• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy

    2015-02-16 02:56:09XiuminKuiZhngYntoLiXinggngLiYongjunLiMinglongMBorongHou
    Journal of Magnesium and Alloys 2015年4期

    ,Xiumin M,Kui Zhng*,Ynto Li,**,Xinggng LiYongjun Li, Minglong MBorong Hou

    aMarine Corrosion and Protection Centre,Institute of Oceanology,Chinese Academy of Sciences,No.7 Nanhai Road,Qingdao 266071,China

    bState Key Lab for Non-ferrous Metals and Process,General Research Institute for Non-Ferrous Metals,Beijing 100088,China

    Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy

    Quantong Jianga,Xiumin Maa,Kui Zhangb,*,Yantao Lia,**,Xinggang Lib,Yongjun Lia, Minglong Mab,Baorong Houa

    aMarine Corrosion and Protection Centre,Institute of Oceanology,Chinese Academy of Sciences,No.7 Nanhai Road,Qingdao 266071,China

    bState Key Lab for Non-ferrous Metals and Process,General Research Institute for Non-Ferrous Metals,Beijing 100088,China

    A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-direction,transverse-direction,and normal-direction specimens were investigated using scanning electron microscopy,electron backscatter diffraction,and atomic force microscopy,respectively.Experimental results showed that crystallographic orientation significanty influence the corrosion performance of AZ80 Mg alloy.Corrosion rates largely increased with decreased(0 0 0 1)crystallographic plane intensity,whereas the(1 0?1 0)and(2?1?1 0)crystallographic plane intensities increased.This study showed that the corrosion rates of alloy can be modifie to some extent by controlling texture,thereby promoting the applications of high-strength AZ80 Mg alloys in the aerospace and national-defense fields

    High-strength AZ80 Mg alloy;Anisotropy;Wrought;Crystallographic orientation;Corrosion performance;Surface energy

    1.Introduction

    Wrought magnesium alloys are attractive for aerospace and automotive industries because of their excellent properties[1]. However,the applications of wrought Mg alloys are hindered by their anisotropy caused by their strong texture[2–4].Thus, texture analysis is an important tool for evaluating and understanding Mg-alloy performance[5–7].Data on the correlation of texture with the corrosion behavior of AZ31 Mg alloys can be found in literature.Song et al.[8]found that AZ31 alloys exhibit corrosion anisotropy;their measured rolling surface (RS)is found to be more electrochemically stable and corrosion resistant than the cross-section surface(CS).Xin et al.[9,10] showed that the corrosion rate of AZ31 dramatically increases with decreased(0 0 0 1)texture intensity and increased(1 0?1 0)/(1 1?2 0)texture intensity.Shin and Song[11,12]demonstrated that the relationship between the corrosion performance of crystallographic planes and the different electrochemical activities of RS and CS surfaces originates from the different surface energy levels of the(0 0 0 1),(1 0?1 0),and(1 1?2 0) crystallographic planes.Wang et al.also concluded that the surface of an as-extruded AZ31 alloy bar with a high concentration of(1 0?1 0)and(1 1?2 0)oriented prism planes is more electrochemically stable and corrosion resistant than that with a high concentration of(0 0 0 2),(1 0?1 0),and(1 1?2 0) oriented planes[13].

    High-strength AZ80 Mg alloys are widely used because of their relatively lower price and better mechanical properties than AZ31 alloys[14–16].However,the relationship between crystallographic texture and corrosion performance of wrought AZ80 Mg alloys has never been reported.Knowledge on the relationship between the crystallographic orientation and corrosion rate of AZ80 alloys is important because it can guide process optimization to obtain the desirable texture for higher corrosion resistance.

    In the present work,high-strength AZ80 Mg alloys were prepared through multi-direction forging,thermal extrusion, and peak-aged heat treatment.The microstructure,texture,and corrosion performance of extrusion-direction(ED),transversedirection(TD),and normal-direction(ND)specimens were investigated.Texture evolution during the extruded processing of Mg alloys was further investigated to understand their effects on the anisotropy of anticorrosion properties.Corrosion rates were found to largely increase with decreased(0 0 0 1)crystallographic plane intensity and increased(1 0?1 0)and(2?1?1 0)crystallographic plane intensity.The corrosion rates of alloys in the service environment can also be modifie to some extent by controlling their texture,thereby promoting the applications of high-strength AZ80 Mg alloy in the aerospace and national-defense fields

    2.Experiments

    The material initially used was an as-cast billet with an average composition of Mg–8.87A1–0.62Zn–0.15Mn–0.0034Fe–0.02Si(wt%).The billet(760 mm×1250 mm)was homogenized at 410°C for 24 h,treated by multi-direction forging at 350°C–400°C,and then extruded at 360°C to a rectangular plate with dimensions of 230 mm×140 mm(extrusion ratio=10:3).Finally,the extrusion AZ80 alloy was peak aged at 175°C for 24 h.The ED,TD,and ND specimens were cut from a peak-aged AZ80 alloy square rod(Fig.1).

