• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鐵催化芳基格氏試劑的聯(lián)芳交叉偶聯(lián)的反應(yīng)機理

    2015-02-18 12:06:40任清華沈曉燕
    物理化學(xué)學(xué)報 2015年5期
    關(guān)鍵詞:化學(xué)系理學(xué)院芳基

    任清華 沈曉燕

    (上海大學(xué)理學(xué)院化學(xué)系,上海200444)

    1 lntroduction

    Transition metal-catalyzed cross-coupling reactions are of utmost importance for the formation of carbon-carbon as well as carbon-heteroatom bonds.In general,palladium and nickel catalysts dominate this field,such as,Negishi,1,2Suzuki,3,4Heck,5,6Stille,7,8and Kumada-Corriu9-11reactions.The biaryl compounds are very important intermediates in modern organic synthesis and pharmaceutical products.12Palladium-and nickel-catalyzed crosscoupling reactions are among the most versatile methods for the synthesis of biaryl compounds.Suzuki-Miyaura reactions between arylboronic acids and aryl halides are widely applied because of their especially mild conditions and excellent compatibility with many functional groups.13-16However,palladium and nickel catalysts are limited by the high price or considerable toxicity,especially for industrial processes.Iron-catalyzed cross-coupling reactions have become increasingly important in the construction of complex molecular frameworks in the last few decades due to their high efficiency,cheapness,non-toxicity,and the environmental health of the simple iron salt precatalysts.17-20The complex,airsensitive ligands are also not required and the mild reaction conditions tolerate various functional groups.

    Furstneret al.21,22reported a lot of highly selective iron-catalyzed cross-coupling reactions of aryl halides with alkyl magnesium halides and the iron-catalyzed cross-coupling reactions have matured into a class of effective carbon-carbon as well as carbon-heteroatom bond-forming reactions.23-27In general,the iron-catalyzed biaryl syntheses from aryl Grignard species and aryl halides are proved unselective.22,28-30For example,Hatakeyamaet al.31,32reported a method which requires a special precatalyst combination of iron(II)fluoride and a carbine ligand and also needs the generation of the catalytically active species in a prior step to improve the selectivity.

    Later,von Wangelinet al.33paid attention to many papers34,35about the rich coordination abilities of olefins with iron in low oxidation states and proposed a new method of activation for olefin-substituted aryl chlorides.The sequential olefin coordination at the catalyst and haptotropic migration could affect C―Cl bond activation of chlorostyrenes.36They had reported an efficient iron-catalyzed biaryl synthesis where the reaction of aryl Grignard species with chlorostyrenes proceeded under mild reaction conditions in the presence of iron(III)tris(acetylacetonate)[Fe(acac)3]as precatalyst.36

    The theoretical understanding of the reaction mechanisms of the transition metal-catalyzed processes may shed light on how to design more powerful catalysts and how to control the catalysis process.However,the mechanisms of the iron-catalyzed reactions remain rather obscure.Kochi,37Furstner,20,22Bogdanovic,38Norrby,39et al.have reported some mechanisms of iron-catalyzed crosscoupling reactions of Grignard reagents.Our group40have investigated the mechanisms of iron-catalyzed cross-coupling reactions of alkyl Grignard reagents using density functional theory calculations.

    The catalyzed cycles start form the inorganic Grignard reagent[Fe(MgX)2],where X=Br or I.[Fe(MgX)2]consists of two magnesium atoms and one iron center that are connectedviatwo covalent intermetallic bonds.It was generally used to explain many of the experimental results by Furstneret al,20-22where the initial[Fe(MgX)2]is formed from the iron precatalyst and RMgX.The mechanism is through Fe(-II)and Fe(0)catalytic cycle,where the iron center is Fe(-II)in[Fe(MgX)2],and Fe(0)in[1RFe(MgX)]and[1R-(2R)-Fe(MgX)2].The multiplicity of Fe is set as 1.As far as we know,detailed theoretical studies concerning the[Fe(MgX)2]catalyzed biaryl cross coupling processes of aryl Grignard reagents have not yet been performed,although the experimental results involving iron-catalyzed cross-coupling of aryl Grignard reagents have recently been reported.41,42

    Here,we select one typical reaction in the experimental work of Gulak and von Wangelin36as an example,which is depicted in Scheme 1,in order to gain insight into the mechanisms of ironcatalyzed cross-coupling reactions of aryl Grignard reagents.The experimental reaction was carried out in tetrahydrofuran(THF)/N-methyl-2-pyrrolidone(NMP)using Fe(acac)3(5%,molar fraction)as the precatalyst.Fe(acac)3reacts with R-MgBr to yield the inorganic Grignard reagent[Fe(MgBr)2],which is readily soluble in THF.Our thorough theoretical investigation is applied to[Fe(MgBr)2]catalyzed cross-coupling reaction betweenorthochlorostyrene[Cl-Ph-vinyl]and phenylmagnesium bromide[PhMgBr]using density functional theory(DFT)calculations with the B3LYP method.43-48

    We will study two mechanisms.One mechanism is named as Cycle A with forming[Ar-Fe(MgBr)]in the catalytic cycle and another mechanism is named as Cycle B without forming[Ar-Fe(MgBr)]in the catalytic cycle.Our theoretical studies will answer the questions:Which catalytic cycle is favored?Which step is the rate-determining step in the whole catalytic cycle?Is it possible to lower the energy barrier when considering the solvent effect?Answers to these questions will improve the understanding of ironcatalyzed cross-coupling of aryl Grignard reagents.

