• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CuInS2/石墨烯混合物的合成及其在太陽能電池中的應(yīng)用

    2015-02-19 01:00:31林運祥左學(xué)勤
    關(guān)鍵詞:對電極轉(zhuǎn)化率

    華 健,林運祥,周 雷,楊 曉,左學(xué)勤,李 廣,2*

    (1.安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601; 2.安徽省信息材料與器件重點實驗室,安徽 合肥 230601)

    ?

    CuInS2/石墨烯混合物的合成及其在太陽能電池中的應(yīng)用

    華健1,林運祥1,周雷1,楊曉1,左學(xué)勤1,李廣1,2*

    (1.安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥230601; 2.安徽省信息材料與器件重點實驗室,安徽 合肥230601)

    摘要:在不同的溶劑中通過溫和的溶劑熱法,成功地合成CuInS2納米晶體.這些合成好的CuInS2粉末被X光衍射表征后,又作為對電極被組裝成染料敏化太陽能電池.通過檢測可以發(fā)現(xiàn)乙二醇是合成CuInS2過程中最佳的溶液.這主要表現(xiàn)在用乙二醇合成的CuInS2作為電池對電極時的轉(zhuǎn)化率可以達到5.49%,這個值要比用其他溶液合成的CuInS2轉(zhuǎn)化率高.然后,將在乙二醇溶劑中合成的CuInS2粉末與石墨烯的氧化物混合形成CuInS2納米晶體/石墨烯納米復(fù)合材料,這種材料可以提高CuInS2在染料敏化太陽能電池方面的性能.通過透射電子顯微鏡法,可以證明CuInS2生長在石墨烯納米網(wǎng)中.與傳統(tǒng)的鉑對電極電池(6.90%)相比,這種納米復(fù)合材料具有相對較好的光電轉(zhuǎn)化率(6.28%).

    關(guān)鍵詞:CuInS2;對電極;染料敏化太陽能電池(DSSC);石墨烯納米混合物;轉(zhuǎn)化率

    0Introduction

    The most important part in CE is catalytic materials which are deposited on fluorine-doped tin oxide (FTO) glass substrate. Conventionally, it is platinum (Pt) that is used as this catalytic and electric material. A lot of experiments have shown that Pt is an excellent material for DSSC on account of outstanding electrochemical activity and stable property. However, as we know, Pt as relatively expensive and scare resources can not be used for quantity production. Furthermore, Pt is not suitable to be used in flexible plastics, because it needs higher temperature treatment while it is prepared as Pt CE[5]. Hence, many people try to use different materials to take the place of Pt as CE, such as carbon materials[6], conducting polymers materials[7],and inorganic materials (sulfides[4-5], nitrides[8], oxides[9]). Among these materials, more and more literatures study sulfides because it is abundant, cheap, and synthesized in mild conditions. In the family of sulfides, CuInS2(CIS) is becoming attractive in many aspects by the reason of its potential application[10].

    CIS, as a ternary compound semiconductor, with the optical band gap of 1.5 eV[11]which matches well with solar spectrum, is an effective CE for light-absorbing. CIS has other excellent qualities such as good stability which can be irradiated for a long time, less toxicity compared with CdS and CuInSe2, and controllable morphology. Through numerical simulation, it can obtain 20.4% simulated efficiency[12]. Up to now, CIS can be synthesized through many ways, and to the best of our knowledge, it is wildly used in thin film solar cells in order to gain higher photo-conversion efficiency, for instance Wang and his co-workers have reached above 13%[13]. However, It does not show a satisfactory function if it is directly assembled on DSSC as CE, for instance it is reported that Yao and his co-workers have achieved 5.7%[14], which is also lower than Pt as CE.

    In this literature, we report a new method to synthesize CE materials. We not only compound CIS nanocrystal but also synthesize CIS nanocrystal/reduced graphene oxide (CIS/RGO) nanocomposite by a solvothermal route to further enhance its performance. Graphene, with exceptionally high crystal, is a new two-dimensional (2D) material, which has one-auto-thick sheet and then form nano-networks. Graphene has many outstanding properties because of its particular structure. Graphene, as a conducting material, can work as electron reservoir[15-16]. In our work, CIS grown on graphene nano-networks exhibits remarkable photo-catalysis efficiency and electrical conductivity than bare CIS CE, which is close to Pt CE in the presence of visible light. So it can be anticipated that CIS/RGO must be one of the best materials to substitute Pt as CE and it may be widely used in DSSC in the future as well[16-19].

