• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grain growth in calibre rolled Mg–3Al–1Zn alloy and its effect on hardness

    2015-02-16 02:56:11Kshyp
    Journal of Magnesium and Alloys 2015年4期

    ,B.P.Kshyp,

    aDepartment of Metallurgical Engineering and Materials Science,Indian Institute of Technology Bombay,Mumbai 400076,India

    bDepartment of Mechanical Engineering,Government Polytechnic,Kolhapur 416004,India

    cSpecial Materials Division,Vikram Sarabhai Space Center,ISRO,Trivandrum 695022,India

    Grain growth in calibre rolled Mg–3Al–1Zn alloy and its effect on hardness

    R.L.Doiphodea,b,S.V.S.Narayana Murtyc,N.Prabhua,B.P.Kashyapa,*

    aDepartment of Metallurgical Engineering and Materials Science,Indian Institute of Technology Bombay,Mumbai 400076,India

    bDepartment of Mechanical Engineering,Government Polytechnic,Kolhapur 416004,India

    cSpecial Materials Division,Vikram Sarabhai Space Center,ISRO,Trivandrum 695022,India

    Calibre rolling of Mg–3Al–1Zn alloy at 300°C led to development of fin grain size of 3 μm.Subsequent annealing,from 5 to 6000 minutes at 300–450°C,revealed faster grain growth initially up to 60 minutes,which became sluggish on prolonged annealing.The time exponent for grain growth kinetics(n)suggests bi-linear behaviour withn=0.11 and 0.008 over these time scales.The activation energy,based on variousnvalues, varied over wide ranges that made the understanding of the mechanisms for grain growth difficult This problem is explained by concurrent evolution of texture and grain boundary structure.The effect of grain growth on hardness at ambient temperature was found to follow the H–P type relationship.

    Annealing;AZ31 Mg-alloy;Calibre rolling;Twinning;Grain growth

    1.Introduction

    Magnesium is available abundantly in the nature and,owing to high specifistrength,its alloys are becoming popular in aerospace,automobile,biomedical,architecture and electronic industries[1,2].However,these alloys have limitation of poor mechanical processing because of their common hexagonal close packed(HCP)type crystal structure.There exist several processes that are used for plastic deformation.Rolling is one of them and it is used to form the sheets,bars and rods of various shapes.To improve the mechanical properties of rolled material many changes in the conventional rolling process were introduced[3–5],which could influenc the degree of grain refinement Calibre rolling(CR)process is one of the modifie rolling processes.In this technique,a pair of grooved rolls is turned in the opposite directions and the work-piece gets reduced to the desired thickness or cross section over several roll passes by the compressive force.CR is used for mass production of metals with high precision and high strength[6].

    The plastic deformation distorts the microstructure,and it causes the thermodynamically unstable state by introducing dislocations and other defects,which leads to increase in stored energy.This energy tends to revert to a stable state on subsequent annealing.This process of annealing results in three phenomena:recovery,recrystallization and grain growth[7].Since the actual number of dislocations removed during recovery is quite small,the change in mechanical properties is limited.The driving force for recrystallization is the removal of a large number of dislocations,and so the associated stored energy removed is quite large.The reduction in grain boundary area, and thus the reduction in grain boundary free energy with increase in grain size,itself provides the driving force for grain growth in polycrystalline materials.This Mg alloyAZ31 exhibits deformation twins,which possess different interfacial energy from the grain boundaries and can also influenc the boundary migration[8]in grain growth process.Various studies [9–11]addressed grain growth in this alloy system.However, no annealing study on grain growth after calibre rolling of this alloy is known.In the present paper,the effects of static annealing at different temperatures and over longer durations were investigated with the aim of investigating the kinetics and mechanisms for grain growth and examining its effect in terms of the Hall–Petch relationship.

    Nomenclature

    TAnnealing temperatures

    tIsothermal annealing time

    dGrain size(after annealing)

    d0Initial grain size

    σyYield strength

    kRate constant

    nGrowth law index(time exponent)

    VGrain boundary migration rate

    PDriving force

    MIntrinsic mobility of a boundary in the pure material

    t0Time at which grain growth would have started on completion of recrystallisation

    QActivation energy for grain growth

    σ0andkyThe Hall–Petch constants

    2.Experimental procedures

    Mg-alloyAZ31B in the form of rolled plate of 50 mm thickness and having chemical composition(wt%):Mg–Al 3.0,Zn 1.0 and Mn 0.2 was used.The calibre rolling was carried out at a temperature of 300°C to 12×12 mm2rods(~76%reduction) by a series of 5 roll passes in a rolling mill with reduction of~16%per pass.

    The samples of 10×5×5 mm3were cut from the calibre rolled rod.The annealing was carried out at temperatures(T) 300,350,400 and 450°C in a muffl furnace with the accuracy of±2°C.The annealing time(t)used was varied to 5,10,20, 30,60,240,600,1440,2880 and 6000 minutes within the accuracy of±2 seconds.The specimens were quenched in water immediately after annealing to retain the microstructures attained at high temperature.