    2 Computational methods

    All DFT calculations were performed using the Gaussian 03 program49with the B3LYPhybrid functional.43-48The 6-311++G(d,p)basis set was used for C,H,Cl,Br,and Mg.50,51The SDD quasirelativistic pseudopotential and associated basis set was used for iron.52All equilibrium structures of the gas phase geometries were fully optimized without any symmetry restriction and then the vibrational frequencies analysis was performed to ensure that the local minima had zero imaginary frequencies and the transition state had exactly one.The solvent effect was calculated using the conductor polarized continuum model(CPCM)method53with the UFF radii on the gas-phase optimized geometries.The polarizable continuum model(PCM)is a commonly used method in computational chemistry to model salvation effects.It models the solvent as a polarizable continuum,rather than individual molecules,which has two popular types:dielectric PCM(DPCM)and conductor-like PCM(CPCM).Both the electronic and nonelectronic free energies in solution were added to the gas-phase Gibbs free energies to obtain the solution Gibbs free energies in THF,ΔGsol.40All the solution-phase free energies reported in the paper correspond to the reference state of 1 mol?L-1,298 K.

    Scheme 1 Iron-catalyzed cross-coupling reaction between ortho-chlorostyrene and phenylmagnesium bromide

    3 Results and discussion

    3.1 Catalytic Cycle A with forming[Ar-Fe(MgBr)]

    The catalytic cycle A is similar as the mechanistic proposal of Furstneret al.,22which is outlined in Fig.1.It includes three basic steps:(I)oxidation of[Fe(MgBr)2]to obtain[Ar-Fe(MgBr)],(II)addition with phenylmagnesium bromide to yield[Ar-(phenyl)-Fe(MgBr)2],and(III)reductive elimination to return to[Fe(MgBr)2].The cycle A includes three transition states(TS1,TS2,TS3).The fully optimized structures of the reactant R1,the catalyst CA,the complex 2,the transition state TS1,the intermediates 3 and 4,and the product P2are shown in Fig.2.The fully optimized geometries of the reactant R2,the complex 5,the transition states TS2,TS3,the intermediate 6,and the final product P1are shown in Fig.3.The values of the bonding distances(the unit is nm)are also given in Figs.2 and 3.

    (I)oxidation of[Fe(MgBr)2]to obtain[Ar-Fe(MgBr)].The approach of R1toward the catalyst CA,[Fe(MgBr)2],leads to the formation of a complex 2.From 2,after passing through a transition state TS1,the intermediate 3 of oxidative addition is obtained.In the optimized geometry of 2(see Fig.2),the iron atom is above the center of the phenyl and is far from the1C―Cl bond.The distances of1C―Fe and Cl―Fe are 0.207 and 0.342 nm,respectively.Then in the transition state TS1,the chlorine atom approaches toward2Mg atom around the iron center departing from1C atom.The distance of Cl―Fe is 0.239 nm.It becomes 0.224 nm in the optimized geometry of 3,accompanying with the formation of Cl―2Mg bond(0.242 nm,see Fig.2).At the same time,the distance of Fe―2Mg increases from 0.253 nm in the optimized structure of 2 to 0.260 nm in the optimized structure of 3 because of the bonding of Cl atom with the2Mg atom and the interaction of Cl atom with Fe atom.The weakening process of the bonding of Fe―2Mg is beneficial for the further reaction,i.e.,the covalent intermetallic bonding of Fe―2Mg breaks and the molecule P2dissociates from 3 to form the intermediate 4,[(BrMg)-Fe-(Ph-vinyl)].The bond distances of1C―Fe and Fe―1Mg in the optimized structure of 4 are 0.189 and 0.245 nm,respectively.

    Fig.1 Outline of the iron-catalyzed cross-coupling reaction mechanism for the product P1from ortho-chlorostyrene R1and phenylmagnesium bromide R2

    Fig.2 Fully optimized structures of the reactant R1,the catalyst CA,the intermediates 2,3,4,the transition state TS1,and the product P2

    (II)Addition of another reactant phenylmagnesium bromide R2to 4 yields the intermediate 6,[Ar-(Ph-)-Fe(MgBr)2].After the intermediate 4 is formed,the approach of R2toward 4,leads to the formation of a complex 5.From 5,passing through a threemembered-ring transition state TS2,the intermediate 6 is formed.From the fully optimized structures of 5,TS2and 6 shown in Fig.3,it can be seen that the Fe―2Mg distance is 0.267 nm in TS2,compared to that of 0.277 nm in 5.The distance of Fe―2C also decreases from 0.439 nm in 5 to 0.354 nm in TS2,so that it is easy for atom2C to attack Fe atom in TS2,leading to the formation of a Fe―2C bond to obtain the intemediate 6.The bond distance of Fe―2C in 6 is 0.189 nm.

    (III)Finally,reductive elimination of 6 to return to the catalyst CA,[Fe(MgBr)2].This process passes through the third transition state TS3to form the product P1,[Ph-Ph-vinyl]and to regenerate the original catalyst CA.From the fully optimized structures of 6,TS3,and P1shown in Fig.3,the2C and1C atoms in TS3go closer to 0.179 nm from 0.287 nm in 6 and finally the bond of2C―1C is formed in P1(0.149 nm).

    Fig.3 Fully optimized structures of the reactant R2,the intermediates 5,6,the transition states TS2,TS3,and the final product P1

    The electronic energy profiles for the whole catalytic cycles for iron-catalyzed cross-coupling reaction betweenortho-chlorostyrene and phenylmagnesium bromide are depicted in Fig.4,where the summation of the electronic energies of the reactant R1and the catalyst CAis set as zero energy.

    From Fig.4,it can be seen that the energy barrier from the complex 2 to the first transition state TS1is 106.11 kJ?mol-1.The energy value needed for the process in which the molecule P2,[Cl-Mg-Br],dissociates from the intermediate 3 to form the intermediate 4 is 115.16 kJ?mol-1.It refers to the breaking of the strong covalent intermetallic bonding of Mg―Fe.This could be offset by the large exothermicity(-139.64 kJ?mol-1)process forming the intermediate 3 from 2.The transition state connecting 3 and 4 has not been found after many attempts.The energy barrier of TS2from 5 to form a stable structure 6[Ar-(phenyl)-Fe-(MgBr)2]is small(4.87 kJ?mol-1).