    1Experimental Section

    1.1 Materials

    1.2 Synthesis of CuInS2 nanocrystals

    In order to analyze the effect of solvent on synthesizing CIS nanocrystals, we choose different solvent but the other reactive conditions are the same. The reaction procedure was performed as follows. Absolute alcohol (30 mL), triethylene glycol (30 mL) and ethylene glycol (30 mL) were poured into different beakers (a1; a2; a3), respectively. InCl3·4H2O (1.0 mmol), CuCl (1.0 mmol) and thiocarbamide (2.5 mmol) were added into these three samples (a1; a2; a3). Then the chemicals were dispersed by the aid of magnetic stirring for a few minutes until they were completely dissolved. After that, the solutions were poured into a Teflon-lined stainless steel autoclave (50 mL). Then the sealed autoclaves were heated at 200 ℃ for 48 h. Afterward, the autoclaves were naturally cooled down to room temperature. The sediment filtered off from autoclave was washed off several times using distilled water and absolute ethanol. At last the sediment was dried in a vacuum at 60 ℃ for 12 h. As a result, we obtained the CIS powder.

    1.3 Preparation of CuInS2/RGO nano-networks

    In order to synthesize CuInS2/RGO nano-composites, in the first place we had to synthesis graphene oxide (GO) from natural graphite powder (KNGTM-150). In this work we chose Hummers and Offeman’s method[20-21]. The graphite powder was added into H2SO4/H3PO4(180∶20 mL) mixture solution. Then KMnO4and H2O2(30%) were added into the beakers until the mixture turned to bright yellow and using HCl solution filtered it. After that we washed it until the pH value reach 7. The next step, we should prepare CuInS2/RGO nano-composites. The method was close to the synthesis of CuInS2nanocrystals. However, the beaker was added one more GO (40 mg) and we used the ethylene glycol which is better than others as the solvent.

    1.4 Fabrication of DSSC devices

    DSSC was composed of three main parts. Among them, electrolyte and porous TiO2photoanode were bought from some companies. The most important thing we need to do was to fabricate CE. At first we washed the FTO glass using acetone and absolute alcohol. Besides, the FTO glass was masked by a 3 M Scotch tape (the thickness was about 5m) at two sides and the middle part was exposed about 0.5 cm×0.5 cm. Then dispersing CIS powder (0.1 g) or CIS/RGO was added into in agate mortar. Furthermore polyethylene glycol powder (0.025 g) and 3 mL absolute ethanol were also added in the agate mortar. The slurry was ground into a colloid. Afterwards, this colloid was coated over the exposing area of FTO coated glass plate using the doctor blade method. After the colloid dry naturally, the FTO was annealed at 450 ℃ for 30 min by the protection of argon atmosphere. So the CE was prepared.

    The TiO2photo-anodes were immersed in 0.3 mM ethanolic solution of dye N-719 (Solaronix) for 12 h at room temperature in order to sufficiently absorb the dye. Then wash out excess adsorbed dye using absolute alcohol and dried it. Up to now, the DSSC was assembled by putting the CE and the TiO2photo-anode together, and it was with two clamps. After that, we injected electrolyte (0.05 M I2, 0.6 M 1-propyl-2,3-dimethylimidazolium iodide, 0.5 M LiI, and 0.5 M 4-tert-buylpyridine with acetonitrile as the solvent) into the middle of two FTO glasses.

    1.5 Characterizations

    The components and crystallographic structure of the as-prepared powdered products were characterized by X-ray diffraction(XRD) which uses CuKαradiation source (λ=1.540 6 ?) operated at 36 kV and 25 mA. The range of 2θis from 10° to 80°. The micro-morphology and the size of nanocrystal powder were measured by scanning electron microscopy (SEM, JSM-6700F) and high-resolution transmission electron microscopy (HRTEM; JEM-2100, Japan). We used UV-Vis spectrophotometers (JASCO V-550/V-570) to obtain UV-visable absorption spectra in the range from 250 nm to 850 nm.

    2Results and discussion

    Different CISs and CIS/RGO have been successfully synthesized. The structure and phase purity of these samples were measured by XRD. The XRD patterns of these three samples CIS powder (a1; a2; a3) in different solvents are shown in Fig.1 (CIS-a1-CIS-a3). From the major intensity of XRD diffraction peaks which appear at 2θ=27.1°, 32.0°, 46.1° and 54.7° approximately. These three samples can be indexed to chalcopyrite crystal structure (JCPDS No. 27-0159,a=0.552 3 nm,c=0.111 4 nm) and these 2θcan be attributed to (112), (204), (312) and (224) planes, respectively. The XRD diffraction peaks match with JCPDS card very well and no other peaks are detected, therefore we have obtained pure CIS powders which do not contain CuIn, CuS or In2S3and the CIS powder belong to tetragonal system. The crystallite size of these samples can be figured out on the basis of Debye-Scherer formula

    (1)

    whereKis a constant (0.94),λis the wavelength of X-ray source (0.154 056 nm),βdenotes the full width at half maximum of the diffraction strongest peak (112) andθis called the Bragg angle (13.937 5). The average size of a1-a3 samples calculated from three stronger peaks (112), (312), (224) using this equation is 44 nm, 37 nm and 35 nm. It indicates that the size is different just by altering solvents. Using ethylene glycol as the solvent, we can obtain the smallest CIS nanocrystal.