    The texture and grain size of peak-agedAZ80 alloy coupons were determined by the electron backscatter diffraction(EBSD) technique.For the salt spray test,polarization-curve analysis, and AC impedance measurements,samples were molded into epoxy resin with only one side exposed as the available working surface.Their ND,TD,and ED surfaces were polished with up to 5000 grit SiC paper and then tested in 3.5 wt.% NaCl solution in salt spray[17].Polarization curves and AC-impedance spectra were obtained with a Solatron 2273 system.Potentiodynamic scanning was performed at a rate of 0.5 mV/s after the cell was held at the open-circuit potential (OCP)for 400 seconds.Impedance was measured with the frequency ranged from 10,000 Hz to 0.1 Hz with 5 mV of amplitude of sinusoidal potential signals with respect to the OCP.After three days of salt spray in 3.5 wt.%NaCl,the specimens were cleaned in 200 g/LCrO3+10 g/L AgNO3[18]. Atomic force microscopy(AFM)measurements of the detailed corrosion morphologies and pitting depth were imaged using an Agilent 5400 in tapping mode.

    Fig.1.The ED,TD,and ND specimens cut from a peak-aged AZ80 alloy square rod.

    3.Results and discussion

    3.1.Anisotropy of the microstructure and crystallographic orientation

    The microstructures mainly consisted of primary α and eutectic precipitates(Fig.2).Results showed that most grains recrystallized and that the originally deformed grains were depleted by the dynamic recrystallization grains.The average grain sizes of the three types of AZ80 specimens were similar, which implied that the grain-size difference was not responsible for the corrosion-rate difference among the different specimen types.A large amount of precipitates was observed to be distributed throughout the matrix for all specimens.The average sizes of these precipitates were slightly dispersed in morphology,whereas volume fraction was higher.These precipitates,as the cathode of electrochemical reactions,accelerated the corrosion process[19,20].

    Actually,there was a difference at the volume fraction and distribution of Mg17Al12phases in the three samples,and the volume fraction of precipitation phases in the ND sample showed the lowest value(Fig.2).Then,the areas of the precipitated phases were counted by software(Image Pro Plus 6.0): (a)ND sample=8.512%;(b)TD sample=9.975%;(c)ED sample=12.305%.

    However,the distinction located that precipitated phases of the ED sample nearly connected into nets in many areas.In compassion with crystallographic orientations,the precipitated phases played a dual role in the corrosion resistance for aluminum-containing Mg alloys according to the classical theory of Song and Atrens[21].The phases played dual roles that depended on the amount and distribution.The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode.Otherwise,a fin and homogeneous phase appeared to be a better anti-corrosion barrier.Zhao et al.[22]also studied the relationship between the microstructure and precipitated phases of AZ91D alloy,which demonstrated that discrete precipitated phases preferentially accelerated the micro-galvanic corrosion process and then the interconnected precipitated phases improved the corrosion properties.

    What’s more,alloying magnesium with aluminum in general improvesthecorrosion resistance[23–25].It isreportedthatthe corrosion rate decreases rapidly with increasing aluminum up to 4%.Further aluminum additions up to 9%give only a modest further improvement.Most importantly,the beneficia role of aluminum was generally believed to be a result of β-phase precipitation,which has an important role as a corrosion barrier.In addition,the influenc of the aluminum in increasing the corrosion resistance appears to be due to the aluminum altering the composition of the hydroxide fil formed on the surface[26].As shown in Fig.2a and b,the Mg17Al12phase precipitated was along the grain boundary,which would be as the cathode of electrochemical reactions to accelerate the corrosion process.But from the ED sample in Fig.2c,an amount of the precipitated phase Mg17Al12formed a continuous distribution in many areas on the grain boundaries,which were served as the corrosion barrier.Thus,the crystallographicorientations played a more important role than the precipitated phases in the corrosion resistance.

    Fig.2.Microstructures and grain sizes of high-strength AZ80 alloy:(a)ND specimen,(b)TD specimen,and(c)ED specimen.

    The microstructures of ND,TD,and ED specimens were examined by EBSD to understand the microstructure evolution during the process of wrought-alloy production(Fig.3).The grain colors in the maps corresponded to the crystallographic axes shown in the inserted stereographic triangle.We determined that the(0 0 0 1)base planes of most grains were parallel to the ED.The c-axes of the grains were nearly normal to the exposed surface on the ND specimen.However,these results also confi med that theTD and ED specimens mainly consisted of(1 0?1 0)and(2?1?1 0)crystallographic plane intensities, respectively.This conclusion was consistent with the basal texture commonly reported for extrusion AZ80 alloy sheets [27].

