黃秀麗綜述,孫永東審校
(四川醫(yī)科大學(xué)附屬中醫(yī)醫(yī)院耳鼻咽喉科,四川瀘州646000)
中耳普通炎性疾病相關(guān)致病基因研究進(jìn)展
黃秀麗綜述,孫永東審校
(四川醫(yī)科大學(xué)附屬中醫(yī)醫(yī)院耳鼻咽喉科,四川瀘州646000)
中耳; 中耳炎; 基因; 黏蛋白類(lèi); 炎癥趨化因子類(lèi); 綜述
中耳普通炎性疾病包括分泌性中耳炎、急(慢)性化膿性中耳炎、隱性中耳炎、粘連性中耳炎等[1],是一類(lèi)由多因素導(dǎo)致的中耳黏膜炎性疾病,屬于耳鼻咽喉科的一類(lèi)常見(jiàn)病和多發(fā)病,病情反復(fù)發(fā)作,難以治愈。目前,有研究顯示這類(lèi)疾病的病因主要包括咽鼓管功能不良、感染、免疫反應(yīng)等方面[2],但其發(fā)病機(jī)制還不完全明確,隨著基因研究技術(shù)的不斷加強(qiáng),疾病發(fā)病機(jī)制的基因?qū)W研究已成為熱點(diǎn),本文就近年來(lái)國(guó)內(nèi)外對(duì)中耳普通炎性疾病相關(guān)基因方面的研究綜述如下。
研究發(fā)現(xiàn),SLC25A21[3]、MCPH1[4]、Sh3pxd2b[5-6]、Lmna[7]、Phex[8]、Fbxo11[9]等基因突變均可導(dǎo)致老鼠顱面畸形,中耳及咽鼓管發(fā)育不良,出現(xiàn)中耳黏膜增厚、黏膜上皮細(xì)胞纖毛減少、炎癥細(xì)胞滲透、中耳積液等。由于基因突變的機(jī)制不同,在導(dǎo)致解剖結(jié)構(gòu)異常的同時(shí),也發(fā)生其他的異常改變。例如,小鼠線(xiàn)粒體載體編碼基因SLC25A21[3]突變,導(dǎo)致鄰近基因Pax9表達(dá)下調(diào),使鼓膜環(huán)減小,中耳黏膜增厚、黏液黏度升高,并影響耳蝸功能;Lmna基因[7]突變導(dǎo)致腹腔巨噬細(xì)胞缺陷,細(xì)胞因子核因子κB(nuclear factor kappa B,NF-κB)、腫瘤壞死因子-α(tumor necrosis factor,TNF-α)、轉(zhuǎn)化生長(zhǎng)因子 β(transforming growth factor β,TGF-β)表達(dá)失調(diào),血清鈣、磷異常,影響中耳黏膜細(xì)胞增殖、分化,以及黏膜細(xì)胞之間的轉(zhuǎn)化和代謝功能;Phex基因[8]突變使Phex蛋白C端功能異常,并激活PHEX-fibroblast growth factor 23(FGF23)信號(hào)通路、TNF等細(xì)胞因子表達(dá)增加,血管通透性增強(qiáng),直接刺激中性粒細(xì)胞進(jìn)入中耳腔,擴(kuò)大炎性反應(yīng),同時(shí)又能加強(qiáng)離子轉(zhuǎn)運(yùn),減少中耳黏膜纖毛的運(yùn)動(dòng)阻力,控制炎癥發(fā)展;Fbxo11基因[9]突變影響TGF-β信號(hào)通路表達(dá),使老鼠在無(wú)菌條件下發(fā)生慢性中耳炎積液。
有研究發(fā)現(xiàn),Hsp70和DNAI2(dynein axonemal intermediate chain 2)等結(jié)構(gòu)編碼基因和功能蛋白突變可導(dǎo)致編碼纖毛運(yùn)動(dòng)的動(dòng)力蛋白臂的預(yù)裝配蛋白DNAAF3(dynein axonemal assembly factor 3)缺陷,改變細(xì)胞ATP、核苷酸、磷酸鹽濃度,導(dǎo)致原發(fā)性纖毛運(yùn)動(dòng)障礙(primary ciliary dyskinesia,PCD)、中耳炎積液[10]; Noben-Trauth等[11]研究報(bào)道,RPL38基因缺乏可導(dǎo)致咽鼓管功能障礙、結(jié)締組織異常礦化,成纖維細(xì)胞肥厚,膽固醇晶體異位沉積在中耳腔、咽鼓管,誘導(dǎo)炎性反應(yīng),使咽鼓管黏膜出現(xiàn)擴(kuò)張、腫脹、炎性滲出。