    The energy barrier of TS3to form the final product P1from the intermediate 6 when releasing the catalyst CA through the reductive elimination is 96.47 kJ?mol-1.This process is needed to break two Fe―C bonds.In all,the energy barriers for the steps of 2?3,3?4 and 6?CA+P1are closer and the step of 3?4 is the rate-limiting step in the whole catalytic cycle of the mechanism of CycleAfor the gas calculation.

    Fig.4 Electronic energy profiles for the overall catalytic cycles of the iron-catalyzed cross-coupling reaction

    3.2 Catalytic cycle B without forming[Ar-Fe(MgBr)]

    Considering that the required electronic energy for the process in which the molecule P2,[Cl-Mg-Br]dissociates from the intermediate 3 to form the intermediate 4 is very high by 115.16 kJ?mol-1(see Fig.4),it could be possible that there is another way to lower the energy barrier,namely if phenylmagnesium bromide(R2)attacks the intermediate 3 directly before the formation of 4,[Ar-Fe(MgBr)].Our previous calculations40about[Fe(MgBr)2]catalyzed cross-coupling reaction between 4-chlorobenzoic acid methyl ester andn-hexylicmagnesium bromide have proved that the new path is easier than the catalytic cycleAwith forming[Ar-Fe(MgBr)].We did the similar calculations for the reaction betweenortho-chlorostyrene and phenylmagnesium bromide.The catalytic cycle is named as cycle B,which is also shown in Fig.1.

    From Fig.1,it can be seen that the reactant R2firstly approaches toward the intermediate 3 to form the complex 7.From 7,after passing through one transition state TS4,an intermediate 8 is formed.The fully optimized structures of 7,TS4and 8 in the gas phase are shown in Fig.5.Then the molecule P2dissociates from the intermediate 8 to yield 6.In the optimized geometry of 7,the distance of Cl―3Mg is 0.245 nm.The Cl―2Mg bond length becomes longer to 0.264 nm compared to that of 0.242 nm in 3,which means that the Cl atom is now linked to the3Mg atom.The distance of Cl with Fe also becomes longer to 0.241 nm,compared to that of 0.224 nm in 3.The distances of Fe―3Br and Fe―3Mg are 0.250,0.345 nm,respectively.Next,the atom3Br in 7 rotates around the3Mg atom to bring the atom2C close to the Fe atom,so that the atom2C can attack the Fe center easily.In the optimized structure of the transition state TS4,the distance of atom2C from the Fe atom is 0.258 nm.It becomes shorter to 0.201 nm in the optimized structure of 8,which is close to the value of 0.189 nm in the optimized structure of 6(see Fig.3).The distances of2C―3Mg and Fe―3Mg become longer to 0.225,0.316 nm in 8,compared to those of 0.210,0.264 nm in TS4,respectively.It is beneficial for the process in which the molecule P2dissociates from the intermediate 8 to yield 6.

    Fig.5 Fully optimized structures of the intermediates 7,8 and transition state TS4for the Cycle B

    The electronic energy profile from the intermediate 3 to the intermediate 6 for Cycle B is also depicted in Fig.4.From Fig.4,it can be seen that the energy barrier to pass over the transitional state TS4is only 55.21 kJ?mol-1,which is much smaller than 115.16 kJ?mol-1required when the molecule P2,[Cl-Mg-Br]dissociates directly from the intermediate 3 before another reactant R2attacks.However,the energy needed for the process when the molecule P2,[Cl-Mg-Br]dissociates from the intermediate 8 to form 6 is very high,i.e.,138.57 kJ?mol-1.It looks that the Cycle B is not favored than CycleAfor the gas phase calculations,which is different from the previous calculations about[Fe(MgBr)2]catalyzed cross-coupling reaction betweenn-hexylicmagnesium bromide and 4-chlorobenzoic acid methyl ester.40

    3.3 Solvent effect

    All of the above results are calculated in the gas phase.According to our previous study about[Fe(MgBr)2]catalyzed crosscoupling reaction between 4-chlorobenzoic acid methyl ester andn-hexylicmagnesium bromide,40the CPCM method is suitable to calculate the solvent effect for the iron-catalyzed cross-coupling reactions of alkyl Grignard reagents.Now we used the same CPCM method to investigate the solvent effect for the[Fe(MgBr)2]catalyzed cross-coupling reaction betweenortho-chlorostyrene and phenylmagnesium bromide.In order to clarify whether the solvent effect can play a significant role in the process,we compare the Gibbs free energies ΔGgand the Gibbs free energies in THF solution,ΔGsolfor the overall catalytic cycles of two mechanisms(Cycle A and Cycle B),which are shown in Fig.6.The former is depicted as the solid line and the latter is drawn as the dashed line.

    From Fig.6,it can be seen that the solvent effect is very obvious for the steps of dissociating P2from 3 to form 4 in the CycleAor from 8 to obtain 6 in the Cycle B.ΔGsol(3?4)is-55.94 kJ?mol-1compared that ΔGg(3?4)is 67.02 kJ?mol-1,Similarly,ΔGsol(8?6)is-17.00 kJ?mol-1compared that ΔGg(8?6)is 86.69 kJ?mol-1.The solvent effect is exothermic.

    The solvent effect causes large changes of the ΔGvalues for the processes of(3?4)in the CycleAand of(8?6)in the Cycle B.As far as we know,the solute is placed in a cavity in the solvent using CPCM method.The free energy of solvation was calculated from the surface charges of the solute and their interactions with the solvent.40,54In general,the solvent effect is large for the dissociation processes because the gas phase calculations strongly favor the formation of clusters and make dissociation reactions more difficult than in condensed phases.40,54-56For example,Schubert and Papai57has reported that the solvent effect was large for the process of dissociation of a PMe3ligand in the C―C coupling.Other calculations reported by Castellaniet al.58also showed that the solvent effect can change the dissociation energy value from 332.31 kJ?mol-1in the gas phase to 168.45 kJ?mol-1within the toluene solvent for the process of dissociation of μ-CH3contact ion-pair.