    Metallographic specimen was prepared as per the ASTM procedure.The etching was carried out with acetic picral.The microstructure was examined by Olympus GX51 optical microscope(OM).Grain size measurement was done by mean linear intercept method and the error bars in mean linear intercept, called grain size(d)here,are reported at 95%confidenc level. Electron back scattered diffraction(EBSD)was obtained by scanning electron microscope(SEM)Quanta 3D FEG with EBSD attachment,andTSL software was used for analysis.The misorientation angle and twins were measured in the area 250×250 μm2with a step size of 0.4 μm.

    The microhardness measurement was carried out before and after annealing for all the specimens.The machine used was LM300AT,LECO make.The weight used was 15 gm and dwell time was kept at 15 seconds.Yield strength(σy)of the material is determined by the relation[12]: whereσyis in MPa and the hardness measured is in Hv.

    3.Results

    3.1.Initial microstructure

    The microstructure of the as received plate,as shown in Fig.1a,consists of equiaxed grains of average size 33.0±3.0 μm,along with the presence of a large number of twins.CR led to grain refinemen and the equiaxed microstructure developed is shown in Fig.1b.This reveals large reductions in number of twins and grain size to 3.0±0.5 μm,Fig.1b.This grain size will be called as initial grain sized0for further study here.The grain refinemen was observed in the CR condition due to dynamic recrystallization[3].The hardness of the as-calibre rolled material was 84.3 Hv.

    3.2.Microstructural evolution by annealing

    For all the conditions of temperature and time employed for annealing the microstructures remained equiaxed,but with the increased grain sizes.The evolved grain size will be called asd. The grain size measured after annealing at the temperatures of 300 and 450°C is plotted in Fig.2 as a function of time.The grain growth from 6 to 20 μm was observed for various times and temperatures of annealing.Microstructures after annealing at 300 and 450°C for 5 minutes and 6000 minutes are shown in Fig.3a and b and Fig.3c and d,respectively.The grain size obtained upon annealing at 300°C for 5 minutes was found to be 6.1±1.0 μm whereas it became 16.8±3.0 μm after 6000 minutes of annealing.After annealing at 450°C for the samedurations,these grain sizes were 8.8±1.0 and 20.4±3.0 μm respectively.The grain growth was faster initially up to 60 minutes after which it became sluggish during longer annealing time.

    Fig.1.Optical micrographs of the AZ31 Mg-alloy(a)as-received plate and(b)calibre rolled rod at 300°C.

    Fig.2.Grain size measured as a function of annealing time at 300 and 450°C.

    3.3.Effect of annealing on hardness

    Fig.4.Hardness measured as a function of annealing time at different temperatures.

    The hardness measured as a function of annealing time at different temperatures is plotted in Fig.4,which reveals a rapid reduction in hardness up to firs 60 minutes of annealing time and then the change becomes less sensitive to annealing time. The values of micro-hardness after annealing for various lengths of time and at different temperatures were noted to decrease as the grain size increases with the increase in time and temperature of annealing.

    Fig.3.Optical micrographs after annealing for 5 minutes at temperatures(a)300°C and(b)450°C;and for 6000 minutes at temperatures(c)300°C and(d)450°C.

    Fig.5.Plot of log d vs log t,giving growth law index“n”after annealing the samples at temperatures of 300–450°C and for time from 5 to 6000 minutes.

    4.Discussion

    4.1.Grain growth kinetics and mechanisms

    As plotted in Fig.5,the variation in grain size with annealing time in log–log scale reveals bilinear behaviour of grain growth kinetics,with the variation in grain size with time exhibitingn=0.11 for the short annealing time(up to 60 minutes)and 0.008 for the longer duration(above 60 minutes).

    Normal grain growth data can usually be fitte to an equation of the form:

    wheredis the average grain size,kis a rate constant,tis isothermal annealing time andnis the growth law index(time exponent).

    If the measured growth law index isn=0.5,as known for pure metals,then the boundary migration of grain growth obeys the relationship:

    whereVis the grain boundary migration rate,Pis the driving force for a hypothetically pure material andMis the intrinsic mobility of the boundary in the pure material[13,14].However, these theories do not consider the solute effects on the growth law.Many investigators proposed the theories that consider the solute effects that include:

    ?The Lücke–Detert theory[15]

    ?The Gordon and Vandermeer theory[16]

    ?The Cahn and Lücke–Stüwe theory[8]

    The addition of solute,even in the parts per million ranges, was observed to reduce boundary mobility drastically.It is also a common observation that the addition of a small amount of solute increases the measured activation energy for boundary migration to higher values;sometimes much larger than for any identifia le atomistic process.

    Rath and Hu[17]pointed out the fact that a linear dependence of grain growth rate on driving force was seldom observed except for grain growth in metals of ultra high purity and at high annealing temperature,near the melting point. These authors also suggested that no meaningful activation energy could be measured for grain growth unless the value ofn=0.5 was employed.They suggested that the temperature dependence of the mobility parameter in grain growth could not be regarded as a single thermally activated process.To understand the mechanism involved in grain boundary migration,Qwas calculated by considering the variants ofn,based on the present work and that reported for pure metals(n=0.5),quasisingle phase(n=0.33)and two-phase(n=0.25)materials [18–20].