水通道蛋白、Na+-K+-ATP酶和縫隙連接基因[12-13]等基因突變,導(dǎo)致內(nèi)耳淋巴離子平衡基因表達(dá)失調(diào),白介素-6(interleukin-6,IL-6)、IL-17及粒細(xì)胞巨噬細(xì)胞集落刺激因子(granulocyte macrophage colony-stimulating factor,GM-CSF)信號(hào)通路基因的表達(dá)異常,影響中耳水、離子、蛋白轉(zhuǎn)運(yùn)通道及功能,破壞細(xì)胞內(nèi)離子平衡及耳淋巴流變學(xué)狀態(tài),并誘導(dǎo)組織重構(gòu),影響耳蝸毛細(xì)胞的感音功能,導(dǎo)致聽(tīng)力損失。
Tian等[14]研究發(fā)現(xiàn),小鼠自發(fā)性CHD7基因缺失突變可導(dǎo)致中耳黏膜上皮細(xì)胞特異性基因表達(dá)異常,使上皮細(xì)胞和杯狀細(xì)胞增殖失調(diào),黏液產(chǎn)生增多,中耳黏膜上皮纖毛密度下降,黏液過(guò)度積累,阻礙黏膜纖毛的間隙,抑制纖毛運(yùn)動(dòng)和信號(hào)轉(zhuǎn)導(dǎo)。當(dāng)上皮增生嚴(yán)重?fù)p傷上皮細(xì)胞和纖毛功能時(shí),纖毛密度出現(xiàn)不可逆下降,同時(shí)耳蝸基底黏膜毛細(xì)胞和靜纖毛數(shù)量減少,但不影響其結(jié)構(gòu)和功能。在普通急性中耳炎時(shí)TLR2基因表達(dá)顯著增加,但CHD7基因突變導(dǎo)致的小鼠慢性中耳炎中TLR2基因表達(dá)沒(méi)有明顯差異,表明CHD7基因突變可能通過(guò)抑制TLR2基因表達(dá)導(dǎo)致慢性中耳炎的發(fā)生。
一系列研究發(fā)現(xiàn),MUC2和MUC5AC基因通過(guò)不同的糖蛋白質(zhì)折疊或改變其糖基化水平,產(chǎn)生不同長(zhǎng)度和功能的糖蛋白,影響中耳黏液黏度、黏膜纖毛的活動(dòng);MUC5B基因可影響蛋白質(zhì)折疊,并綁定轉(zhuǎn)錄因子,控制黏蛋白的表達(dá);且MUC5AC-b等位基因越長(zhǎng),越容易導(dǎo)致中耳炎[15-17]。由于黏蛋白基因(mucin genes)MUC6、MUC2、MUC5AC、MUC5B、MUC17、MUC18等都有高度糖基化的串聯(lián)重復(fù)序列和表皮生長(zhǎng)因子(epidermal growth factor,EGF)結(jié)構(gòu)域,促進(jìn)黏蛋白寡聚化,利于中耳黏膜上皮細(xì)胞識(shí)別和清除外來(lái)物質(zhì),并形成物理保護(hù)屏障[18]。其中MUC17有兩個(gè)EGF結(jié)構(gòu)域,編碼自溶跨膜黏蛋白,保護(hù)上皮細(xì)胞,與橫跨膜的黏蛋白MUC1和MUC4等的功能相似。MUC18與腫瘤細(xì)胞的轉(zhuǎn)移有關(guān),介導(dǎo)細(xì)胞黏附,激活后與酪氨酸激酶共同誘導(dǎo)粘連,在中耳炎疾病過(guò)程中發(fā)揮重要作用。在測(cè)定小鼠黏蛋白基因表達(dá)情況時(shí)發(fā)現(xiàn)中耳黏膜黏蛋白基因的表達(dá)和調(diào)控情況與中耳炎的發(fā)病有著密切關(guān)系,正常情況下黏蛋白基因的多態(tài)性、差異性表達(dá)維持中耳黏膜的正常功能,當(dāng)這些多態(tài)性黏蛋白基因表達(dá)或者調(diào)控機(jī)制出現(xiàn)異常,分泌異常黏蛋白,中耳液體黏度增加,限制黏膜纖毛的清除功能,黏液累積,導(dǎo)致中耳黏膜炎癥,長(zhǎng)期炎癥刺激可使中耳黏膜組織重塑,聽(tīng)力下降[15]。