    Fig.6 Gibbs free energy in gas phase(ΔGg,solid line)and Gibbs free energies in THF solution(ΔGsol,298 K,dashed line)for the overall catalytic cycles

    We can see that the energy barrier ΔGsolfrom 4 through 5 to TS2in THF solvent during the process from 3 to 6 for CycleAis 39.76 kJ?mol-1.However,the energy barrier ΔGsolfrom 7 through TS4to 8 in THF solvent during the process from 3 to 6 for Cycle B is only 7.74 kJ?mol-1,which is smaller than that of CycleA.So the catalytic Cycle B without forming[Ar-Fe(MgBr)]is favored over the catalytic Cycle A with forming[Ar-Fe(MgBr)]when considering the solvent effect,this conclusion keeps line with our previous study.40

    For the other steps from 2 to TS1and 6 to TS3,the solvent effect is also large,where the ΔGsol(2?TS1)in THF is 68.90 kJ?mol-1compared to ΔGg(2?TS1)in the gas phase(96.98 kJ?mol-1)and the ΔGsol(6?TS3)in THF is 82.98 kJ?mol-1compared to ΔGg(6?TS3)in the gas phase(105.63 kJ?mol-1).It can be seen that the solvent effects can lower the energy barrier.These variations can be clearly seen in Fig.6.

    In all,the rate-limiting step in the whole catalytic cycles for both CycleAand Cycle B is the reductive elimination of 6 to form P1when the catalyst CA is re-generated,where the ΔGsolis 82.98 kJ?mol-1in THF solvent using the CPCM method.The conclusion is the same as our previous study about[Fe(MgBr)2]catalyzed cross-coupling reaction between 4-chlorobenzoic acid methyl ester andn-hexylicmagnesium bromide.40The CPCM method has been widely used to study the solvent effect for transition metalcatalyzed cross-coupling reactions.59,60

    4 Conclusions

    Our studies reported the first theoretical investigation of[Fe(MgBr)2]catalyzed cross-coupling reaction betweenorthochlorostyrene and phenylmagnesium bromide using DFT calculations.We studied two mechanisms.One is named as Cycle A with forming[Ar-Fe(MgBr)]in the catalytic cycle.It includes three basic steps:(I)oxidation of[Fe(MgBr)2]to obtain the intermediate 4,[Ar-Fe(MgBr)],(II)addition to yield the intermediate 6,[Ar-(phenyl)-Fe(MgBr)2]and(III)reductive elimination to return to the catalyst CA,[Fe(MgBr)2].Another is named as Cycle B without forming[Ar-Fe(MgBr)]in the catalytic cycle.In the first step,the phenylmagnesium bromide R2attacks the intermediate 3 directly to form a new intermediate 7 before the molecule P2[Cl-Mg-Br]dissociates to form the intemediate 4,[Ar-Fe(MgBr)].

    The solvent effects can lower the energy barrier.The catalytic Cycle B without forming[Ar-Fe(MgBr)]is favored over the catalytic Cycle A with forming[Ar-Fe(MgBr)]when considering the solvent effect.The rate-limiting step in the whole catalytic cycles for both Cycle A and Cycle B is the reductive elimination of 6 to form P1when the catalyst CA is re-generated,where the ΔGsolis 82.98 kJ?mol-1in THF solvent using the CPCM method.

    Supporting lnformation:Detailed molecule coordinates of all optimized structures and the calculated energy values are included.This information is available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    (1) Negishi,E.Accounts Chem.Res.1982,15,340.doi:10.1021/ar00083a001

    (2) Yang,Y.;Oldenhuis,N.J.;Buchwald,S.L.Angew.Chem.Int.Edit.2013,125,643.doi:10.1002/ange.201207750

    (3) Blangetti,M.;Rosso,H.;Prandi,C.;Deagostino,A.;Venturello,P.Molecules2013,18,1188.doi:10.3390/molecules18011188

    (4)Miyaura,N.;Suzuki,A.J.Chem.Soc.Chem.Commun.1979,19,866.doi:10.1039/C39790000866

    (5) Heck,R.F.;Nolley,J.P.J.Org.Chem.1972,37,2320.doi:10.1021/jo00979a024

    (6) Cabri,W.;Candiani,I.Accounts Chem.Res.1995,28,2.doi:10.1021/ar00049a001

    (7) Milstein,D.;Stille,J.K.J.Am.Chem.Soc.1978,100,3636.doi:10.1021/ja00479a077

    (8)Yabe,Y.;Maegawa,T.;Monguchi,Y.;Sajiki,H.Tetrahedron2010,66,8654.doi:10.1016/j.tet.2010.09.027

    (9)Tamao,K.;Sumitani,K.;Kumada,M.J.Am.Chem.Soc.1972,94,4374.doi:10.1021/ja00767a075

    (10)Yang,L.M.;Huang,L.F.;Luh,T.Y.Org.Lett.2004,6,1461.doi:10.1021/ol049686g

    (11)Vechorkin,O.;Proust,V.;Hu,X.J.Am.Chem.Soc.2009,131,9756.doi:10.1021/ja9027378

    (12) Torssell,K.B.Natural Product Chemistry:a Mechanistic and Biosynthetic Approach to Secondary Metabolism;John Wiley&Sons:New Jersey,1983;p 401.

    (13) Hassan,J.;Sevignon,M.;Gozzi,C.;Schulz,E.;Lemaire,M.Chem.Rev.2002,102,1359.doi:10.1021/cr000664r

    (14) Miyaura,N.;Suzuki,A.Chem.Rev.1995,95,2457.doi:10.1021/cr00039a007

    (15) Bringmann,G.;Mortimer,A.J.P.;Keller,P.A.;Gresser,M.J.;Garner,J.;Breuning,M.Angew.Chem.Int.Edit.2005,44,5384.

    (16) Kirsch,P.;Bremer,M.Angew.Chem.Int.Edit.2000,39,4216.