    The initial grain sized0can only be neglected if it is very small in comparison to grain sizes at long annealing times.But, for short annealing time,thed0is not small enough compared tod.Therefore,the analysis made by using Eq.(2)is not justified Using the appropriated0for each of these grain growth stages, Fig.5,it is found that the data would fi into the equation[21]:

    wheret0is the time at which grain growth would have started on completion of recrystallisation.

    This relationship can be used to measure the activation energy for grain growth(Q)accurately.The difference(d2?do2) is determined over the range of temperatures.A plot of log (d2?do2)versusT?1(K?1)yields the activation energy for grain growth to vary at various time periods as illustrated in Fig.6. However,it shows very high values of the activation energy. Table 2 lists the values of activation energy calculated by considering growth law index(n),constant(t)and constant(d) approaches.It shows very high values of activation energy. However,in the beginning of grain growth the activation energy was found to be 65–91 kJ mol?1,which is close to the anticipatedQof 92 kJ mol?1reported for grain boundary diffusion in magnesium.

    There exist very few studies on annealing of Mg-alloyAZ31 upon processing by various methods of plastic deformation,as summarised in Table 1 from the literature[9–11].The limited studies reported in the literature also exhibit a wide variation in the activation energy for grain growth(29–200 kJ mol?1),as compared to that expected on the basis of grain boundary (92 kJ mol?1)or lattice(135 kJ mol?1)diffusion[1].

    Fig.6.Arrhenius plot to determine the activation energy for grain growth after annealing the samples at temperatures of 300–450°C and for time from 5 to 6000 minutes.

    As pointed out earlier for the variation innvalues of kinetics law[18–20],it could also be reasonable to assume that no meaningful value of activation energy for grain growth might appear for the system like AZ31 Mg-alloy,which contains various alloying or impurity elements[22].However,it is interesting to note from Table 2 that grain growth at fi e minutes of annealing,and using the present value ofn=0.1 and so also approaching the calculation by considering either constantdor constant time forQ,givesQ=64.5–90.7 kJ mol?1. These values ofQsupport the grain boundary diffusion to be the mechanism for grain growth.However,n=0.1 does not support the kinetics of grain growth commonly predicted but thisn~0.1 happens to be true for a wide range of materials [19].Further to the theoretical and experimental results on kinetics and mechanisms for grain growth,and the sources of deviations from thereof elaborated in the literature[17–20],in terms ofnandQvalues,the following experimental results and the inferences emerging could add to our understanding of grain growth in this alloy.(i)Twins formed profusely during CR disappear very fast during subsequent annealing.It is during the

    Table 1Studies on annealing of Mg alloy AZ31 as summarized from literature.

    *ECAP=equal channel angular pressing.process of twinning getting eliminated that the activation energy for grain growth is comparable with that for grain boundary diffusion.The subsequent dramatic change in the value ofQseems to suggest that the structural element of twin boundaries could provide extrinsic grain boundary dislocations to affect the otherwise CR grain boundary structure.Thus,theQvalues on longer annealing time may be affected.(ii)Concurrent to grain growth,texture evolution is seen during annealing as illustrated in Fig.7a by comparing the pole figure obtained upon annealing for 5 min and 6000 min at 300°C. This change in texture could resist grain boundary migration which could occur via the grain interior.(iii)The examination of grain boundary nature by EBSD,Fig.7b,also revealed formation of a greater proportion of low angle boundaries(35%), leaving a lesser proportion of high angle grain boundaries (65%)with the increase in annealing time from 5 min to 6000 min at 300°C.It is known that the rate of migration of high angle grain boundaries is faster than that of low angle boundaries[23,24].This property,in conjunction with the presence of low driving force due to the substantially reduced grain boundary area,can provide greater resistance to grain growth.

    Table 2Activation energy calculated considering growth law index(n),constant(t)and constant(d).

    Fig.7.EBSD analysis of the annealed samples at 300°C.(a)Pole figur (0001).(b)Misorientation angle versus number fraction of grains.

    4.2.Contributions of grain size and twinning to strength

    The grain size(d)dependence of yield strength(σy)is given by Hall–Petch type relationship[25,26]:

    Fig.8.Hall–Petch relationship after annealing of the samples at temperatures of 300–450°C and for time from 5 to 6000 minutes,without distinguishing the temperature effect.

    which predicts that as the grain size decreases the yield strength increases.Here,σ0andkyrepresent the Hall–Petch constants having significanc to the strengthening caused by grain interior and grain boundary,respectively.This strengthening by grain refinemen is experimentally found to be true over the grain sizes ranging from 1 mm to 1 μm[27].This relationship is valid for strength,which is also related to hardness.It is seen that the hardness decreases as the grain grows at all the temperatures with increasing time(Fig.4).Micro-hardness is plotted against grain size(d?0.5)irrespective of the annealing temperature in Fig.8.It is seen to clearly obey the Hall–Petch type relationship(R2=0.92),which can be expressed as:

    Following the relationship between yield strength and hardness,viz.Eq.(1),the Hall–Petch type relationship for yield strength can be written by putting the values ofσ0andkyin Eq. (5)as:

    Similar plots were considered for grain sizes obtained at annealing temperatures of 300,350,400 and 450°C individually,and the Hall–Petch constantsσ0andkywere found to range between 55.8–63.7 MPa and 403.7–447.5 MPa μm?0.5respectively.However,no systematic effect of annealing temperature was noted in the variation ofσ0andky.The large value ofkyexhibits the strong grain size dependence of fl w stress.Therefore,the reduction in strength(hardness)is attributed to the increase in grain size by annealing.As listed in Table 3,there appear wide variations in the values ofσ0andkyin the literature [28–30].The value ofσ0is related to the critical resolved shear stress(CRSS)for the easiest(basal)slip system operatingwithin the grain volume.The value ofkydepends on temperature,texture,composition,preparation method employed for producing the materials,along with its dependence on the CRSS for the nonbasal(more difficult slip systems required to operate near the grain boundary.The values ofσ0andkycan depend in general on the state of the material developed,in the way it was produced by varying the working temperature or thermo mechanical treatments it was subjected to,as is the case for other mechanical properties in general[22].

    Table 3Comparison of the present values ofσ0andkyin AZ31 Mg-alloy with the literature.

    A close examination of the values ofσ0=59.4 andky=422 MPa μm?0.5in Table 3 reveals that the grain boundary component of strengtheningkyin calibre rolled material is much higher than that reported by other methods of processing of this AZ31 alloy.The source of this enhanced strengthening by grain boundaries is not clear at this stage.However,it appears tempting to think that resistance to grain boundary migration during annealing,requiring much higher activation energy for grain growth,could have its origin in the structural change in grain boundaries.Such change in grain boundary structure,when remains so upon quenching of the annealed material,can contribute to different grain boundary strengthening effect[31].In fact,Sangal and Tangri[32]reported a difference in the effects of grain boundary strengthening between equilibrium and non-equilibrium boundaries in type 316L stainless steel.In the present work,the AZ31 Mg-alloy contains profound number of twins which increase rapidly with increasing annealing time[33].Therefore,probably,the generation of twins introduces additional dislocations into the grain boundaries to become stronger than the otherwise equilibrium grain boundary structure.

    5.Conclusion

    Grain refinemen in Mg–3Al–1Zn alloy was achieved from 33 μm in as-mill rolled state to 3 μm upon calibre rolling of about 76%at 300°C.Annealing of these samples for 5–6000 minutes at 300–450°C and analyzing the grain growth along with its effect on hardness,at room temperature,leads to the following conclusions:

    1.Grain growth occurs from initial grain size of 3 μm up to 20 μm and is faster initially up to 60 minutes,but then becomes sluggish at longer annealing time.The grain growth kinetics law reveals two values of growth law index withn=0.11 for the shorter annealing time(up to 60 minutes)and its marginal decrease(n=0.008)for the longer annealing time(above 240 minutes).

    2.The activation energyQfor grain growth was found to be very high for all the growth law indices exceptn=0.1. However,the activation energy in the beginning of grain growth(65–91 kJ mol?1)supports grain boundary diffusion to be the mechanism.At longer annealing time,the exceptionally higher or lower activation energy values arise from other structural evolution in the material.

    3.Micro-hardness varies as a function of grain size

    following the Hall–Petch type relationship with the equivalent H–P parametersσ0=59.4(Ho=18.4)MPa andky=421.6(kv=145.2)MPa μm?0.5,irrespective of annealing temperature.Thekvfound in the calibre rolled material is much larger than known in this material that was processed by conventional rolling or friction stir

    processing.

    Acknowledgment

    We express our thanks to Dept.of Metallurgy,Government Polytechnic Kolhapur,for providing the testing facility.

    [1]H.Friedrich,B.Mordike,Magnesium Technology:Metallurgy,Design Data Applications,Springer Berlin Heidelberg,New York,2006.

    [2]C.Blawert,N.Hort,K.U.Kainer,Trans.Indian Inst.Met.57(2004) 397–408.

    [3]Q.Miao,L.Hu,G.Wang,E.Wang,Mater.Sci.Eng.A 528(2011) 6694–6701.

    [4]X.Huang,G.Haung,D.Xiao,Q.Liu,Mater.Sci.Forum 686(2011) 40–45.

    [5]W.Xia,Z.Chen,D.Chen,S.Zhu,J.Mater,Process.Technol.209(2009) 26–31.

    [6]Y.Tanno,T.Mukai,M.Asakawa,M.Kobayashi,Mater.Sci.Forum 419 (2003)359–364.

    [7]P.Cotterill,P.Mould,Recrystallization and Grain Growth in Metals, Surrey University Press,London,1976.

    [8]G.Gottstein,L.Shvindlerman,Grain Boundary Migration in Metals:Thermodynamics,Kinetics,Applications,CRC Press,Florida, 1999.

    [9]M.S.Tsai,C.P.Chang,Mater.Sci.Technol.29(2013)759–763.