    3.2.Anisotropy of corrosion rates and surface morphologies

    The corrosion rate of the specimens was calculated usingC=(W0?W1)/S,where C is the weight loss of metal because of corrosion(g·m?2),W0is the original weight(g),W1is the fina weight without corrosion products(g),andSis the surface area (m2).Each type had three specimens,so the corrosion rates were the average value.Fig.4 shows that the ED specimens had the highest corrosion rate of 4.5259 mg·cm?2·d?1,whereas the ND specimens had the lowest at 2.6963 mg·cm?2·d?1.The corrosion rate followed the order ND<TD<ED,indicating that the ND surface of AZ80 Mg alloy square rod surface exhibited the highest corrosion resistance,whereas the ED surface had the lowest corrosion resistance.

    Based on the above conditions,the relationship between corrosion rate and crystallographic plane was observed.Corrosion rate increased with decreased(0 0 0 1)crystallographic plane intensity and increased(1 0?1 0)and(2?1?1 0) crystallographic plane intensities.This phenomenon can be due to the different crystallographic grain orientations having different electrochemical activities.A previous study on the relationship between corrosion rate and crystallographic plane energy has suggested that the activation energy for the dissolution of a densely packed surface is higher than that for the dissolution of a loosely packed one[28].Song[8]theoretically proved that the energy of Mg(0 0 0 1),(1 0?1 0),and(1 1?2 0)surfaces is 1.808,1.868,and 2.156 eV/nm2,which can beconverted into 1.54×104,3.04×104,and 2.99×104J/mol, respectively.Thus,the(0 0 0 1)crystallographic plane has the lowest surface energy and should dissolve slower than the(1 0?1 0)and(1 1?2 0)crystallographic planes.According to the hexagonal close-packed(hcp)structure of Mg,(1 1?2 0)and(2?1?1 0)crystallographic planes both belong to the same crystal family,so they have the same crystallographic intensity, surface energy,and electrochemical activity.Therefore,the NS surface mainly consisted of(0 0 0 1),whereas the TD and ED surfaces mainly comprised(1 0?1 0)and(2?1?1 0)crystallographic planes.

    Fig.3.Crystallographic orientation of high-strengthAZ80 alloy obtained from EBSD analyses:(a)ND specimen,(b)TD specimen,and(c)ED specimen.

    Fig.4.Weight-loss rates of specimens sprayed with 3.5%NaCl for 3 days.

    After salt-spray exposure,the corrosion products that formed on the specimen surfaces were removed by pickling.A slight corrosion attack occurred horizontally between the matrix and precipitates of ND specimen,as shown in Fig.5a, whereas corrosion-damage patterns were irregularly distributed over the TD(Fig.5b)and ED(Fig.5c)specimens.This findin further proved that crystallographic texture determined the corrosion rate.Thus,corrosion pits increased because of the decrease in(0 0 0 1)and increase in(1 0?1 0)/(2?1?1 0) crystallographic planes.This phenomenon was due to the micro-galvanic effect resulting in a preferential corrosion of(1 0?1 0)and(2?1?1 0)oriented grains.

    3.3.Anisotropy of electrochemical characteristics

    The OCP was found to be comparatively stable before measurement.Moreover,a corrosion product fil formed on the specimen surfaces,and no clear localized corrosion occurred. The cathodicTafel slopes were similar among specimens under different conditions,which indicated that hydrogen evolution occurred[29].

    Interestingly,the polarization curves(Fig.6)showed that ND surface had a more positive OCP than other surfaces.In other words,the OCP of the closely packed(0 0 0 1)crystallographic plane was more positive than that of the less densely packed(1 0?1 0)/(2?1?1 0)crystallographic planes.Thus, electrochemical activity followed the order(0 0 0 1)>(1 0?1 0)>(2?1?1 0),meaning that the high-strengthAZ80 Mg alloy had a strong corrosion-resistance anisotropy mainly dependent on the crystallographic grain orientation.According to a previous study,the relationship between grain orientation and corrosion performance can be indicated by the activation energy for crystallographic-plane dissolution.Furthermore,atoms in lower-surface-energy planes dissolved relatively more slowly [30].

    In theory,the electrochemical corrosion rate of the Mg alloy can be calculated by Iα=nFk exp[(Q+αnFE)/RT],wherenis the number of electrons involved in the reaction;kis a reaction constant;F,R,T,Eandαare Faraday constant,gas constant, absolute temperature,electrode potential,and transit coeffi cient,respectively;andQis the activation energy for a metallic ion to escape from the metal lattice and dissolve into the solution [10].Song [8]indicated that the ratio of the anodic dissolution rateof a crystallographic planeoverthatofthe baseplaneshould beIf α=1/2, after using the theoreticalcalculated surface energy values for Mg (0 0 0 1),(1 0 ?1 0),and (2 ?1 ?1 0), thenandrespectively.Therefore,the corrosion rates of the(1 0?1 0)and(2?1?1 0)crystallographic planes were higher than those of the base plane(0 0 0 1).

