| 日本精品一区二区三区蜜桃| 这个男人来自地球电影免费观看| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 亚洲性夜色夜夜综合| 桃花免费在线播放| 手机成人av网站| 99精品欧美一区二区三区四区| 久久这里只有精品19| av电影中文网址| 一区二区日韩欧美中文字幕| 欧美亚洲 丝袜 人妻 在线| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 亚洲精华国产精华精| 黄色怎么调成土黄色| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 国精品久久久久久国模美| 免费在线观看完整版高清| 亚洲精品国产色婷婷电影| 国产主播在线观看一区二区| 法律面前人人平等表现在哪些方面 | 中国美女看黄片| 亚洲一区中文字幕在线| 美女大奶头黄色视频| 热99国产精品久久久久久7| 天天添夜夜摸| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精| 精品久久久久久电影网| 99国产精品99久久久久| 午夜福利乱码中文字幕| 18禁黄网站禁片午夜丰满| 日韩 亚洲 欧美在线| 久久久国产精品麻豆| 法律面前人人平等表现在哪些方面 | 午夜福利,免费看| 国产97色在线日韩免费| 亚洲精品成人av观看孕妇| 久久中文字幕一级| 亚洲情色 制服丝袜| 黄网站色视频无遮挡免费观看| 亚洲久久久国产精品| 国产国语露脸激情在线看| 丝袜脚勾引网站| 美女中出高潮动态图| 日韩大码丰满熟妇| 欧美久久黑人一区二区| 亚洲成人手机| 国产xxxxx性猛交| 丝袜人妻中文字幕| 日日爽夜夜爽网站| 欧美在线黄色| 久久香蕉激情| 色婷婷久久久亚洲欧美| tube8黄色片| 亚洲国产欧美一区二区综合| 两个人看的免费小视频| 亚洲精品一区蜜桃| 精品福利永久在线观看| 高潮久久久久久久久久久不卡| 少妇粗大呻吟视频| 日本a在线网址| 成人影院久久| 十八禁高潮呻吟视频| 1024视频免费在线观看| 91老司机精品| 女人高潮潮喷娇喘18禁视频| 亚洲av欧美aⅴ国产| 青春草亚洲视频在线观看| 亚洲精品一区蜜桃| 日韩大码丰满熟妇| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 亚洲三区欧美一区| 欧美人与性动交α欧美精品济南到| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| 久久性视频一级片| 三上悠亚av全集在线观看| 中文字幕人妻熟女乱码| 嫩草影视91久久| 少妇人妻久久综合中文| 搡老岳熟女国产| 高清av免费在线| 青春草视频在线免费观看| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| 欧美变态另类bdsm刘玥| 国产成人av激情在线播放| 欧美日本中文国产一区发布| 色播在线永久视频| 国产免费福利视频在线观看| 国产精品1区2区在线观看. | 人妻 亚洲 视频| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 午夜日韩欧美国产| 免费观看av网站的网址| 国产精品一区二区精品视频观看| 成人手机av| 中文字幕制服av| 日韩制服骚丝袜av| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 国产一区二区三区综合在线观看| 精品高清国产在线一区| 久久人妻熟女aⅴ| 亚洲国产精品成人久久小说| 欧美日韩成人在线一区二区| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 在线观看一区二区三区激情| √禁漫天堂资源中文www| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 免费观看人在逋| 亚洲国产精品成人久久小说| 国产精品偷伦视频观看了| 黄色 视频免费看| 久久久精品国产亚洲av高清涩受| 好男人电影高清在线观看| tocl精华| 亚洲专区国产一区二区| 丝袜美腿诱惑在线| svipshipincom国产片| 精品人妻1区二区| 麻豆国产av国片精品| 国产精品国产三级国产专区5o| 我要看黄色一级片免费的| 天天影视国产精品| 99热国产这里只有精品6| 韩国高清视频一区二区三区| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 久久99热这里只频精品6学生| 另类亚洲欧美激情| 欧美一级毛片孕妇| 丁香六月天网| 日本wwww免费看| 午夜视频精品福利| 欧美精品一区二区免费开放| 亚洲欧美日韩另类电影网站| 桃红色精品国产亚洲av| 