    [10]G.Beer,M.R.Barnett,Scr.Mater.61(2009)1097–1100.

    [11]C.Su,L.Lu,M.Lai,Mater.Sci.Technol.23(2007)290–296.

    [12]M.A.Mayer,K.K.Chawla,Mechanical Behaviour of Materials,second

    ed.,Cambridge University Press,UK,2009.

    [13]N.Mott,Proc.Phys.Soc.60(1948)391.

    [14]D.Turnbull,Trans.AIME 191(1951)661–665.

    [15]K.Lücke,K.Detert,Acta Mater.5(1957)628–637.

    [16]P.Gordon,R.Vandermeer,Grain Boundary Migration,Recrystallization,

    Grain Growth and Texture,ASM Metals Park,Ohio,1966.

    [17]B.Rath,H.Hu,Met.Trans.1(1970)3181–3184.

    [18]S.Sengupta,B.P.Kashyap,J.Mater.Sci.Let.10(1991)139–140.

    [19]E.Hornbogen,U.Koster,Recrystallization of Metallic Materials,In F.Haessner,(Ed.,)1978.

    [20]P.K.Bakshi,B.P.Kashyap,J.Mater.Sci.29(1994)2063–2070.

    [21]P.Beck,J.Appl.Phys.19(1948)507–509.

    [22]M.M.Avedesian,H.Baker,Magnesium and Magnesium Alloys,ASM Specialty Handbook,ASM International,1999.

    [23]H.Gleiter,B.Chalmers,HighAngle Grain Boundaries,Prog.Mater.Sci., Pergamon Press,1972.

    [24]V.Sursaeva,S.Protasova,W.Lojkowski,J.Jun,Textur.Microstruct.32 (1999)175–185.

    [25]E.O.Hall,Proc.Phys.Soc.London B64(1951)747–753.

    [26]N.J.Petch,J.Iron Steel Inst.174(1953)25–28.

    [27]C.S.Barrett,T.B.Massalski,Structure of Metals,third ed.,Pergamon Press,Oxford,UK,1980.

    [28]N.Afrin,D.Chen,X.Cao,M.Jahazi,Mater.Sci.Eng.A 472(2008) 179–186.

    [29]L.Guo,Z.Chen,L.Gao,Mater.Sci.Eng.A 528(2011)8537–8545.

    [30]A.Jain,O.Duygulu,D.Brown,C.Tome’,S.Agnew,Mater.Sci.Eng.A 486(2008)545–555.

    [31]B.P.Kashyap,Acta Mater.50(2002)2413–2427.

    [32]S.Sangal,K.Tangri,Mater.Trans.A 20(1989)479–484.

    [33]R.L.Doiphode,S.V.S.N.Murty,N.Prabhu,B.P.Kashyap,Trans.Indian Inst.Met.68(2015)317–321.

    Received 7 September 2014;revised 10 November 2015;accepted 12 November 2015 Available online 7 December 2015

    *Corresponding author.Department of Metallurgical Engineering and Materials Science,Indian Institute of Technology Bombay,Mumbai 400076, India.Tel.:+91 2225767622;fax:+91 2225723480.

    E-mail address:bpk@iitb.ac.in(B.P.Kashyap).