    Fig.5.Surface morphologies and depth of corrosion pits obtained from AFM analyses:(a)ND specimen,(b)TD specimen,and(c)ED specimen.

    Fig.6.Polarization curves and AC impedance of specimens measured in 3.5%NaCl solution.

    In addition to theinfluenc on anodicdissolution, crystallographic-plane energy also indirectly affected the cathodic hydrogen evolution.A higher-energy crystallographicplane enabled a higher density of hydrogen-adsorption sites, which benefite water or proton adsorption and accelerated the hydrogen reaction.Therefore,a closely packed plane with a higher surface energy can have a better catalytic effect on hydrogen reduction,which explained the higher cathodic current density of ED than TD and ND in the polarization curves.However,the influenc of surface energy was indirect and thus had a less significan effect on the activation energy for hydrogen reaction than on that for Mg dissolution.Therefore, the difference in cathodic current density among ND,TD,and ED was less than that in anodic current density.

    4.Conclusion

    (1)A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The ND surface of an AZ80 square rod mainly consisted of a closely packed(0 0 0 1)crystallographic plane with low surface energy.A amount of the precipitated phase Mg17Al12formed of TD and ND samples was along the grain boundary,which would be as the cathode of electrochemical reactions to accelerate the corrosion process.Amounts of precipitated phases of ED sample formed a continuous distribution in many areas, which played a role in the corrosion barrier.The crystallographic orientations played a more important role than the precipitated phases in the corrosion resistance.Thus, Nd sample’s anodic dissolution and cathodic hydrogen evolution were more difficul than those of TD and ED surfaces,wherein most grains had(1 0?1 0)and(2?1?1 0)orientations,respectively.

    (2)The corrosion rate of different crystallographic planes of AZ80 Mg alloy wasestimated based on an electrochemical-dissolution-rate equation.Findings indicated that the theoretical dissolution rates of crystallographic planes were as follows:(0 0 0 1)>(1 0?1 0)>(2?1?1 0).

    (3)Different locations in the interior of the AZ80 alloy billet were subjected to different stresses and strains in multi-direction forging and thermal extrusion.Given the low symmetry of the hcp crystal structure,the AZ80 alloy square rod showed evident anisotropy in different directions and influence corrosion performance.The crystallographic grain orientations played an important role,which indicated that material performance can be modifie to some extent by controlling texture.All these results can help expand the applications of high-strength AZ80 alloys in the aerospace and national-defense fields

    Acknowledgement

    The authors gratefully acknowledge the National Natural Science Foundation of China(grant no.51501181)and Professor Liu for providing support for this work.

    [1]E.A.Ball,P.B.Prangnell,Script.Mater.31(2)(1994)111–116.

    [2]J.Yuan,K.Zhang,T.Li,X.Li,Y.Li,M.Ma,et al.,Mater.Des.40(2012) 257–261.

    [3]J.Bohlen,M.R.Nürnberg,J.W.Senn,D.Letzig,S.R.Agnew,Acta Mater. 55(6)(2007)2101–2112.

    [4]M.Liu,D.Qiu,M.C.Zhao,G.Song,A.Atrens,Script.Mater.58(5) (2008)421–424.

    [5]T.Zhang,G.Meng,Y.Shao,Z.Cui,F.Wang,Corros.Sci.53(9)(2011) 2934–2942.

    [6]F.Kaiser,J.Bohlen,D.Letzig,K.U.Kainer,A.Styczynski,C.Hartig, Adv.Eng.Mater.5(12)(2003)891–896.

    [7]Q.Zhang,H.Guo,F.Xiao,L.Gao,A.B.Bondarev,W.Han,J.Mater. Process.Technol.209(15)(2009)5514–5520.

    [8]G.L.Song,R.Mishra,Z.Q.Xu,Electrochem.Commun.12(8)(2010) 1009–1012.

    [9]R.L.Xin,B.Li,L.Li,Q.Liu,Mater.Des.32(8)(2011)4548–4552.

    [10]R.L.Xin,M.Y.Wang,J.C.Gao,P.Liu,Q.Liu,Mater.Sci.Forum 610 (2009)1160–1163.

    [11]K.S.Shin,M.Z.Bian,N.D.Nam,JOM(1989)64(6)(2012)664–670.

    [12]G.L.Song,Z.Xu,Corros.Sci.63(2012)100–112.