多態(tài)性細(xì)胞因子基因與中耳炎之間有著緊密的聯(lián)系,如 IL-1、IL-6、IL-10、TGF-β,TNF-α、干擾素等[19]。在研究急性中耳炎與病毒性上呼吸道感染(upper respiratory infection,URI)之間基因多態(tài)性表達(dá)時(shí)發(fā)現(xiàn),IL-5、IL-6、IL-8、IL-10、IL-1β(-31)、IL-1β(-511)、TNF-α、CX3CR1(CX3C chemokine receptor 1)等表達(dá)水平上調(diào),增加氣道炎癥,參與中耳黏膜炎癥時(shí)的白細(xì)胞趨化、組織損傷修復(fù)及炎癥因子的調(diào)節(jié)[20-21]。且研究發(fā)現(xiàn),IL-10、TGF-β1基因型中耳炎的急性發(fā)作與年齡和機(jī)體免疫系統(tǒng)不成熟有關(guān)[22],不參與中耳炎并發(fā)癥的產(chǎn)生;IL-6、IL-10、TNF-α、IFN基因型與上呼吸道感染后中耳炎的發(fā)生有關(guān),且接種IL-10(-1082)A/A基因型肺炎球菌疫苗后,能有效預(yù)防中耳炎的發(fā)生。因此推斷IL-6、IL-10、IFN、TGF-β1基因型主要在急性中耳炎早期階段發(fā)揮作用。
Kim等[23]研究發(fā)現(xiàn),入侵的病原體能首先被細(xì)胞外的模式識(shí)別受體(pattern recognition receptors,PRRs)識(shí)別,其中Toll樣受體(Toll-like receptor)TLR2和TLR4參與識(shí)別病原微生物配體及綁定細(xì)菌脂多糖(lipooligosaccharide,LOS)[24],產(chǎn)生級(jí)聯(lián)免疫信號(hào),加強(qiáng)免疫反應(yīng)。中耳黏膜炎癥時(shí),TLR9識(shí)別基因CpG表達(dá)上調(diào)[25],增強(qiáng)TLR9在細(xì)菌DNA對(duì)DIA、AIM2、polymeraseⅢ(Pol-Ⅲ)的感應(yīng)作用,激活NF-κB、TNF-α、IL-6等促炎細(xì)胞因子的產(chǎn)生。但急性中耳炎早期(首次感染72h),TLR-9、核苷酸結(jié)合寡聚化結(jié)構(gòu)域1(nucleotide-bindingoligomerization domain 1,NOD-1)、NOD-2、維甲酸誘導(dǎo)基因(retinoic acidinducible gene,RIG-I)等表達(dá)顯著降低,IgA、IgM表達(dá)沒(méi)有差異,致病菌誘導(dǎo)中耳黏膜上皮細(xì)胞因子B表達(dá),激活補(bǔ)體旁路途徑[26],促進(jìn)中性粒細(xì)胞激活、聚集,與TLR4等其他先天免疫途徑共同參與調(diào)節(jié)OM免疫反應(yīng)。在中耳感染時(shí),PRRs表達(dá)上調(diào)可增強(qiáng)急性感染時(shí)機(jī)體免疫防御,由于TLR在不同的細(xì)胞內(nèi)定位不同,識(shí)別病原體的位點(diǎn)也不同,病原體的PRRs位點(diǎn)突變,將刺激機(jī)體產(chǎn)生不正常的免疫炎性反應(yīng)。例如,TLR4突變或表達(dá)異常能減弱宿主對(duì)脂多糖的識(shí)別及免疫反應(yīng),增加細(xì)菌感染風(fēng)險(xiǎn),誘發(fā)自發(fā)性中耳炎,導(dǎo)致持續(xù)性炎癥,延遲黏膜修復(fù)[27];而敲除TLR9信號(hào)基因,則可能延緩中耳黏膜炎性反應(yīng),抑制黏膜細(xì)胞增生和白細(xì)胞浸潤(rùn)。
研究發(fā)現(xiàn)在中耳炎癥感染3~48 h后,食道癌腫瘤抑制基因Ecrg4(esophageal cancerrelated gene 4)mRNA表達(dá)迅速下降了80%以上[28],且在體外感染的黏膜中E-crg4基因的表達(dá)、黏膜細(xì)胞的增生、遷移反應(yīng)也明顯被抑制。及早防止Ecrg4基因表達(dá)下降,可減少黏膜增生性反應(yīng)和預(yù)防炎性細(xì)胞浸潤(rùn),迅速控制炎癥。中耳黏膜炎癥時(shí)除TNF4以外的所有TNF基因均出現(xiàn)明顯的表達(dá)上調(diào),當(dāng)TNF基因缺陷時(shí)中耳黏膜細(xì)胞凋亡明顯推遲,即使沒(méi)有感染也出現(xiàn)明顯的黏膜增生,甚至形成黏膜息肉[29]。