    (17) Bauer,E.B.Curr.Org.Chem.2008,12,1341.doi:10.2174/138527208786241556

    (18) Bolm,C.;Legros,J.;Paih,J.L.;Zani,L.Chem.Rev.2004,104,6217.doi:10.1021/cr040664h

    (19)Czaplik,W.M.;Mayer,M.;Cvengros,J.;von Wangelin,A.J.ChemSusChem2009,2,396.doi:10.1002/cssc.v2:5

    (20) Sherry,B.D.;Furstner,A.Accounts Chem.Res.2008,41,1500.doi:10.1021/ar800039x

    (21) Furstner,A.;Leitner,A.Angew.Chem.Int.Edit.2002,41,609.

    (22) Furstner,A.;Leitner,A.;Mendez,M.;Krause,H.J.Am.Chem.Soc.2002,124,13856.doi:10.1021/ja027190t

    (23)Correa,A.;Mancheno,O.G.;Bolm,C.Chem.Soc.Rev.2008,37,1108.doi:10.1039/b801794h

    (24) Furstner,A.;Martin,R.Chem.Lett.2005,34,624.doi:10.1246/cl.2005.624

    (25) Furstner,A.;Martin,R.;Krause,H.;Seidel,G.;Goddard,R.;Lehmann,C.W.J.Am.Chem.Soc.2008,130,8773.doi:10.1021/ja801466t

    (26)Noda,D.;Sunada,Y.;Hatakeyama,T.;Nakamura,M.;Nagashima,H.J.Am.Chem.Soc.2009,131,6078.doi:10.1021/ja901262g

    (27) Scheiper,B.;Bonnekessel,M.;Krause,H.;Furstner,A.J.Org.Chem.2004,69,3943.doi:10.1021/jo0498866

    (28) Molander,G.A.;Rahn,B.J.;Shubert,D.C.Tetrahedron Lett.1983,24,5449.doi:10.1016/S0040-4039(00)94109-1

    (29) Quintin,J.;Franck,X.;Hocquemiller,R.;Figadere,B.Tetrahedron Lett.2002,43,3547.doi:10.1016/S0040-4039(02)00568-3

    (30) Hocek,M.;Dvorakova,H.J.Org.Chem.2003,68,5773.doi:10.1021/jo034351i

    (31)Hatakeyama,T.;Nakamura,M.J.Am.Chem.Soc.2007,129,9844.doi:10.1021/ja073084l

    (32) Hatakeyama,T.;Hashimoto,S.;Ishizuka,K.;Nakamura,M.J.Am.Chem.Soc.2009,131,11949.doi:10.1021/ja9039289

    (33)Mayer,M.;Welther,A.;von Wangelin,A.J.ChemCatChem2011,3,1567.doi:10.1002/cctc.v3.10

    (34)Clayton,H.S.;Moss,J.R.;Dry,M.E.J.Organomet.Chem.2003,688,181.doi:10.1016/j.jorganchem.2003.08.044

    (35) Knolker,H.J.Chem.Soc.Rev.1999,28,151.doi:10.1039/a705401g

    (36) Gulak,S.;von Wangelin,A.J.Angew.Chem.Int.Edit.2012,51,1357.doi:10.1002/anie.201106110

    (37) Smith,R.S.;Kochi,J.K.J.Org.Chem.1976,41,502.doi:10.1021/jo00865a019

    (38)Bogdanovic,B.;Schwickardi,M.Angew.Chem.Int.Edit.2000,39,4610.

    (39) Kleimark,J.;HedstromA.;Larsson P.F.;Johansson,C.;Norrby,P.ChemCatChem2009,1,152.doi:10.1002/cctc.v1:1

    (40) Ren,Q.;Guan,S.;Jiang,F.;Fang,J.J.Phys.Chem.A2013,117,756.doi:10.1021/jp3045498

    (41)Czaplik,W.M.;Mayer,M.;von Wangelin,A.J.ChemCatChem2011,3,135.doi:10.1002/cctc.201000276

    (42) Mo,Z.;Zhang,Q.;Deng,L.Organometallics2012,31,6518.doi:10.1021/om300722g

    (43) Becke,A.D.Phys.Rev.A1988,38,3098.doi:10.1103/PhysRevA.38.3098

    (44) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/1.464913

    (45) Hertwig,R.H.;Koch,W.Chem.Phys.Lett.1997,268,345.doi:10.1016/S0009-2614(97)00207-8

    (46)Lee,C.T.;Yang,W.T.;Parr,R.G.Phys.Rev.B1988,37,785.doi:10.1103/PhysRevB.37.785

    (47) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.doi:10.1021/j100096a001

    (48) Vosko,S.H.;Wilk,L.;Nusair,M.Can.J.Phys.1980,58,1200.doi:10.1139/p80-159

    (49) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision C.02;Gaussian Inc.;Wallingford,CT,2004.

    (50) Krishnan,R.;Binkley,J.S.;Seeger,R.;Pople,J.A.J.Chem.Phys.1980,72,650.doi:10.1063/1.438955

    (51) McLean,A.D.;Chandler,G.S.J.Chem.Phys.1980,72,5639.doi:10.1063/1.438980

    (52)Andrae,D.;Haussermann,U.;Dolg,M.;Stoll,H.;Preuss,H.Theor.Chim.Acta.1990,77,123.doi:10.1007/BF01114537

    (53)Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem.2003,24,669.doi:10.1002/jcc.10189

    (54) Castejon,H.;Wiberg,K.B.J.Am.Chem.Soc.1999,121,2139.doi:10.1021/ja983736t

    (55)Perng,B.C.;Newton,M.D.;Raineri,F.O.;Friedman,H.L.J.Chem.Phys.1996,104,7153 and 7177.

    (56) Najafi,M.;Zahedi,M.;Klein,E.Comput.Theor.Chem.2011,978,16.doi:10.1016/j.comptc.2011.09.014

    (57) Schubert,G.;Papai,I.J.Am.Chem.Soc.2003,125,14847.doi:10.1021/ja035791u

    (58) Belelli,P.G.;Damiani,D.E.;Castellani,N.J.Chem.Phys.Lett.2005,401,515.doi:10.1016/j.cplett.2004.11.089

    (59) Feng,J.;Ren,Q.H.Acta.Phys.-Chim.Sin.2014,30,821.[蔣 峰,任清華.物理化學(xué)學(xué)報,2014,30,821.]