    [13]B.J.Wang,D.K.Xu,J.H.Dong,W.Ke,Script.Mater.88(2014)5–8.

    [14]H.Yu,S.H.Park,B.S.You,Mater.Sci.Eng.A Struct.Mater.610(2014) 445–449.

    [15]Z.Cao,F.Wang,Q.Wan,Z.Zhang,L.Jin,J.Dong,Mater.Des.67(2015) 64–71.

    [16]X.Huang,K.Suzuki,N.Saito,Mater.Sci.Eng.A Struct.Mater.508(1) (2009)226–233.

    [17]Q.T.Jiang,K.Zhang,X.G.Li,Y.Li,M.Ma,G.Shi,et al.,J.Magnes. Alloys 1(3)(2013)230–234.

    [18]Q.T.Jiang,M.L.Ma,K.Zhang,X.Li,Y.Li,G.Shi,et al.,J.Rare Earths 32(12)(2014)1170–1174.

    [19]D.Zhao,Z.Wang,M.Zuo,H.Geng,Mater.Des.56(2014)589–593.

    [20]Q.T.Jiang,K.Zhang,X.G.Li,Y.J.Li,M.L.Ma,G.L.Shi,et al.,Corros. Eng.Sci.Technol.49(7)(2014)651–655.

    [21]G.Song,A.Atrens,Adv.Eng.Mater.1(1)(1999)11–33.

    [22]M.Zhao,M.Liu,G.Song,A.Atrens,Corros.Sci.50(2008)1939–1953. [23]K.Nisancioglu,O.Lunder,T.R.Aune,Corrosion mechanism of AZ91 magnesium alloy.Past to Future:47th Annual World Magnesium Conference.1990,pp.43–50.

    [24]G.L.Makar,J.Kruger,J.Electrochem.Soc.137(2)(1990)414–421.

    [25]C.B.Baliga,P.Tsakiropoulos,Mater.Sci.Technol.9(6)(1993)513–519.

    [26]W.S.Loose,L.M.Pidgeon,J.C.Mathes,N.E.Woldmen,Corrosion and Protection of Magnesium,ASM International,Materials Park,OH,1946, pp.173–260.

    [27]B.Q.Shi,R.S.Chen,W.Ke,Mater.Sci.Eng.A Struct.Mater.546(2012) 323–327.

    [28]J.J.Gray,B.S.El Dasher,C.A.Orme,Surf.Sci.600(12)(2006) 2488–2494.

    [29]A.D.Sudholz,K.Gusieva,X.B.Chen,B.C.Muddle,M.A.Gibson,N. Birbilis,Corros.Sci.53(6)(2011)2277–2282.

    [30]G.L.Song,Z.Q.Xu,Electrochim.Acta 55(13)(2010)4148–4161.

    Received 23 September 2015;revised 10 November 2015;accepted 10 November 2015 Available online 2 December 2015

    *Corresponding author.State Key Lab for Non-Ferrous Metals and Process, General Research Institute for Non-Ferrous Metals,Beijing 100088,China.Tel: +86-10-82241168;fax:+86-10-82241168.

    E-mail address:zhkui@grinm.com(K.Zhang).

    **Corresponding author.Marine Corrosion and Protection Centre,Institute of Oceanology,Chinese Academy of Sciences,No.7 Nanhai Road,Qingdao 266071,China.Tel:+86-532-82898832;fax:+86-532-82898832.

    E-mail address:ytli@qdio.ac.cn(Y.Li).