    http://dx.doi.org/10.1016/j.jma.2015.11.003

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    麻豆久久精品国产亚洲av| 久久中文字幕人妻熟女| 久久天躁狠狠躁夜夜2o2o| 成人鲁丝片一二三区免费| 国产精品永久免费网站| 757午夜福利合集在线观看| 日本免费一区二区三区高清不卡| 99精品欧美一区二区三区四区| 久久精品91无色码中文字幕| 黄色丝袜av网址大全| 一本综合久久免费| 久久欧美精品欧美久久欧美| 综合色av麻豆| 欧美色欧美亚洲另类二区| 国产av麻豆久久久久久久| 国产亚洲av高清不卡| 国内揄拍国产精品人妻在线| 母亲3免费完整高清在线观看| 久久精品国产99精品国产亚洲性色| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 国产伦人伦偷精品视频| xxxwww97欧美| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 国产一区二区激情短视频| 欧美色视频一区免费| 久久人妻av系列| 麻豆成人av在线观看| 少妇人妻一区二区三区视频| 最近最新中文字幕大全免费视频| 亚洲男人的天堂狠狠| 国产精品乱码一区二三区的特点| avwww免费| 亚洲欧美一区二区三区黑人| 欧美另类亚洲清纯唯美| 国产精品一区二区精品视频观看| 宅男免费午夜| 久9热在线精品视频| 国产高清三级在线| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久国产a免费观看| 亚洲性夜色夜夜综合| 午夜a级毛片| 久久久久久久久久黄片| 五月伊人婷婷丁香| 日韩成人在线观看一区二区三区| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 脱女人内裤的视频| 男人舔奶头视频| 久久精品综合一区二区三区| aaaaa片日本免费| 少妇的逼水好多| 国产精品99久久久久久久久| 久久久国产欧美日韩av| 亚洲国产精品成人综合色| 欧美成人免费av一区二区三区| 757午夜福利合集在线观看| 国产真人三级小视频在线观看| 91在线精品国自产拍蜜月 | 亚洲午夜理论影院| 欧美在线黄色| www.www免费av| 午夜久久久久精精品| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 欧美日韩福利视频一区二区| 久久久久免费精品人妻一区二区| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 亚洲男人的天堂狠狠| h日本视频在线播放| 亚洲美女视频黄频| www.www免费av| 黑人欧美特级aaaaaa片| 国产高清视频在线播放一区| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区| 色播亚洲综合网| 国模一区二区三区四区视频 | 女生性感内裤真人,穿戴方法视频| 精品欧美国产一区二区三| 高潮久久久久久久久久久不卡| 三级国产精品欧美在线观看 | 欧美日韩瑟瑟在线播放| 久久这里只有精品中国| tocl精华| 亚洲av成人一区二区三| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 日日摸夜夜添夜夜添小说| 国产精品久久久久久亚洲av鲁大| 国产成人精品无人区| 午夜成年电影在线免费观看| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 国产成人欧美在线观看| 精品国产亚洲在线| 美女黄网站色视频| 18禁黄网站禁片午夜丰满| 99热精品在线国产| 黄色成人免费大全| 国产高潮美女av| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| 久久这里只有精品中国| 久久久久久国产a免费观看| 欧美成人性av电影在线观看| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 欧美zozozo另类| 中文字幕最新亚洲高清| 国产三级中文精品| 亚洲aⅴ乱码一区二区在线播放| 国产精品永久免费网站| 欧美一区二区精品小视频在线| 露出奶头的视频| www国产在线视频色| 精品福利观看| 国产精品九九99| 在线看三级毛片| 搞女人的毛片| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| 熟女电影av网| 天天添夜夜摸| 国产高清videossex| 身体一侧抽搐| 狠狠狠狠99中文字幕| 亚洲第一电影网av| 悠悠久久av| 天天添夜夜摸| 久久伊人香网站| 日本黄色视频三级网站网址| 极品教师在线免费播放| 国产综合懂色| 国产野战对白在线观看| 男人的好看免费观看在线视频| 国产探花在线观看一区二区| 最好的美女福利视频网| 亚洲五月婷婷丁香| 又黄又粗又硬又大视频| 久久婷婷人人爽人人干人人爱| 欧美乱妇无乱码| 午夜日韩欧美国产| 18禁国产床啪视频网站| 精品无人区乱码1区二区| 又黄又爽又免费观看的视频| 九色成人免费人妻av| 国产视频内射| 亚洲电影在线观看av| 久久精品综合一区二区三区| 黄色丝袜av网址大全| 国产高潮美女av| 精品国产乱码久久久久久男人| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 日韩欧美在线二视频| 日本黄大片高清| 最近视频中文字幕2019在线8| 欧美成人免费av一区二区三区| 精品国产超薄肉色丝袜足j| 综合色av麻豆| www.熟女人妻精品国产| 两个人的视频大全免费| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 美女免费视频网站| 熟女人妻精品中文字幕| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 怎么达到女性高潮| 久久这里只有精品中国| 成年免费大片在线观看| 我的老师免费观看完整版| 精品国产乱码久久久久久男人| 高清在线国产一区| 国产男靠女视频免费网站| 嫩草影院入口| 麻豆一二三区av精品| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 深夜精品福利| 欧美日韩亚洲国产一区二区在线观看| 久久久久久九九精品二区国产| 黄频高清免费视频| 亚洲在线自拍视频| 欧美在线黄色| 午夜激情福利司机影院| 欧美日韩综合久久久久久 | 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 午夜精品在线福利| 亚洲午夜精品一区,二区,三区| 一二三四社区在线视频社区8| 