    (60) Nova,A.;Ujaque,G.;Maseras,F.;Liedos,A.;Espinet,P.J.Am.Chem.Soc.2006,128,14571.doi:10.1021/ja0635736

    猜你喜歡
    化學(xué)系理學(xué)院芳基
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    新型3-氧-3-芳基-2-芳基腙-丙腈衍生物的合成及其抗癌活性
    一種新型芳基烷基磺酸鹽的制備與性能評價
    化工進展(2015年6期)2015-11-13 00:27:23
    3-芳基苯并呋喃酮類化合物的合成
    中國塑料(2015年10期)2015-10-14 01:13:13
    楊梅酮的抗氧化活性
    在线永久观看黄色视频| 免费不卡黄色视频| 亚洲情色 制服丝袜| www日本在线高清视频| 亚洲专区中文字幕在线| 黄片小视频在线播放| 狠狠婷婷综合久久久久久88av| 久久午夜亚洲精品久久| 搡老乐熟女国产| 亚洲va日本ⅴa欧美va伊人久久| 999久久久国产精品视频| 一进一出好大好爽视频| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色 | 久久久久久免费高清国产稀缺| 免费少妇av软件| 90打野战视频偷拍视频| 国产成人一区二区三区免费视频网站| 精品免费久久久久久久清纯 | 国产xxxxx性猛交| 色94色欧美一区二区| 国产色视频综合| 成人国语在线视频| 一本大道久久a久久精品| 中文字幕制服av| 18禁国产床啪视频网站| 久久精品91无色码中文字幕| 男女高潮啪啪啪动态图| 麻豆成人av在线观看| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 亚洲人成电影观看| 日韩欧美在线二视频 | 久久精品成人免费网站| 亚洲avbb在线观看| av免费在线观看网站| 搡老岳熟女国产| 午夜福利在线免费观看网站| 亚洲五月婷婷丁香| 久久国产精品人妻蜜桃| 一边摸一边做爽爽视频免费| 精品乱码久久久久久99久播| 两性夫妻黄色片| 色尼玛亚洲综合影院| 欧美国产精品va在线观看不卡| 国产精品影院久久| 极品教师在线免费播放| 一进一出抽搐动态| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 岛国毛片在线播放| 国产熟女午夜一区二区三区| 最近最新中文字幕大全电影3 | 久久久久精品人妻al黑| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 亚洲精品在线美女| 成年人免费黄色播放视频| 成年人黄色毛片网站| 正在播放国产对白刺激| 精品国产超薄肉色丝袜足j| 日韩欧美一区二区三区在线观看 | 在线国产一区二区在线| 亚洲专区中文字幕在线| 亚洲九九香蕉| 99久久精品国产亚洲精品| 久久 成人 亚洲| 老司机靠b影院| 人妻一区二区av| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 少妇 在线观看| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 国产精品国产av在线观看| av超薄肉色丝袜交足视频| 自拍欧美九色日韩亚洲蝌蚪91| 韩国av一区二区三区四区| 久久人人97超碰香蕉20202| 成年人免费黄色播放视频| 中文字幕人妻熟女乱码| 黑人操中国人逼视频| 精品人妻1区二区| 露出奶头的视频| 久久久精品国产亚洲av高清涩受| 午夜福利影视在线免费观看| videos熟女内射| 成在线人永久免费视频| 色综合欧美亚洲国产小说| av不卡在线播放| 在线视频色国产色| a级毛片在线看网站| 夫妻午夜视频| 成年版毛片免费区| 国产精品免费一区二区三区在线 | 欧美乱色亚洲激情| 久久久精品免费免费高清| 亚洲黑人精品在线| 91大片在线观看| 女同久久另类99精品国产91| 日本黄色日本黄色录像| 99久久精品国产亚洲精品| 美国免费a级毛片| 涩涩av久久男人的天堂| 精品福利永久在线观看| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 国产单亲对白刺激| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 国产精品98久久久久久宅男小说| 99精品欧美一区二区三区四区| 欧美日韩成人在线一区二区| 国产精品电影一区二区三区 | 91麻豆av在线| 亚洲专区国产一区二区| 国产一区二区三区综合在线观看| 一级作爱视频免费观看| 超碰成人久久| avwww免费| 国产黄色免费在线视频| 亚洲欧美日韩高清在线视频| 日本五十路高清| 丝袜美腿诱惑在线| 日韩欧美在线二视频 | 精品国产一区二区久久| 在线十欧美十亚洲十日本专区| 精品国产一区二区三区四区第35| 人成视频在线观看免费观看| 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 人妻一区二区av| 在线观看免费午夜福利视频| 中文字幕精品免费在线观看视频| av视频免费观看在线观看| 一区二区三区精品91| 人人澡人人妻人| 美女视频免费永久观看网站| 大陆偷拍与自拍| 国产成人欧美在线观看 | 中文欧美无线码| 免费在线观看日本一区| 高清黄色对白视频在线免费看| 国产精品欧美亚洲77777| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 在线播放国产精品三级| 黑人巨大精品欧美一区二区蜜桃| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 亚洲专区国产一区二区| 女性生殖器流出的白浆| 91麻豆av在线| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 久久国产精品大桥未久av| 欧美成人免费av一区二区三区 | 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕日韩| 大陆偷拍与自拍| 在线av久久热| 又黄又爽又免费观看的视频| 精品人妻熟女毛片av久久网站| 午夜老司机福利片| 欧美精品亚洲一区二区| 色94色欧美一区二区| 777米奇影视久久| 亚洲欧美精品综合一区二区三区| 精品人妻熟女毛片av久久网站| 午夜老司机福利片| 9热在线视频观看99| 亚洲成人国产一区在线观看| 日本wwww免费看| 国产精品久久久久成人av| 国产主播在线观看一区二区| 免费在线观看黄色视频的| 咕卡用的链子| 欧美激情 高清一区二区三区| 免费观看a级毛片全部| 精品卡一卡二卡四卡免费| av在线播放免费不卡| 成人手机av| 真人做人爱边吃奶动态| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| av免费在线观看网站| 