    http://dx.doi.org/10.1016/j.jma.2015.11.002

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    久久亚洲真实| 免费在线观看亚洲国产| 欧美久久黑人一区二区| 在线十欧美十亚洲十日本专区| 久久久久久免费高清国产稀缺| 在线观看一区二区三区激情| 俄罗斯特黄特色一大片| 亚洲成a人片在线一区二区| 亚洲 欧美一区二区三区| 国产精品国产高清国产av| 亚洲精品一区av在线观看| 岛国视频午夜一区免费看| 夜夜爽天天搞| 国产成人啪精品午夜网站| 又黄又粗又硬又大视频| 国产野战对白在线观看| 国产精品自产拍在线观看55亚洲| 国产精华一区二区三区| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 一区二区三区激情视频| 真人一进一出gif抽搐免费| 母亲3免费完整高清在线观看| 国产精品秋霞免费鲁丝片| √禁漫天堂资源中文www| 国产精品一区二区免费欧美| 在线播放国产精品三级| 亚洲在线自拍视频| 亚洲欧美日韩高清在线视频| 丝袜美足系列| 国产精品一区二区精品视频观看| 黑人巨大精品欧美一区二区蜜桃| 91成人精品电影| 免费少妇av软件| 啦啦啦免费观看视频1| 日本欧美视频一区| 亚洲专区中文字幕在线| 国产高清视频在线播放一区| 三上悠亚av全集在线观看| 久久人人97超碰香蕉20202| 亚洲精品在线观看二区| 亚洲少妇的诱惑av| 美女大奶头视频| 涩涩av久久男人的天堂| 老熟妇仑乱视频hdxx| 好男人电影高清在线观看| 日韩欧美国产一区二区入口| 老汉色∧v一级毛片| 国产av在哪里看| 在线观看免费视频网站a站| 中文字幕另类日韩欧美亚洲嫩草| 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 久久久久久久精品吃奶| 久久久久国产一级毛片高清牌| 成人永久免费在线观看视频| 99re在线观看精品视频| www.www免费av| 多毛熟女@视频| 成年版毛片免费区| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 欧美最黄视频在线播放免费 | 欧美成人午夜精品| 国产主播在线观看一区二区| 超色免费av| 搡老乐熟女国产| 亚洲精品一卡2卡三卡4卡5卡| 日韩 欧美 亚洲 中文字幕| 叶爱在线成人免费视频播放| 校园春色视频在线观看| 一边摸一边做爽爽视频免费| 国产精品一区二区三区四区久久 | 久久国产精品男人的天堂亚洲| 80岁老熟妇乱子伦牲交| 人成视频在线观看免费观看| 成人18禁高潮啪啪吃奶动态图| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看a级黄色片| 国产亚洲欧美在线一区二区| 首页视频小说图片口味搜索| www日本在线高清视频| 天天影视国产精品| 又大又爽又粗| 中文字幕av电影在线播放| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站 | 精品久久久久久久毛片微露脸| 美女 人体艺术 gogo| 午夜日韩欧美国产| 国产一区在线观看成人免费| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 国产视频一区二区在线看| 亚洲精品一二三| 亚洲人成电影观看| 久久 成人 亚洲| 亚洲 国产 在线| 免费高清在线观看日韩| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 久久中文看片网| 欧美乱妇无乱码| 亚洲 欧美一区二区三区| 自线自在国产av| 俄罗斯特黄特色一大片| 国产高清videossex| 亚洲欧美激情在线| 成人亚洲精品一区在线观看| 亚洲成a人片在线一区二区| 欧美性长视频在线观看| 亚洲,欧美精品.| 香蕉国产在线看| 亚洲精品久久午夜乱码| 成人三级黄色视频| 91国产中文字幕| 脱女人内裤的视频| 亚洲国产精品sss在线观看 | 免费在线观看视频国产中文字幕亚洲| 少妇被粗大的猛进出69影院| 亚洲五月婷婷丁香| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 日韩精品青青久久久久久| 岛国视频午夜一区免费看| 一区在线观看完整版| 日日摸夜夜添夜夜添小说| 99久久人妻综合| 中文字幕人妻丝袜制服| 亚洲情色 制服丝袜| 午夜视频精品福利| 亚洲国产精品一区二区三区在线| 午夜免费鲁丝| 午夜福利欧美成人| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲自偷自拍图片 自拍| 两个人免费观看高清视频| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区| 天天躁夜夜躁狠狠躁躁| 夜夜爽天天搞| 成人精品一区二区免费| 国产成人系列免费观看| 在线观看免费日韩欧美大片| 国产免费男女视频| 黄片小视频在线播放| 久久香蕉激情| 一边摸一边抽搐一进一出视频| 久久精品国产清高在天天线| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 91成年电影在线观看| 人妻久久中文字幕网| 变态另类成人亚洲欧美熟女 | 男人的好看免费观看在线视频 | а√天堂www在线а√下载| 国产人伦9x9x在线观看| 午夜精品国产一区二区电影| 大型av网站在线播放| 搡老乐熟女国产| 91字幕亚洲| 一夜夜www| 天堂影院成人在线观看| 亚洲伊人色综图| 黄频高清免费视频| 脱女人内裤的视频| 80岁老熟妇乱子伦牲交| 国产区一区二久久| 在线观看www视频免费| 久久久久久久午夜电影 | 