日本黄色片子视频| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 一区二区三区国产精品乱码| 欧美黑人欧美精品刺激| 校园春色视频在线观看| 神马国产精品三级电影在线观看| 美女cb高潮喷水在线观看 | 99riav亚洲国产免费| 成人精品一区二区免费| 黄片小视频在线播放| 99久久精品国产亚洲精品| 国语自产精品视频在线第100页| 国产午夜精品久久久久久| 特大巨黑吊av在线直播| 18禁观看日本| 男插女下体视频免费在线播放| 韩国av一区二区三区四区| 日韩欧美一区二区三区在线观看| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 免费观看的影片在线观看| 又黄又粗又硬又大视频| 欧美性猛交黑人性爽| 精品欧美国产一区二区三| 日日夜夜操网爽| 日本 av在线| bbb黄色大片| 免费av不卡在线播放| or卡值多少钱| 国内精品久久久久精免费| 欧美在线黄色| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清| 夜夜躁狠狠躁天天躁| 国产一区在线观看成人免费| 精品无人区乱码1区二区| 久久香蕉精品热| 午夜亚洲福利在线播放| 99热这里只有精品一区 | 88av欧美| 99热6这里只有精品| 欧美日韩国产亚洲二区| 五月伊人婷婷丁香| 中亚洲国语对白在线视频| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 日韩三级视频一区二区三区| 欧美日韩一级在线毛片| 天堂av国产一区二区熟女人妻| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 99久久无色码亚洲精品果冻| 99久久综合精品五月天人人| 一个人看视频在线观看www免费 | 亚洲国产看品久久| 欧美一区二区国产精品久久精品| 最近在线观看免费完整版| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 国产精品香港三级国产av潘金莲| av视频在线观看入口| 校园春色视频在线观看| av天堂在线播放| 成年人黄色毛片网站| 成年版毛片免费区| 亚洲av熟女| 午夜日韩欧美国产| 琪琪午夜伦伦电影理论片6080| 亚洲第一电影网av| 热99在线观看视频| 国产69精品久久久久777片 | 日韩欧美在线二视频| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| 国内少妇人妻偷人精品xxx网站 | 无遮挡黄片免费观看| 操出白浆在线播放| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 一二三四在线观看免费中文在| 观看美女的网站| 国产av麻豆久久久久久久| 国产精品,欧美在线| 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 黄色片一级片一级黄色片| 国产视频一区二区在线看| 两个人视频免费观看高清| 久久久久久久久中文| 岛国视频午夜一区免费看| 国产精品久久电影中文字幕| 少妇丰满av| 国产69精品久久久久777片 | 国产精品 欧美亚洲| 精品久久久久久,| 一进一出抽搐动态| 国产99白浆流出| 天天躁日日操中文字幕| 岛国在线观看网站| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 偷拍熟女少妇极品色| 麻豆一二三区av精品| 波多野结衣高清作品| 日韩欧美国产在线观看| 午夜免费观看网址| 久久午夜综合久久蜜桃| 婷婷六月久久综合丁香| 欧美国产日韩亚洲一区| 九九久久精品国产亚洲av麻豆 | 国产三级中文精品| 麻豆国产av国片精品| 亚洲中文字幕日韩| 毛片女人毛片| 亚洲电影在线观看av| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 亚洲欧美日韩东京热| 成在线人永久免费视频| 国产亚洲精品一区二区www| 19禁男女啪啪无遮挡网站| 日本一本二区三区精品| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式 | 国产成人影院久久av| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 无限看片的www在线观看| 成在线人永久免费视频| 亚洲专区字幕在线| 国产精品av久久久久免费| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 一区二区三区国产精品乱码| 淫秽高清视频在线观看| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 亚洲成av人片在线播放无| 成年女人永久免费观看视频| 人人妻人人看人人澡| 成年女人永久免费观看视频| 日韩欧美在线乱码| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添小说| 久久久水蜜桃国产精品网| 99热这里只有是精品50| 免费高清视频大片| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 天堂av国产一区二区熟女人妻| 日韩三级视频一区二区三区| 一级毛片高清免费大全| 国产一区二区三区在线臀色熟女| 成人永久免费在线观看视频| 男女之事视频高清在线观看| 欧美不卡视频在线免费观看| 成人无遮挡网站| av天堂中文字幕网| 男人的好看免费观看在线视频| 亚洲人成网站在线播放欧美日韩| 欧美成狂野欧美在线观看| 欧美三级亚洲精品| 国产淫片久久久久久久久 | 国产精品电影一区二区三区| 久久精品影院6| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 国产精品亚洲美女久久久| 一个人免费在线观看电影 | 给我免费播放毛片高清在线观看| 国内精品美女久久久久久| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 好男人在线观看高清免费视频| 999精品在线视频| 午夜精品久久久久久毛片777| 不卡一级毛片| 在线观看日韩欧美| 亚洲真实伦在线观看| 色视频www国产| 久久人人精品亚洲av| 色视频www国产| 97人妻精品一区二区三区麻豆| 精品日产1卡2卡| 日本 av在线| 黄色丝袜av网址大全| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 日韩大尺度精品在线看网址| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 久久中文字幕人妻熟女| 久久久久国产精品人妻aⅴ院| 