    The CIS/RGO nano-composites (CIS is synthesized in ethylene glycol solution) is characterized by XRD as well (Fig.1 CIS/RGO). The positions of diffraction peaks are the same with CIS powders. However, the intensity of these peaks is much lower, which may be attributed to the RGO sheet restrain the intensity of CIS’s peaks.

    The optical absorption property of this CIS powder is investigated by UV-Vis spectra (Fig.2). It owns higher absorption coefficient and broad absorption shoulder band.

    Fig.2 shows the strongest absorption peak at 377.5 nm approximately. It is less than the value of bulk CIS (810 nm)[22], which demonstrates that the blue-shift of this CIS powder. It is mainly because of surface effect and quantum dimension effect by the decrease in average diameter of CIS particles. In order to calculate the band gap energy (Eg), we draw (αhν)2versus hν curve inserted in Fig.2. It can be confirmed through the equation

    (2)

    CIS is a direct band gap semiconductor, so it appears (αhν)2. Where α is the absorption coefficient,Ais a constant. Afterwards, we construct the tangent line along the straight-line portion, where the line intersects thehνaxis. The point of the intersection isEg. It is obvious that towards the CIS nanocrystals the value ofEgis 1.58 eV. This value is similar with Qi et al[23]and is close to the result of theoretical calculation value (Eg=1.5 eV)[10]. The band gap of this CIS nano-crystal is very suitable for absorbing solar spectrum. Therefore, CIS nano-crystal is one of ideal materials as CE for DSSC.

    The surface morphology of the as-prepared CIS and CIS/RGO powder shown in Fig.3(a,b,d) and (c,e,f) respectively are examined by the SEM and TEM images.

    The solvent possessing particular properties can affect the morphology of CIS nanocrystals. Through observing different CIS synthesized by different solvents using SEM images, it is found that the ethylene glycol is the optimal solvent to compound the regular CIS nano-particle. We conclude that the viscosity of solvent has an effect on the surface force of these CIS nanocrystals. Fig.3a and 3b show the pure CIS structure in ethylene glycol solution. The CIS porous microsphere with the diameter of 4.6m approximately is shown in Fig.3a. Fig.3b reveals the magnified image of Fig.3a. By detailed observation, we can find that the porous microsphere is composed of many irregular nanoparticles and among the different nanoparticles a lot of small holes and openings appear. The diameter of these small nanoparticles rangs from 50 nm to 100 nm. Higher resolution transmission electron microscopy (HRTEM) image taken from CIS is exhibited in Fig.3c. In this image, the lattice fringes can be seen clearly. In addition, the distance between the nearest fringes is about 0.32 nm, which agrees with the tetragonal phase CIS which is already measured by XRD patterns. This result is the same with other people’s study[23].

    Fig.3(d-f) indicates the SEM and TEM images of CIS/RGO hybrids. Through the Fig.3d and 3f, the white graphene sheets with wrinkled shape are clearly visible, which prove that the graphene is prepared successfully. There are many CIS nano-crystals rather than microsphere attached on graphene sheets. This is because the graphene sheets provide the supporting place for the growth of CIS nano-crystals, rather than the CIS nano-crystals aggregate into microsphere (Fig.3a). By a further observation (Fig.3f), it is obvious that the diameter of these attached nano-crystals is about 100-150 nm which is much smaller than microsphere in Fig.3a (4.6m).

    For purpose of researching the photovoltaic properties of CIS and CIS/RGO CEs, the DSSCs assembled by the diverse CEs (CIS-a1, CIS-a2, CIS-a3,CIS/RGO,Pt) were under 100 mW·cm-2illuminating condition. Fig.4a describes the J-V cures and the P-V (power density and voltage) cures are illustrated in Fig.4b. Tab.1 reveals accordingly the detailed photovoltaic parameters. At first, we analyze the photovoltaic performance of CIS synthesized in various solutions (CIS-a1, CIS-a2, CIS-a3). CIS-a3 exhibits a relatively preferable property with the power conversion efficiency of 5.49%, a short-circuit current density (Jsc) of 11.56 mA·cm-2, an open-circuit voltage (Voc) of 745.7 mV, and a fill factor (FF) of 63.10%. CIS-a1 and CIS-a2 have lower power conversion efficiency than CIS-a3, which is 4.55% and 5.03% respectively, and lower Voc and FF. We speculate the diameter and shape of the particles are the main reason for this result. By the management above, the smaller diameter of CIS-a3 with regular shape has been proved. So, it has larger superficial area to absorb sunlight.