6.1 流感嗜血桿菌 研究發(fā)現(xiàn)流感嗜血桿菌R2866_0112基因[30]、TonB基因[31]突變可改變細(xì)菌LOS的組成,降低流感嗜血桿菌對(duì)血紅素的親和力及轉(zhuǎn)運(yùn)蛋白(TonB-dependent,TBDT)的表達(dá),降低細(xì)菌毒力和生存能力,增強(qiáng)IgM的識(shí)別和溶菌作用,抑制b型流感嗜血桿菌在中耳的感染。流感嗜血桿菌基因中串聯(lián)重復(fù)的DNA突變,導(dǎo)致細(xì)菌外膜蛋白(outer-membrane proteins,OMPs)P2、P5、P6表達(dá)改變,躲避機(jī)體C反應(yīng)蛋白(C reactive protein,CRP)介導(dǎo)的免疫殺菌反應(yīng)[32],有利于細(xì)菌從鼻咽部遷移到中耳,也可使細(xì)菌水解酶氨基酸替換產(chǎn)生TEM-1型β-類(lèi)酰胺酶[33],降低抗生素的親和力,增強(qiáng)細(xì)菌對(duì)氨芐西林類(lèi)、頭孢菌素類(lèi)抗生素的耐藥性。
6.2 葡萄球菌 葡萄球菌屬條件致病菌,研究發(fā)現(xiàn)其過(guò)氧化氫酶基因突變[34],可降低過(guò)氧化氫酶活性,減少活性氧的釋放,中耳黏膜處于缺氧或低氧環(huán)境,導(dǎo)致HIF-1α(hypoxia-inducible factor 1α)基因異常表達(dá),IL-1β、TNF-α、NF-κB、血管表皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)等細(xì)胞因子增加[35],同時(shí)減弱吞噬細(xì)胞功能,打破鼻咽部細(xì)菌平衡環(huán)境,細(xì)菌蔓延。采用HSP90 17-DMAG和血管表皮生長(zhǎng)因子受體(vascular endothelial growth factor receptor,VEGFR)抑制劑抑制HIF-1α基因和HIF-VEGF信號(hào)通路表達(dá)后,能明顯減慢中耳炎動(dòng)物聽(tīng)力損失,減少中耳積液和中耳黏膜炎癥。病理檢查時(shí)發(fā)現(xiàn)中耳黏膜淋巴管數(shù)量減少,但黏膜厚度和血管數(shù)量沒(méi)有明顯減少,表明低氧誘導(dǎo)因子介導(dǎo)的HIF-VEGF途徑是OM發(fā)病的重要途徑,且HSP90和VEGFR抑制劑能有效抑制OM的發(fā)展。研究者在利用16 SrRNA基因探針[36]檢測(cè)細(xì)菌生物膜的三維聚合物時(shí)發(fā)現(xiàn)ICA基因突變可導(dǎo)致凝固酶陰性的葡萄球菌分離株形成一種特殊的生物膜[37],并產(chǎn)生黏液,增強(qiáng)細(xì)菌的毒力和侵襲力,更加耐受宿主免疫反應(yīng),降低抗生素療效。
6.3 肺炎球菌 研究發(fā)現(xiàn),肺炎球菌細(xì)胞壁(peptidoglycan-polysaccharides,PGPS)能激活中耳黏膜上皮細(xì)胞TLR2受體表達(dá),產(chǎn)生細(xì)胞因子NF-κB等,并反饋抑制PGPS對(duì)TLR2的誘導(dǎo)作用[38]。但由于PGPS耐受酶的消化,存在剩余的PGPS在中耳黏膜形成持久性刺激因素,保持低水平的TLR2表達(dá)誘導(dǎo)中耳黏膜增生和細(xì)胞因子的產(chǎn)生,導(dǎo)致中耳黏膜慢性炎性發(fā)生。
綜上所述,基因研究是疾病診療方面的一個(gè)重要突破口,目前對(duì)中耳普通炎性疾病相關(guān)基因方面的研究主要是通過(guò)研究基因突變導(dǎo)致的一系列病理生理改變,能在一定程度上解釋疾病的發(fā)展過(guò)程,但在基因治療方面還需要更深入的研究。
[1]黃選兆,汪吉寶,孔維佳.實(shí)用耳鼻咽喉頭頸外科學(xué)[M].2版.北京:人民衛(wèi)生出版社,2008:12.