免费搜索国产男女视频| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| av天堂中文字幕网| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类 | 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 国产精品久久久久久精品电影| 级片在线观看| 国产午夜精品久久久久久| 国产成人精品久久二区二区免费| 我要搜黄色片| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 久久国产精品影院| 麻豆成人午夜福利视频| 人人妻,人人澡人人爽秒播| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 亚洲男人的天堂狠狠| 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 亚洲av日韩精品久久久久久密| 欧美高清成人免费视频www| 99国产综合亚洲精品| www日本在线高清视频| а√天堂www在线а√下载| 激情在线观看视频在线高清| 禁无遮挡网站| 男人舔奶头视频| 狂野欧美激情性xxxx| 午夜a级毛片| 最新美女视频免费是黄的| 免费高清视频大片| 香蕉久久夜色| 男女视频在线观看网站免费| 在线观看一区二区三区| 日韩欧美在线二视频| 他把我摸到了高潮在线观看| 国产欧美日韩精品一区二区| 偷拍熟女少妇极品色| 亚洲午夜精品一区,二区,三区| 十八禁人妻一区二区| 国产精品综合久久久久久久免费| 女人被狂操c到高潮| 男女下面进入的视频免费午夜| 国产av一区在线观看免费| www.999成人在线观看| 真人做人爱边吃奶动态| 国产高清有码在线观看视频| 日本成人三级电影网站| 国产精品美女特级片免费视频播放器 | 最近最新中文字幕大全免费视频| 中文亚洲av片在线观看爽| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 色尼玛亚洲综合影院| 深夜精品福利| 9191精品国产免费久久| 欧美黑人巨大hd| 身体一侧抽搐| 国产精品亚洲av一区麻豆| avwww免费| xxx96com| 国产精品精品国产色婷婷| 激情在线观看视频在线高清| 后天国语完整版免费观看| av中文乱码字幕在线| 亚洲男人的天堂狠狠| 中文字幕人妻丝袜一区二区| 国产亚洲精品av在线| 一个人观看的视频www高清免费观看 | 18禁国产床啪视频网站| 人人妻人人看人人澡| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 琪琪午夜伦伦电影理论片6080| 欧美绝顶高潮抽搐喷水| 这个男人来自地球电影免费观看| 伊人久久大香线蕉亚洲五| 精品日产1卡2卡| 88av欧美| 欧美乱色亚洲激情| a在线观看视频网站| 男人舔女人的私密视频| 精品99又大又爽又粗少妇毛片 | 一个人看视频在线观看www免费 | 中文字幕久久专区| 国产精品女同一区二区软件 | 午夜激情福利司机影院| 热99在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲七黄色美女视频| 国产视频一区二区在线看| 国产麻豆成人av免费视频| 国产不卡一卡二| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 夜夜看夜夜爽夜夜摸| 国产日本99.免费观看| 久久婷婷人人爽人人干人人爱| 国产av麻豆久久久久久久| 最近最新中文字幕大全免费视频| 999精品在线视频| 欧美中文日本在线观看视频| 亚洲精品色激情综合| 在线观看舔阴道视频| a级毛片在线看网站| 欧美一区二区精品小视频在线| 婷婷丁香在线五月| 免费高清视频大片| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩高清专用| 丁香欧美五月| 一级毛片女人18水好多| 搡老妇女老女人老熟妇| 色哟哟哟哟哟哟| 亚洲第一欧美日韩一区二区三区| 亚洲精品色激情综合| 久久精品亚洲精品国产色婷小说| 国产亚洲av嫩草精品影院| 国产野战对白在线观看| 国产高清三级在线| 亚洲九九香蕉| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 国产成年人精品一区二区| 搞女人的毛片| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 51午夜福利影视在线观看| 国内精品美女久久久久久| 久久久久国产一级毛片高清牌| 99精品欧美一区二区三区四区| 国产精品99久久久久久久久| 真人一进一出gif抽搐免费| 五月伊人婷婷丁香| 国产av麻豆久久久久久久| 亚洲国产精品成人综合色| 精品电影一区二区在线| 成人18禁在线播放| 九九热线精品视视频播放| 亚洲专区国产一区二区| 99久久精品国产亚洲精品| 色吧在线观看| 无限看片的www在线观看| tocl精华| 欧美在线黄色| 亚洲av中文字字幕乱码综合| 老鸭窝网址在线观看| 波多野结衣高清无吗| 高清在线国产一区| 叶爱在线成人免费视频播放| 亚洲 欧美 日韩 在线 免费| 又爽又黄无遮挡网站| 亚洲av成人av| 国产毛片a区久久久久| 亚洲人与动物交配视频| 丰满的人妻完整版| 欧美日韩国产亚洲二区| 精品欧美国产一区二区三| 一a级毛片在线观看| 小蜜桃在线观看免费完整版高清| 丝袜人妻中文字幕| 在线视频色国产色| 国产精品电影一区二区三区| 久久天躁狠狠躁夜夜2o2o| 男女午夜视频在线观看| 日本一本二区三区精品| 成人午夜高清在线视频| 91字幕亚洲| 制服人妻中文乱码| 亚洲欧美一区二区三区黑人| 精品电影一区二区在线| 天堂影院成人在线观看| 国产黄色小视频在线观看| 老熟妇仑乱视频hdxx| svipshipincom国产片| 国产精品精品国产色婷婷| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 亚洲无线在线观看| 国产亚洲精品久久久久久毛片| 狂野欧美激情性xxxx| 女生性感内裤真人,穿戴方法视频| 免费无遮挡裸体视频| x7x7x7水蜜桃| 亚洲av免费在线观看| 曰老女人黄片| 99久久国产精品久久久| 1024香蕉在线观看| 757午夜福利合集在线观看| 国产成人一区二区三区免费视频网站| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| 三级毛片av免费| 88av欧美| 一个人看的www免费观看视频| 国产日本99.免费观看| 国产欧美日韩精品亚洲av| 国产精品一区二区精品视频观看| 国内精品久久久久久久电影| 99精品欧美一区二区三区四区| 成人永久免费在线观看视频| 欧美日韩福利视频一区二区| 一a级毛片在线观看| 国产熟女xx| 亚洲人成电影免费在线| 熟女电影av网|