    With the purpose of explaining the reason why CIS/RGO nano-composites CE exhibited superior electrochemical activity,these as-prepared CEs were measured by EIS measurements using sandwich-like cell (CE/electrolyte/CE). The Nyquist plots of different CEs were shown in Fig.5 and the corresponding data were listed in Tab.1. The first point of intersection between semicircle and real axis denote Ohmic serial resistance (Rs) which means the outside circuit resistance. The diameter of semicircle in left can be assigned to charge transfer resistance (Rct) corresponding to the ability to transfer electron at the electrode and electrolyte interface[14,25]. It is obvious that original CIS has larger Rs (9.08 Ω) and Rct (4.84 Ω) relatively, which demonstrates that pure CIS has lower electrocatalytic activity. On the contrary, CIS/RGO nano-composites with lower Rs (5.04 Ω) and Rct (1.95 Ω) illustrate CIS grown on Graphene nano-networks promote catalytic performance of DSSC. Furthermore, the Rs and Rct of CIS/RGO nanocomposites are even close proximity to the values of Pt CE (4.04 Ω and 1.73 Ω). So, CIS nanocrystals grown on graphene nano-networks can enhance the properties of DSSC as CE.

    3Conclusions

    In summary, CuInS2nanocrystals have been successfully synthesized through a facile solvothermal method in different solvent systems. Ethylene glycol is an appropriate solvent towards the size and shape of CIS nanocrystals. Then this CIS nanocrystal was grown along graphene nano-networks successfully. Compared with pristine CIS (5.49%), CIS/RGO substantially enhances the efficiency of DSSC (6.31%), which is much more close to Pt CE. Therefore, CIS/RGO is a potential material for substituting Pt as CE. So, our work provides a meaningful prospect for the application of DSSC.

    References:

    [1]Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells[J]. Chem Rev,2010,110(11):6595-6663.

    [4]Guo J, Wang X, Zhou W H, et al. Efficiency enhancement of dye-sensitized solar cells(DSSCs) using ligand exchanged CuInS2NCs as counter electrode materials3[J]. RSC Advances,2013,3(34):14731-14736.

    [5]Sun H C, Qin D, Huang S Q, et al. Dye-sensitized solar cells with NiS counter electrodes electro deposited by a potential reversal technique[J]. Energy Environ Sci,2011,4(8):2630-2637.

    [6]Wu M X, Wang Y D, Lin X, et al. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes[J]. Physical Chemistry Chemical Physics,2011,13(43):19298-19301.

    [8]Jiang Q W, Li G R, Liu S, et al. Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2010,114(31):13397-13401.

    [9]Wu M X, Lin X, Hagfeldt A, et al. A novel catalyst of WO2nanorod for the counter electrode of dye-sensitized solar cells[J]. Chemical Communications,2011,47(15):4535-4537.

    [10]Konovalov I. Material requirements for CIS solar cells[J]. Thin Solid Films,2004,451/452:413-419.

    [11]Xiao J P, Xie Y, Tang R, et al. Synthesis and characterization of ternary CuInS2nanorods via a hydrothermal route[J]. Journal of Solid State Chemistry,2001,161(2):179-183.

    [12]Shang X Z, Wang Z Q, Li M K, et al. A numerical simulation study of CuInS2solar cells[J].Thin Solid Films,2014,550:649-653.

    [13]Klenk R, Klaer J, Koble C, et al. Development of CuInS2-based solar cells and modules[J]. Solar Energy Materials and Solar Cells,2011,95(6):1441-1445.

    [14]Yao R Y, Zhou Z J, Hou Z L, et al. Surfactant-free cuins2nanocrystals: an alternative counter-electrode material for dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces,2013,5(8):3143-3148.

    [15]Chen Z, Liu S Q, Yang M Q, et al. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water[J]. ACS Applied Materials & Interfaces,2013,5(10):4309-4319.

    [16]Das S, Sudhagar P, Kang Y S, et al. Graphene synthesis and application for solar cells[J]. Journal of Materials Research,2014,29(3):299-319.

    [17]Ahn H J, Kim I H, Yoon J C, et al. p-Doped three-dimensional graphene nano-networks superior to platinum as a counter electrode for dye-sensitized solar cells[J]. Chem Commun,2014,50(19):2412-2415.

    [18]Singh P K, Singh U, Bhattacharya B, et al. Electrochemical synthesis of graphene oxide and its application as counter electrode in dye sensitized solar cell[J]. Journal of Renewable and Sustainable Energy,2014,6(1):013125.

    [19]Wang R, Wu Q D, Lu Y, et al. Preparation of nitrogen-doped TiO2/graphene nanohybrids and application as counter electrode for dye-sensitized solar cells[J]. ACS Applied Mater & Interfaces,2014,6(3):2118-2124.

    [20]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem Mater,1999,11(3):771-778.