[2]楊琳,趙守琴.分泌性中耳炎發(fā)病機(jī)制的研究進(jìn)展[J].聽(tīng)力學(xué)及言語(yǔ)疾病雜志,2014,22(3):328-331.
[3]Maguire S,Estabel J,Ingham N,et al.Targeting of Slc25a21 is associated with orofacial defects and otitis media due to disrupted expression of a neighbouring gene[J].PLoS One,2014,9(3):e91807.
[4]Chen J,Ingham N,Clare S,et al.Mcph1-deficient mice reveal a role for MCPH1 in otitis media[J].PLoS One,2013,8(3):e58156.
[5]Yang B,Tian C,Zhang ZG,et al.Sh3pxd2b mice are a model for craniofacial dysmorphology and otitis media[J].PLoS One,2011,6(7):e22622.
[6]黃秋紅,黃子真,鄭億慶,等.一種新型中耳炎小鼠模型在耳鼻咽喉科的應(yīng)用[J].中國(guó)耳鼻咽喉頭頸外科,2013,20(11):569-572.
[7]Zhang Y,Yu H,Xu M,et al.Pathological features in the LmnaDhe/+mutant mouse provide a novel model of human otitis media and laminopathies[J]. Am J Pathol,2012,181(3):761-774.
[8]Han F,Yu H,Li P,et al.Mutation in Phex gene predisposes BALB/c-Phex(Hyp-Duk)/Y mice to otitis media[J].PLoS One,2012,7(9):e43010.
[9]Rye MS,Wiertsema SP,Scaman ES,etal.FBXO11,a regulator ofthe TGFβ pathway,is associated with severe otitis media in Western Australian children[J].Genes Immun,2011,12(5):352-359.
[10]Mata M,Milian L,Armengot M,et al.Gene mutations in primary ciliary dyskinesia related to otitis media[J].Curr Allergy Asthma Rep,2014,14(3):420.
[11]Noben-Trauth K,Latoche JR.Ectopic mineralization in the middle ear and chronic otitis media with effusion caused by RPL38 deficiency in the Tail-short(Ts)mouse[J].J Biol Chem,2011,286(4):3079-3093.
[12]MacArthur CJ,Hausman F,Kempton JB,et al.Inner ear tissue remodeling and ion homeostasis gene alteration in murine chronic otitis media[J]. Otol Neurotol,2013,34(2):338-346.
[13]MacArthur CJ,Hausman F,Kempton JB,et al.Otitis media impacts hundreds of mouse middle and inner ear genes[J].PLoS One,2013,8(10):e75213.
[14]TianC,YuH,YangB,etal.Otitismediainanew mouse model for CHARGE syndrome with a deletion in the Chd7 gene[J].PLoS One,2012,7(4):e34944.
[15]Kerschner JE,Li JZ,Tsushiya K,et al.Mucin gene expression and mouse middle ear epithelium[J].Int J Pediatr Otorhinolaryngol,2010,74(8):864-868.
[16]Kerschner JE,Tripathi S,Khampang P,et al.MUC5AC expression in human middle ear epithelium of patients with otitis media[J].Arch Otolaryngol Head Neck Surg,2010,136(8):819-824.
[17]Ubell ML,Khampang P,Kerschner JE.Mucin gene polymorphisms in otitis media patients[J].Laryngoscope,2010,120(1):132-138.
[18]Kerschner JE,Khampang P,Samuels T.Extending the chinchilla middle ear epithelial model for mucin gene investigation[J].Int J Pediatr Otorhinolaryngol,2010,74(9):980-985.
[19]Mittal R,Robalino G,Gerring R,et al.Immunity genes and susceptibility to otitis media:a comprehensive review[J].J Genet Genomics,2014,41(11):567-581.
[20]Nokso-Koivisto J,Chonmaitree T,Jennings K,et al.Polymorphisms of immunity genes and susceptibility to otitis media in children[J].PLoS One,2014,9(4):e93930.
[21]McCormick DP,Grady JJ,Diego A,et al.Acute otitis media severity:association with cytokine gene polymorphisms and other risk factors[J].Int J Pediatr Otorhinolaryngol,2011,75(5):708-712.