日韩三级视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 男女午夜视频在线观看| 久久亚洲真实| 美女福利国产在线| 精品国产美女av久久久久小说| 在线观看免费午夜福利视频| 侵犯人妻中文字幕一二三四区| 岛国毛片在线播放| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费视频网站a站| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 色在线成人网| 亚洲熟女精品中文字幕| 超碰成人久久| 久久久久久久午夜电影 | 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀| 极品人妻少妇av视频| 水蜜桃什么品种好| 久久国产精品大桥未久av| 午夜成年电影在线免费观看| 亚洲精品在线观看二区| 国产精品久久视频播放| 热re99久久国产66热| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 亚洲av熟女| 正在播放国产对白刺激| 老汉色∧v一级毛片| 久久中文字幕一级| xxx96com| 美女午夜性视频免费| 成年人黄色毛片网站| 高清欧美精品videossex| 1024香蕉在线观看| 久久精品国产99精品国产亚洲性色 | 99riav亚洲国产免费| 看片在线看免费视频| 欧美黑人精品巨大| 两人在一起打扑克的视频| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| 夫妻午夜视频| 黑人巨大精品欧美一区二区蜜桃| 欧美精品一区二区免费开放| 曰老女人黄片| 色94色欧美一区二区| 午夜久久久在线观看| 精品一区二区三区视频在线观看免费 | 两个人免费观看高清视频| 午夜精品久久久久久毛片777| 一本大道久久a久久精品| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 18禁裸乳无遮挡免费网站照片 | 国产一卡二卡三卡精品| 成人国语在线视频| 好男人电影高清在线观看| 亚洲av欧美aⅴ国产| 亚洲精品av麻豆狂野| 一区二区日韩欧美中文字幕| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 久久精品国产亚洲av高清一级| 我的亚洲天堂| 在线观看一区二区三区激情| 久久九九热精品免费| netflix在线观看网站| 久久天堂一区二区三区四区| 777米奇影视久久| 自线自在国产av| 大香蕉久久成人网| 国产亚洲av高清不卡| 免费观看人在逋| 亚洲精品久久午夜乱码| 亚洲精品一二三| 狂野欧美激情性xxxx| 国产高清视频在线播放一区| 国产av又大| 国产精品国产高清国产av | 久久久久国产精品人妻aⅴ院 | 成年人午夜在线观看视频| 国产成人精品在线电影| 少妇猛男粗大的猛烈进出视频| 丰满的人妻完整版| 少妇的丰满在线观看| 欧美日韩亚洲高清精品| 中文欧美无线码| 国产精品一区二区精品视频观看| 久久中文字幕一级| 亚洲欧美一区二区三区久久| 露出奶头的视频| xxxhd国产人妻xxx| 99国产精品免费福利视频| 国产激情久久老熟女| av天堂在线播放| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 69av精品久久久久久| cao死你这个sao货| 欧美乱色亚洲激情| 黑丝袜美女国产一区| 欧美最黄视频在线播放免费 | 在线免费观看的www视频| 成人国语在线视频| 亚洲成人免费av在线播放| 在线观看午夜福利视频| 人妻丰满熟妇av一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 不卡一级毛片| 成人手机av| av国产精品久久久久影院| 三上悠亚av全集在线观看| 成人手机av| 很黄的视频免费| 欧美不卡视频在线免费观看 | 亚洲色图综合在线观看| 国产野战对白在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲色图av天堂| 亚洲成av片中文字幕在线观看| 亚洲精品国产色婷婷电影| 国产高清视频在线播放一区| 久久久久久久精品吃奶| www日本在线高清视频| 国产一卡二卡三卡精品| 三级毛片av免费| 一进一出抽搐gif免费好疼 | 又大又爽又粗| 国产激情欧美一区二区| 久久久久精品人妻al黑| 久久草成人影院| 一级a爱视频在线免费观看| 建设人人有责人人尽责人人享有的| 国产一区二区激情短视频| 两性夫妻黄色片| 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 99香蕉大伊视频| 美女视频免费永久观看网站| 国产av精品麻豆| 国产高清国产精品国产三级| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 男男h啪啪无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| 国产区一区二久久| 一级a爱视频在线免费观看| 亚洲精品美女久久久久99蜜臀| xxx96com| 成年人午夜在线观看视频| 久久香蕉国产精品| 欧美精品av麻豆av| 国产主播在线观看一区二区| 久9热在线精品视频| 精品久久久精品久久久| 热99久久久久精品小说推荐| 99热网站在线观看| 一进一出抽搐gif免费好疼 | 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 亚洲欧美色中文字幕在线| 免费看十八禁软件| 一级毛片女人18水好多| 日本精品一区二区三区蜜桃| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 久久午夜亚洲精品久久| 午夜激情av网站| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 欧美精品高潮呻吟av久久| 1024视频免费在线观看| 咕卡用的链子| 他把我摸到了高潮在线观看| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 在线看a的网站| 一级毛片精品| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图| 好男人电影高清在线观看| 亚洲一区二区三区欧美精品| 中文亚洲av片在线观看爽 | av一本久久久久| 久久精品国产亚洲av香蕉五月 | 精品福利观看| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡| 少妇的丰满在线观看| 免费在线观看影片大全网站| 母亲3免费完整高清在线观看| 国产精品98久久久久久宅男小说| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看| 