    [21]Sen T, Patra A. Recent advances in energy transfer processes in gold-nanoparticle-based assemblies[J]. J Phys Chem C,2012,116(33):17307-17317.

    [22]Asgary S, Mirabbaszadeh K, Nayebi P, et al. Synthesis and investigation of optical properties of TOPO-capped CuInS2semiconductor nanocrystal in the presence of different solvent[J]. Materials Research Bulletin,2014,51:411-417.

    [23]Qi Y X, Tang K B, Zeng S Y, et al. Template-free one-step fabrication of porous CuInS2hollow microspheres[J]. Microporous and Mesoporous Materials,2008,114(1/2/3):395-400.

    [24]Kavan L, Yum J H, Nazeeruddin M K, et al. Graphene nanoplatelet cathode for Co (III)/(II) mediated dye-sensitized solar cells[J]. ACS Nano,2011,5(11):165-172.

    [25]Roy-Mayhew J D, Bozym D J, Punckt G, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells[J]. ACS Nano,2010,4(10):6203-6211.

    (責(zé)任編輯于敏)

    doi:10.3969/j.issn.1000-2162.2015.01.014

    猜你喜歡
    對電極轉(zhuǎn)化率
    量子點敏化太陽電池硫化銅復(fù)合對電極的研究進展
    河南化工(2022年7期)2023-01-03 12:04:37
    我國全產(chǎn)業(yè)領(lǐng)域平均國際標準轉(zhuǎn)化率已達75%
    染料敏化太陽電池對電極的研究進展
    太陽能(2021年9期)2021-09-30 01:36:22
    染料敏化太陽能電池對電極材料優(yōu)化的研究進展
    銅的硫化物對電極在量子點敏化太陽能電池中的應(yīng)用
    HSWEDM加工中工作液性能變化及其對電極絲損耗影響的研究
    曲料配比與米渣生醬油蛋白質(zhì)轉(zhuǎn)化率的相關(guān)性
    透視化學(xué)平衡中的轉(zhuǎn)化率
    量子點敏化太陽電池對電極材料研究進展
    影響轉(zhuǎn)化率的因素
    男的添女的下面高潮视频| 91成人精品电影| 日韩制服丝袜自拍偷拍| 国产欧美日韩一区二区三区在线| 亚洲 国产 在线| av线在线观看网站| 黄色一级大片看看| 90打野战视频偷拍视频| av福利片在线| 日日爽夜夜爽网站| 亚洲专区中文字幕在线| 90打野战视频偷拍视频| 99热国产这里只有精品6| 精品第一国产精品| 久久久久久免费高清国产稀缺| 久久久欧美国产精品| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| 在线观看免费高清a一片| 婷婷色av中文字幕| 在线天堂中文资源库| 大香蕉久久成人网| 青青草视频在线视频观看| a级毛片黄视频| 国产精品麻豆人妻色哟哟久久| 国产一区二区激情短视频 | 别揉我奶头~嗯~啊~动态视频 | 久久久久网色| 亚洲国产看品久久| 中国美女看黄片| 91麻豆av在线| 老司机亚洲免费影院| 丁香六月天网| 永久免费av网站大全| av又黄又爽大尺度在线免费看| 一级毛片女人18水好多 | 一级a爱视频在线免费观看| √禁漫天堂资源中文www| 国产视频首页在线观看| 91精品伊人久久大香线蕉| 日本欧美国产在线视频| 免费在线观看视频国产中文字幕亚洲 | 别揉我奶头~嗯~啊~动态视频 | 日韩制服骚丝袜av| 18禁裸乳无遮挡动漫免费视频| 国产精品三级大全| 亚洲精品av麻豆狂野| 老司机亚洲免费影院| 精品国产超薄肉色丝袜足j| 好男人电影高清在线观看| 日韩电影二区| 国产成人精品久久久久久| 成人国产av品久久久| 99热网站在线观看| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 老汉色av国产亚洲站长工具| 午夜老司机福利片| 午夜91福利影院| 精品人妻1区二区| 久久久国产精品麻豆| 国产成人av教育| 美女福利国产在线| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 欧美日韩亚洲国产一区二区在线观看 | 日本91视频免费播放| 叶爱在线成人免费视频播放| 2018国产大陆天天弄谢| 丰满饥渴人妻一区二区三| 人妻一区二区av| 国产精品成人在线| 午夜日韩欧美国产| 国产xxxxx性猛交| 大话2 男鬼变身卡| 日本猛色少妇xxxxx猛交久久| a 毛片基地| 乱人伦中国视频| 亚洲欧美激情在线| 欧美黄色淫秽网站| 又粗又硬又长又爽又黄的视频| 精品卡一卡二卡四卡免费| 人人妻,人人澡人人爽秒播 | 一级毛片 在线播放| 