91字幕亚洲| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av香蕉五月 | 国产免费视频播放在线视频| 免费女性裸体啪啪无遮挡网站| 美国免费a级毛片| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 午夜福利乱码中文字幕| 日本撒尿小便嘘嘘汇集6| 女人被躁到高潮嗷嗷叫费观| 欧美成狂野欧美在线观看| 久久人人爽人人片av| 这个男人来自地球电影免费观看| 一二三四在线观看免费中文在| 男女之事视频高清在线观看| 人妻人人澡人人爽人人| 岛国毛片在线播放| 成人影院久久| 成年动漫av网址| 日韩中文字幕视频在线看片| 99国产极品粉嫩在线观看| bbb黄色大片| 国产高清视频在线播放一区 | 麻豆乱淫一区二区| av网站免费在线观看视频| 岛国在线观看网站| 国产伦人伦偷精品视频| 在线观看舔阴道视频| 五月开心婷婷网| 国精品久久久久久国模美| 啦啦啦 在线观看视频| 黄色怎么调成土黄色| 中文字幕人妻丝袜一区二区| 精品第一国产精品| 精品人妻在线不人妻| 精品一区在线观看国产| 国产精品九九99| 热99国产精品久久久久久7| 中国美女看黄片| 欧美 日韩 精品 国产| 制服诱惑二区| 免费在线观看视频国产中文字幕亚洲 | 法律面前人人平等表现在哪些方面 | 99精品欧美一区二区三区四区| 夫妻午夜视频| 美女中出高潮动态图| 一本色道久久久久久精品综合| 新久久久久国产一级毛片| 99热国产这里只有精品6| 日韩欧美国产一区二区入口| 亚洲国产av影院在线观看| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 涩涩av久久男人的天堂| 成人国产av品久久久| 欧美 日韩 精品 国产| 久久香蕉激情| 欧美+亚洲+日韩+国产| 亚洲伊人久久精品综合| 亚洲精品一区蜜桃| 99久久精品国产亚洲精品| 在线观看人妻少妇| 精品欧美一区二区三区在线| 精品国产一区二区三区四区第35| 亚洲avbb在线观看| 80岁老熟妇乱子伦牲交| 搡老乐熟女国产| 99精品欧美一区二区三区四区| 搡老熟女国产l中国老女人| 18在线观看网站| 亚洲精品一区蜜桃| 搡老乐熟女国产| 黑丝袜美女国产一区| 亚洲精品成人av观看孕妇| 极品人妻少妇av视频| 他把我摸到了高潮在线观看 | 嫩草影视91久久| av网站在线播放免费| 午夜福利,免费看| netflix在线观看网站| 免费看十八禁软件| 精品人妻1区二区| 久久ye,这里只有精品| 99精国产麻豆久久婷婷| 韩国高清视频一区二区三区| 在线av久久热| 亚洲精品美女久久久久99蜜臀| 国产精品熟女久久久久浪| 久9热在线精品视频| 精品亚洲成a人片在线观看| 丰满迷人的少妇在线观看| 久久人妻福利社区极品人妻图片| 日韩一区二区三区影片| 亚洲成国产人片在线观看| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区 | 亚洲中文字幕日韩| 夜夜夜夜夜久久久久| 人妻一区二区av| 99国产精品一区二区三区| 免费观看a级毛片全部| 精品一区二区三卡| 国产免费视频播放在线视频| 久久天躁狠狠躁夜夜2o2o| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 国内毛片毛片毛片毛片毛片| 国产亚洲一区二区精品| 欧美一级毛片孕妇| 女人久久www免费人成看片| 久热爱精品视频在线9| 免费不卡黄色视频| 中文字幕人妻丝袜一区二区| 色老头精品视频在线观看| 99久久国产精品久久久| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲 | 岛国在线观看网站| 18禁黄网站禁片午夜丰满| 久久久欧美国产精品| 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 美女中出高潮动态图| 热re99久久国产66热| 超色免费av| 欧美在线黄色| 热re99久久国产66热| 亚洲五月婷婷丁香| 午夜福利视频在线观看免费| 国产激情久久老熟女| 一本一本久久a久久精品综合妖精| 免费在线观看日本一区| 亚洲成av片中文字幕在线观看| 一区二区三区四区激情视频| 国产亚洲欧美在线一区二区| 色播在线永久视频| 人成视频在线观看免费观看| 一边摸一边做爽爽视频免费| 国产97色在线日韩免费| 亚洲精品美女久久av网站| 免费日韩欧美在线观看| 黄色片一级片一级黄色片| 热99久久久久精品小说推荐| 国产精品久久久久成人av| 亚洲人成电影免费在线| 91麻豆精品激情在线观看国产 | 亚洲精品日韩在线中文字幕| 少妇精品久久久久久久| 精品少妇久久久久久888优播| 一级片免费观看大全| 在线观看人妻少妇| 啦啦啦视频在线资源免费观看| 亚洲精品久久久久久婷婷小说| 免费少妇av软件| 色播在线永久视频| 国产av又大|