亚洲第一青青草原| 操出白浆在线播放| 国产乱人伦免费视频| 欧美黄色片欧美黄色片| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 久热爱精品视频在线9| 日韩免费av在线播放| 精品一品国产午夜福利视频| 久久中文字幕人妻熟女| 中文欧美无线码| 黄色丝袜av网址大全| 91九色精品人成在线观看| 成人国产一区最新在线观看| 国产精品二区激情视频| a在线观看视频网站| x7x7x7水蜜桃| 久久影院123| 亚洲国产精品合色在线| 亚洲 欧美 日韩 在线 免费| 两个人免费观看高清视频| 久久久久久久精品吃奶| 成人亚洲精品av一区二区 | 18禁黄网站禁片午夜丰满| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区mp4| 亚洲精品美女久久久久99蜜臀| 操美女的视频在线观看| 999精品在线视频| 免费观看人在逋| xxx96com| 欧美黑人精品巨大| 国产麻豆69| 9热在线视频观看99| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 麻豆久久精品国产亚洲av | 黄网站色视频无遮挡免费观看| 日韩视频一区二区在线观看| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 制服诱惑二区| 亚洲精品一卡2卡三卡4卡5卡| 成人免费观看视频高清| 欧美久久黑人一区二区| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 久久国产精品影院| 精品免费久久久久久久清纯| 丝袜美足系列| 久久久水蜜桃国产精品网| 99久久综合精品五月天人人| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| 午夜免费鲁丝| 丰满的人妻完整版| 婷婷丁香在线五月| 久久人人精品亚洲av| 超色免费av| 午夜福利影视在线免费观看| 国产三级黄色录像| 夫妻午夜视频| 欧美av亚洲av综合av国产av| 国产成人av教育| 国产视频一区二区在线看| 香蕉丝袜av| 国产成人av激情在线播放| 成人三级黄色视频| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 一级片免费观看大全| 91精品国产国语对白视频| 男女做爰动态图高潮gif福利片 | 人妻久久中文字幕网| 91字幕亚洲| a在线观看视频网站| 9191精品国产免费久久| 国产91精品成人一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区精品视频观看| 狠狠狠狠99中文字幕| 看片在线看免费视频| 国产又色又爽无遮挡免费看| 操美女的视频在线观看| 日韩精品青青久久久久久| 超色免费av| 在线十欧美十亚洲十日本专区| 国产一区二区在线av高清观看| 精品日产1卡2卡| 嫩草影视91久久| 男人的好看免费观看在线视频 | 久久性视频一级片| 在线观看66精品国产| 久久中文字幕人妻熟女| 精品高清国产在线一区| 一二三四社区在线视频社区8| 多毛熟女@视频| 日本五十路高清| 亚洲五月婷婷丁香| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 国产激情久久老熟女| 久久久久亚洲av毛片大全| 嫁个100分男人电影在线观看| www日本在线高清视频| 亚洲中文av在线| 国产日韩一区二区三区精品不卡| 国产蜜桃级精品一区二区三区| 最新在线观看一区二区三区| 少妇粗大呻吟视频| 青草久久国产| 精品少妇一区二区三区视频日本电影| 高清黄色对白视频在线免费看| 丝袜美足系列| 久久久久久久午夜电影 | 国产精品av久久久久免费| 淫妇啪啪啪对白视频| 日本 av在线| 亚洲欧美激情综合另类| 亚洲全国av大片| 十八禁人妻一区二区| 美女国产高潮福利片在线看| 日本a在线网址| 日日摸夜夜添夜夜添小说| 午夜免费观看网址| 夫妻午夜视频| 在线观看一区二区三区| 精品欧美一区二区三区在线| 亚洲成人精品中文字幕电影 | 久久久久久免费高清国产稀缺| 亚洲黑人精品在线| 免费在线观看视频国产中文字幕亚洲| 久久人妻福利社区极品人妻图片| 国产亚洲精品综合一区在线观看 | 欧美人与性动交α欧美软件| 亚洲九九香蕉| 91在线观看av| 久久久精品欧美日韩精品| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 一区福利在线观看| 中文字幕色久视频| 免费看a级黄色片| 欧美日韩一级在线毛片| 国产成人欧美| 波多野结衣一区麻豆| 国产视频一区二区在线看| 亚洲aⅴ乱码一区二区在线播放 | 成年人黄色毛片网站| 少妇 在线观看| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 久久人人爽av亚洲精品天堂| 精品乱码久久久久久99久播| 久久久久精品国产欧美久久久| 午夜a级毛片| 久久草成人影院| 亚洲精品一区av在线观看| 国产国语露脸激情在线看| 免费在线观看影片大全网站| 日韩有码中文字幕| 女人被躁到高潮嗷嗷叫费观| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇粗大呻吟视频| 久99久视频精品免费| 色哟哟哟哟哟哟| 久久久久国内视频| 久久香蕉精品热| 在线观看午夜福利视频| 一级a爱视频在线免费观看| 日本a在线网址| 欧美 亚洲 国产 日韩一| 亚洲人成77777在线视频| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 国产人伦9x9x在线观看| 在线免费观看的www视频| √禁漫天堂资源中文www| 