国产在视频线精品| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 久久久精品94久久精品| 亚洲精品成人av观看孕妇| 1024香蕉在线观看| 国产精品成人在线| 亚洲 欧美一区二区三区| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| av在线老鸭窝| 精品免费久久久久久久清纯 | 99re6热这里在线精品视频| 国产熟女午夜一区二区三区| 国产免费视频播放在线视频| 乱人伦中国视频| 一级毛片黄色毛片免费观看视频| 国产成人欧美在线观看 | 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 亚洲精品一卡2卡三卡4卡5卡 | av欧美777| 久久精品人人爽人人爽视色| 亚洲国产av影院在线观看| 久久久久久久国产电影| 国产精品一区二区在线观看99| 最新在线观看一区二区三区 | 亚洲国产精品999| 久9热在线精品视频| 99国产精品99久久久久| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 午夜福利,免费看| 一区在线观看完整版| 中文字幕高清在线视频| 国产亚洲av片在线观看秒播厂| 大型av网站在线播放| www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| 亚洲成国产人片在线观看| 9热在线视频观看99| 宅男免费午夜| 成人黄色视频免费在线看| 啦啦啦在线免费观看视频4| 精品人妻1区二区| 国产成人精品无人区| 制服人妻中文乱码| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 夫妻性生交免费视频一级片| 日韩av不卡免费在线播放| 国产一区二区在线观看av| 国产精品久久久久成人av| 午夜免费观看性视频| 青草久久国产| 精品少妇久久久久久888优播| 91九色精品人成在线观看| av又黄又爽大尺度在线免费看| 国产成人影院久久av| 一级片'在线观看视频| 制服人妻中文乱码| 精品卡一卡二卡四卡免费| 久久精品久久久久久久性| 美女午夜性视频免费| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀 | 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 大香蕉久久成人网| 中文字幕高清在线视频| 少妇精品久久久久久久| 男女边摸边吃奶| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 国产伦人伦偷精品视频| 欧美少妇被猛烈插入视频| 黄色 视频免费看| 最近中文字幕2019免费版| 熟女少妇亚洲综合色aaa.| 性色av一级| 五月开心婷婷网| 国产成人欧美在线观看 | 视频区图区小说| 不卡av一区二区三区| 少妇被粗大的猛进出69影院| 观看av在线不卡| 最近手机中文字幕大全| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 欧美性长视频在线观看| kizo精华| 亚洲欧美成人综合另类久久久| 老司机影院成人| 熟女av电影| 日本vs欧美在线观看视频| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 在线av久久热| 国产精品99久久99久久久不卡| 精品少妇黑人巨大在线播放| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 看免费成人av毛片| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 人体艺术视频欧美日本| 一级毛片电影观看| 999久久久国产精品视频| cao死你这个sao货| 天堂8中文在线网| 蜜桃国产av成人99| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜爱| 亚洲精品日本国产第一区| 午夜福利视频在线观看免费| 视频在线观看一区二区三区| 男男h啪啪无遮挡| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 真人做人爱边吃奶动态| 搡老岳熟女国产| 十八禁人妻一区二区| 美女福利国产在线| 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 久久精品国产综合久久久| 热99久久久久精品小说推荐| av福利片在线| 久久精品亚洲熟妇少妇任你| 午夜免费男女啪啪视频观看| 99精品久久久久人妻精品| 99九九在线精品视频| 热99久久久久精品小说推荐| 18禁黄网站禁片午夜丰满| 五月天丁香电影| 亚洲av美国av| 性少妇av在线| 国产黄色视频一区二区在线观看| 在线天堂中文资源库| 在线av久久热| 一区二区三区激情视频| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 天堂中文最新版在线下载| 黄片播放在线免费| 国产在线一区二区三区精| 精品福利永久在线观看| 中文字幕av电影在线播放| 天天影视国产精品| 制服诱惑二区| 国产精品久久久久成人av| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| 午夜免费成人在线视频| 国产精品偷伦视频观看了| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 91精品伊人久久大香线蕉| 国产一卡二卡三卡精品| 