[22]Ilia S,Goulielmos GN,Samonis G,et al.Polymorphisms in IL-6,IL-10,TNF-α,IFN-γ and TGF-β1 genes and susceptibility to acute otitis media in early infancy[J].Pediatr Infect Dis J,2014,33(5):518-521.
[23]Kim MG,Park DC,Shim JS,et al.TLR-9,NOD-1,NOD-2,RIG-I and immunoglobulins in recurrent otitis media with effusion[J].Int J Pediatr Otorhinolaryngol,2010,74(12):1425-1429.
[24]MacArthur CJ,Wilmot B,Wang L,et al.Genetic susceptibility to chronic otitis media with effusion:candidate gene single nucleotide polymorphisms[J].Laryngoscope,2014,124(5):1229-1235.
[25]Leichtle A,Hernandez M,Lee J,et al.The role of DNA sensing and innate immune receptor TLR9 in otitis media[J].Innate Immun,2011,18(1):3-13.
[26]Li Q,Li YX,Stahl GL,et al.Essential role of factor B of the alternative complement pathway in complement activation and opsonophagocytosis during acute pneumococcal otitis media in mice[J].Infect Immun,2011,79(7):2578-2585.
[27]Carroll SR,Zald PB,Soler ZM,et al.Innate immunity gene single nucleotide polymorphisms and otitis media[J].Int J Pediatr Otorhinolaryngol,2012,76(7):976-979.
[28]Kurabi A,Pak K,Dang X,et al.Ecrg4 attenuates the inflammatory proliferative response of mucosal epithelial cells to infection[J].PLoS One,2013,8(4):e61394.
[29]Ebmeyer J,Leichtle A,Hernandez M,et al.TNFA deletion alters apoptosis as well as caspase 3 and 4 expression during otitis media[J].BMC Immunol,2011,12:12.
[30]Langereis JD,Stol K,Schweda EK,et al.Modified lipooligosaccharide structure protects nontypeable Haemophilus influenzae from IgM-mediated complement killing in experimental otitis media[J].Mbio,2012,3(4):e00079.
[31]Morton DJ,Hempel RJ,Seale TW,et al.A functional tonB gene is required for both virulence and competitive fitness in a chinchilla model of Haemophilus influenzae otitis media[J].BMC Res Notes,2012,5:327.
[32]Fox KL,Atack JM,Srikhanta YN,et al.Selection for phase variation of LOS biosynthetic genes frequently occurs in progression of non-typeable Haemophilus influenzae infection from the nasopharynx to the middle ear of human patients[J].PLoS One,2014,9(2):e90505.
[33]Kishii K,Chiba N,Morozumi M,et al.Diverse mutations in the ftsI gene in ampicillin-resistant Haemophilus influenzae isolates from pediatric patients with acute otitis media[J].J Infect Chemother,2010,16(2):87-93.
[34]Lu Y,Wang Y,Ling B,et al.Catalase-negative Staphylococcus lugdunensis strain with a novel point mutation in the catalase gene isolated from a patient with chronic suppurative otitis media[J].J Clin Microbiol,2013,51(4):1310-1312.
[35]Cheeseman MT,Tyrer HE,Williams D,et al.HIF-VEGF pathways are critical for chronic otitis media in Junbo and Jeff mouse mutants[J].PLoS Genet,2011,7(10):e1002336.
[36]Liu CM,Cosetti MK,Aziz M,et al.The otologic microbiome:a study of the bacterial microbiota in a pediatric patient with chronic serous otitis media using 16SrRNA gene-based pyrosequencing[J].Arch Otolaryngol Head Neck Surg,2011,137(7):664-668.
[37]Paluch-Oles J,Magrys A,Kozio?-Montewka M,et al.The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media[J].Int J Pediatr Otorhinolaryngol,2011,75(1):126-130.
[38]Komori M,Nakamura Y,Ping J,et al.Pneumococcal peptidoglycan-polysaccharides regulate Toll-like receptor 2 in the mouse middle ear epithelial cells[J].Pediatr Res,2011,69(2):101-105.
10.3969/j.issn.1009-5519.2015.20.022
A
1009-5519(2015)20-3106-03
2015-05-28)
黃秀麗(1990-),女,四川仁壽人,碩士研究生,主要從事耳鼻咽喉專(zhuān)業(yè)相關(guān)研究;E-mail:985032193@qq.com。
孫永東(E-mail:sunyongd@126.com)。