亚洲av成人av| 黑人猛操日本美女一级片| 午夜视频精品福利| 国产麻豆69| 国产亚洲av高清不卡| 色94色欧美一区二区| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 欧美精品一区二区免费开放| 12—13女人毛片做爰片一| 天天操日日干夜夜撸| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 成年女人毛片免费观看观看9 | 嫩草影视91久久| 日本一区二区免费在线视频| 变态另类成人亚洲欧美熟女 | 亚洲色图av天堂| 亚洲精品美女久久av网站| 久久久国产一区二区| 久久精品国产亚洲av香蕉五月 | 午夜福利视频在线观看免费| 免费看十八禁软件| 美女福利国产在线| 精品乱码久久久久久99久播| 看免费av毛片| 他把我摸到了高潮在线观看| 伦理电影免费视频| 一a级毛片在线观看| 午夜久久久在线观看| 久久久久久人人人人人| 精品一区二区三区四区五区乱码| 久久国产乱子伦精品免费另类| 桃红色精品国产亚洲av| 欧美日韩精品网址| 国产色视频综合| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 又紧又爽又黄一区二区| 两性夫妻黄色片| av不卡在线播放| 电影成人av| 国产成+人综合+亚洲专区| 91成年电影在线观看| 伦理电影免费视频| 岛国毛片在线播放| 亚洲欧美日韩高清在线视频| 日韩视频一区二区在线观看| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 男男h啪啪无遮挡| 黄频高清免费视频| 国产精品亚洲一级av第二区| 欧美色视频一区免费| 中文亚洲av片在线观看爽 | 亚洲欧美激情在线| 午夜亚洲福利在线播放| 国产精品 欧美亚洲| 搡老岳熟女国产| av一本久久久久| 人人妻人人爽人人添夜夜欢视频| 国产精品 欧美亚洲| ponron亚洲| 久久久国产成人精品二区 | 99久久人妻综合| 又大又爽又粗| 日韩免费av在线播放| 视频在线观看一区二区三区| 在线国产一区二区在线| 欧美日本中文国产一区发布| 国产片内射在线| 久久久精品区二区三区| 69av精品久久久久久| 热99国产精品久久久久久7| 深夜精品福利| 欧美乱码精品一区二区三区| 国产精品一区二区在线观看99| 亚洲国产精品合色在线| 国产亚洲精品久久久久5区| 欧美国产精品一级二级三级| 一区福利在线观看| 狂野欧美激情性xxxx| 午夜91福利影院| 99re在线观看精品视频| 黄片播放在线免费| 国产一区有黄有色的免费视频| 亚洲欧洲精品一区二区精品久久久| 亚洲第一av免费看| 最近最新中文字幕大全电影3 | 亚洲片人在线观看| 久久久精品国产亚洲av高清涩受| 91字幕亚洲| 亚洲精品乱久久久久久| 一区福利在线观看| 国产精品亚洲av一区麻豆| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 精品一品国产午夜福利视频| 我的亚洲天堂| 黄频高清免费视频| 黑人操中国人逼视频| 亚洲精华国产精华精| 午夜福利影视在线免费观看| 日韩视频一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 少妇粗大呻吟视频| 欧美日韩一级在线毛片| 巨乳人妻的诱惑在线观看| 精品无人区乱码1区二区| 日韩 欧美 亚洲 中文字幕| 久久草成人影院| 国产亚洲一区二区精品| 亚洲欧美激情综合另类| 国产日韩欧美亚洲二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 夜夜躁狠狠躁天天躁| 他把我摸到了高潮在线观看| 国产男女内射视频| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 欧美av亚洲av综合av国产av| 欧美久久黑人一区二区| 国产精品二区激情视频| 高清欧美精品videossex| 欧美黑人欧美精品刺激| 精品久久久久久电影网| 久久久精品区二区三区| 亚洲av日韩在线播放| 免费在线观看视频国产中文字幕亚洲| 成人亚洲精品一区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 最新的欧美精品一区二区| 午夜免费成人在线视频| 精品无人区乱码1区二区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 欧美黑人精品巨大| 在线国产一区二区在线| 欧美日本中文国产一区发布| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 一级毛片精品| 久久久久久久久久久久大奶| 欧美 亚洲 国产 日韩一| 亚洲九九香蕉| 国产无遮挡羞羞视频在线观看| 十八禁人妻一区二区| 建设人人有责人人尽责人人享有的| 狠狠婷婷综合久久久久久88av| 国产精品一区二区免费欧美| 久久精品国产清高在天天线| 色播在线永久视频| 欧美日韩中文字幕国产精品一区二区三区 | 日日爽夜夜爽网站| 18禁国产床啪视频网站| 一级片'在线观看视频| 丝瓜视频免费看黄片| 后天国语完整版免费观看| 91九色精品人成在线观看| 又大又爽又粗| 亚洲中文字幕日韩| 国产视频一区二区在线看| 在线看a的网站| 老司机深夜福利视频在线观看| 深夜精品福利| 国产激情欧美一区二区| 日韩人妻精品一区2区三区| 欧美国产精品va在线观看不卡| 国产av精品麻豆| 亚洲精品在线美女| 成人黄色视频免费在线看| 在线观看一区二区三区激情| 婷婷丁香在线五月| 欧美日本中文国产一区发布| 欧美最黄视频在线播放免费 | 午夜免费成人在线视频| 99热国产这里只有精品6| 热re99久久精品国产66热6| 欧美黄色淫秽网站| 免费黄频网站在线观看国产| 男人操女人黄网站| 久久 成人 亚洲| 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 国产精华一区二区三区| 又紧又爽又黄一区二区| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av在线 | 久久久精品区二区三区| 如日韩欧美国产精品一区二区三区| 色在线成人网| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| videos熟女内射| 9色porny在线观看| 悠悠久久av| 青草久久国产| 亚洲av成人不卡在线观看播放网| 如日韩欧美国产精品一区二区三区| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 国产99白浆流出| 国产av又大| 免费在线观看影片大全网站| 成人18禁在线播放| 男女床上黄色一级片免费看| 成年版毛片免费区| 亚洲五月婷婷丁香| 日韩精品免费视频一区二区三区| 法律面前人人平等表现在哪些方面|