首页视频小说图片口味搜索 | 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 久久久国产一区二区| 老熟女久久久| 大香蕉久久成人网| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 亚洲精品一区蜜桃| 青草久久国产| 亚洲午夜精品一区,二区,三区| 大香蕉久久网| 多毛熟女@视频| 免费在线观看影片大全网站 | 精品少妇内射三级| 亚洲第一青青草原| 成人三级做爰电影| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| a级毛片黄视频| 天天添夜夜摸| 啦啦啦中文免费视频观看日本| 成人午夜精彩视频在线观看| 最新在线观看一区二区三区 | 国产精品国产三级专区第一集| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看| 国产精品三级大全| tube8黄色片| 少妇人妻 视频| 激情视频va一区二区三区| 永久免费av网站大全| 丰满少妇做爰视频| 黄色一级大片看看| 国产一区二区 视频在线| av欧美777| 成人国产av品久久久| 咕卡用的链子| 黄色视频不卡| 久久ye,这里只有精品| 欧美精品高潮呻吟av久久| 久久精品成人免费网站| 两人在一起打扑克的视频| 欧美激情高清一区二区三区| a级毛片在线看网站| √禁漫天堂资源中文www| 国产精品久久久久久精品古装| 欧美黑人精品巨大| 亚洲精品一二三| 大型av网站在线播放| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| 亚洲av美国av| 国产麻豆69| 老司机亚洲免费影院| 久久av网站| 亚洲国产av新网站| 老司机亚洲免费影院| 18禁国产床啪视频网站| 精品国产乱码久久久久久小说| 国语对白做爰xxxⅹ性视频网站| h视频一区二区三区| 国产精品成人在线| 99九九在线精品视频| 久久亚洲精品不卡| 精品熟女少妇八av免费久了| 日本欧美国产在线视频| 在线精品无人区一区二区三| 七月丁香在线播放| 久久人人爽人人片av| 久久99一区二区三区| 国语对白做爰xxxⅹ性视频网站| 成人免费观看视频高清| 脱女人内裤的视频| 深夜精品福利| 国产人伦9x9x在线观看| 考比视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区 | 男人操女人黄网站| 秋霞在线观看毛片| 日韩人妻精品一区2区三区| 欧美性长视频在线观看| 久久人妻福利社区极品人妻图片 | 午夜视频精品福利| 午夜激情av网站| 久久av网站| 视频区图区小说| 一级黄色大片毛片| 亚洲一码二码三码区别大吗| 一级毛片我不卡| 人人妻人人澡人人爽人人夜夜| 在线观看国产h片| 久久久精品免费免费高清| 美女扒开内裤让男人捅视频| 日韩视频在线欧美| 91麻豆av在线| 国产免费又黄又爽又色| 亚洲免费av在线视频| 97在线人人人人妻| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 日本一区二区免费在线视频| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| 一级a爱视频在线免费观看| 色94色欧美一区二区| 亚洲av成人精品一二三区| 大香蕉久久成人网| 男男h啪啪无遮挡| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 国精品久久久久久国模美| 99久久人妻综合| 视频在线观看一区二区三区| 热99国产精品久久久久久7| 女人久久www免费人成看片| 亚洲欧洲日产国产| 精品亚洲成国产av| 久9热在线精品视频| 久热爱精品视频在线9| 精品免费久久久久久久清纯 | 丰满少妇做爰视频| 大香蕉久久网| 青春草亚洲视频在线观看| 精品国产超薄肉色丝袜足j| 久久99一区二区三区| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 婷婷丁香在线五月| 亚洲精品国产av蜜桃| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 亚洲国产看品久久| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区| 99国产精品免费福利视频| 成年女人毛片免费观看观看9 | 另类精品久久| 大话2 男鬼变身卡| 国产成人免费无遮挡视频| 午夜福利乱码中文字幕| 18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 欧美日韩综合久久久久久| 天堂8中文在线网| 欧美在线黄色| 女警被强在线播放| 久热爱精品视频在线9| 免费观看人在逋| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 婷婷色av中文字幕| 嫁个100分男人电影在线观看 | 亚洲中文av在线| 伦理电影免费视频| 精品亚洲成a人片在线观看| 91国产中文字幕| 99九九在线精品视频| 国产91精品成人一区二区三区 | 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 精品卡一卡二卡四卡免费| 18禁国产床啪视频网站| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 男的添女的下面高潮视频| 精品高清国产在线一区| 两个人免费观看高清视频| 爱豆传媒免费全集在线观看| 热re99久久精品国产66热6| 一级片免费观看大全| 91九色精品人成在线观看| 中文字幕人妻丝袜一区二区| 国产男女内射视频| 亚洲精品一区蜜桃| 99香蕉大伊视频| 又黄又粗又硬又大视频| 大香蕉久久网| 免费在线观看日本一区| 岛国毛片在线播放| 人妻人人澡人人爽人人| 满18在线观看网站| 狂野欧美激情性bbbbbb| 如日韩欧美国产精品一区二区三区| 999久久久国产精品视频| 国产成人免费观看mmmm| avwww免费| 亚洲精品国产一区二区精华液| 91麻豆精品激情在线观看国产 | 老汉色∧v一级毛片| 亚洲欧美成人综合另类久久久| 午夜福利视频在线观看免费| 国产精品 欧美亚洲| 人人妻人人爽人人添夜夜欢视频| 午夜福利视频精品| 欧美xxⅹ黑人| 国产视频一区二区在线看| 69精品国产乱码久久久| 国产日韩欧美亚洲二区| 国产成人啪精品午夜网站| 亚洲精品一二三| 国产av国产精品国产| 久久中文字幕一级| 老司机在亚洲福利影院| 一区二区三区四区激情视频| 黄色一级大片看看| 久久精品亚洲熟妇少妇任你| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 首页视频小说图片口味搜索 | 久久 成人 亚洲| 国产亚洲精品久久久久5区| 国产精品99久久99久久久不卡| 日本av免费视频播放| 国产在线一区二区三区精| 一级片'在线观看视频| 国产伦理片在线播放av一区| 99久久综合免费| 国产成人精品无人区| 久久久精品区二区三区| 两人在一起打扑克的视频| 国产主播在线观看一区二区 | 国产熟女欧美一区二区| 久久国产精品影院| 国产极品粉嫩免费观看在线| av天堂在线播放| 久久久国产一区二区| 国产精品二区激情视频| 精品久久久精品久久久| 亚洲av国产av综合av卡| av线在线观看网站| 国产亚洲午夜精品一区二区久久| 19禁男女啪啪无遮挡网站| 又黄又粗又硬又大视频| 在线观看免费日韩欧美大片| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 在线亚洲精品国产二区图片欧美| 国产真人三级小视频在线观看| av网站免费在线观看视频| 咕卡用的链子| 久久久精品免费免费高清| 免费久久久久久久精品成人欧美视频| 国产一区有黄有色的免费视频| 亚洲成国产人片在线观看| 国产日韩欧美亚洲二区| 99热网站在线观看| 极品少妇高潮喷水抽搐| 99久久精品国产亚洲精品| 丝瓜视频免费看黄片| 久久精品久久久久久噜噜老黄| 18禁观看日本| 国产国语露脸激情在线看| 日韩制服丝袜自拍偷拍| 菩萨蛮人人尽说江南好唐韦庄| 韩国精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 女人精品久久久久毛片| 国产野战对白在线观看| 一本色道久久久久久精品综合| 亚洲欧美色中文字幕在线| 亚洲国产欧美在线一区| 成年动漫av网址| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 国产精品一区二区免费欧美 | 欧美日韩成人在线一区二区| 涩涩av久久男人的天堂| 国产一区二区 视频在线| 欧美日韩亚洲综合一区二区三区_| 国产日韩欧美视频二区| 亚洲免费av在线视频| 尾随美女入室| 无限看片的www在线观看| 久久精品亚洲av国产电影网| 一个人免费看片子| 50天的宝宝边吃奶边哭怎么回事| 久久人妻熟女aⅴ| 在线观看www视频免费| 各种免费的搞黄视频| 99re6热这里在线精品视频| 日本欧美国产在线视频| 99精品久久久久人妻精品| avwww免费| 在线观看免费高清a一片| 久久久亚洲精品成人影院| 91字幕亚洲| 久久久精品94久久精品| 老司机影院毛片| 国产日韩欧美视频二区| 一本色道久久久久久精品综合| 亚洲,欧美,日韩| 不卡av一区二区三区| 国产熟女午夜一区二区三区| 成年动漫av网址| 91精品伊人久久大香线蕉| 久久精品成人免费网站| 精品亚洲成国产av| 精品少妇久久久久久888优播| 国产成人精品无人区| 天天躁夜夜躁狠狠躁躁| 久久久久精品国产欧美久久久 | 久久久精品免费免费高清| 午夜日韩欧美国产| 只有这里有精品99| 免费少妇av软件| 免费在线观看日本一区| 久久久久久久久久久久大奶| 国产在线一区二区三区精| 青春草亚洲视频在线观看| 黄频高清免费视频| 国产成人欧美| 国产亚洲午夜精品一区二区久久| 亚洲人成77777在线视频| 天堂俺去俺来也www色官网| 狂野欧美激情性xxxx| 久久精品国产亚洲av涩爱| 手机成人av网站| 亚洲国产av影院在线观看| 亚洲国产精品999| 欧美精品啪啪一区二区三区 | av线在线观看网站| 午夜免费观看性视频| 免费av中文字幕在线| av视频免费观看在线观看| 男女边吃奶边做爰视频| 国产一卡二卡三卡精品| 人人澡人人妻人| 亚洲久久久国产精品| 精品少妇久久久久久888优播| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 欧美精品啪啪一区二区三区 | 日韩 欧美 亚洲 中文字幕| 久久久精品94久久精品| 一本一本久久a久久精品综合妖精| 欧美久久黑人一区二区| 国产精品九九99| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 久久国产精品影院| 亚洲天堂av无毛| 亚洲伊人色综图| 大码成人一级视频| 久久天堂一区二区三区四区| 人人澡人人妻人| 90打野战视频偷拍视频| 一本大道久久a久久精品| 国产精品 国内视频| 免费看av在线观看网站| 两性夫妻黄色片| 久久国产精品男人的天堂亚洲| 国产成人免费无遮挡视频|