欧美在线黄色| 高清av免费在线| 国产xxxxx性猛交| av片东京热男人的天堂| 亚洲成人免费av在线播放| 97超级碰碰碰精品色视频在线观看| 男人舔女人的私密视频| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 中文字幕人妻丝袜制服| 亚洲国产精品合色在线| 电影成人av| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 久久精品亚洲精品国产色婷小说| 久久人妻福利社区极品人妻图片| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放 | 在线观看免费午夜福利视频| 一进一出抽搐gif免费好疼 | 亚洲片人在线观看| 国产精品 欧美亚洲| 国产高清激情床上av| 一级片'在线观看视频| 久久国产精品男人的天堂亚洲| 99久久综合精品五月天人人| 日本 av在线| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 国产精品久久电影中文字幕| 丰满的人妻完整版| 50天的宝宝边吃奶边哭怎么回事| 久久香蕉国产精品| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 又黄又爽又免费观看的视频| 1024视频免费在线观看| 日韩中文字幕欧美一区二区| 制服诱惑二区| 自线自在国产av| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 国产麻豆69| 亚洲少妇的诱惑av| 人妻久久中文字幕网| 午夜福利欧美成人| 伦理电影免费视频| 深夜精品福利| 日日爽夜夜爽网站| 国产精品爽爽va在线观看网站 | 最新在线观看一区二区三区| 99re在线观看精品视频| www.精华液| 日韩欧美一区二区三区在线观看| 亚洲情色 制服丝袜| 天堂动漫精品| 美女福利国产在线| 午夜亚洲福利在线播放| 女性被躁到高潮视频| а√天堂www在线а√下载| 手机成人av网站| 亚洲精华国产精华精| 国产精品免费视频内射| a在线观看视频网站| 亚洲精品国产区一区二| 国产极品粉嫩免费观看在线| 新久久久久国产一级毛片| 最新在线观看一区二区三区| 欧美黑人精品巨大| 黑人欧美特级aaaaaa片| 亚洲熟妇熟女久久| netflix在线观看网站| 欧美日韩乱码在线| 水蜜桃什么品种好| 中文欧美无线码| 国产欧美日韩一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 91成人精品电影| 狂野欧美激情性xxxx| 一区福利在线观看| 久久热在线av| 露出奶头的视频| 老司机深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 97人妻天天添夜夜摸| 国产成人影院久久av| 天堂俺去俺来也www色官网| 日韩 欧美 亚洲 中文字幕| 如日韩欧美国产精品一区二区三区| 成人av一区二区三区在线看| 国产成人av教育| 国产野战对白在线观看| 日韩欧美在线二视频| 宅男免费午夜| 久久国产亚洲av麻豆专区| av有码第一页| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精| 激情视频va一区二区三区| 日韩免费高清中文字幕av| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| 成人三级做爰电影| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 精品国产国语对白av| 国产一区二区三区综合在线观看| 法律面前人人平等表现在哪些方面| 日韩欧美国产一区二区入口| 久久国产精品男人的天堂亚洲| 成人国语在线视频| 在线观看免费视频日本深夜| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 日韩欧美在线二视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久电影中文字幕| 深夜精品福利| 好看av亚洲va欧美ⅴa在| а√天堂www在线а√下载| 黄色成人免费大全| 欧美人与性动交α欧美精品济南到| 97碰自拍视频| 亚洲欧美精品综合久久99| 两个人免费观看高清视频| 日韩大尺度精品在线看网址 | 欧美激情高清一区二区三区| 黄色成人免费大全| 女警被强在线播放| 日韩成人在线观看一区二区三区| 国产片内射在线| 亚洲精品美女久久av网站| 女人爽到高潮嗷嗷叫在线视频| 啪啪无遮挡十八禁网站| 久久久久久人人人人人| 亚洲第一欧美日韩一区二区三区| 91麻豆精品激情在线观看国产 | 在线看a的网站| 麻豆成人av在线观看| 久久香蕉激情| 巨乳人妻的诱惑在线观看| 91大片在线观看| 淫秽高清视频在线观看| 欧美日韩av久久| 国产熟女午夜一区二区三区| 国产成人系列免费观看| 淫妇啪啪啪对白视频| 亚洲性夜色夜夜综合| 国产精品免费视频内射| 精品国产一区二区久久| 久久亚洲精品不卡| 黄色毛片三级朝国网站| 亚洲国产精品一区二区三区在线| 久久久久久免费高清国产稀缺| 亚洲免费av在线视频| 日韩欧美一区二区三区在线观看| 国产成人免费无遮挡视频| 高清黄色对白视频在线免费看| 妹子高潮喷水视频| 欧美丝袜亚洲另类 | 丝袜人妻中文字幕| 成人国产一区最新在线观看| 国产精品久久电影中文字幕| 国产亚洲欧美在线一区二区| 手机成人av网站| 波多野结衣一区麻豆| 亚洲第一av免费看| 亚洲精品久久午夜乱码| 欧美激情高清一区二区三区| 久久久久久免费高清国产稀缺| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 看免费av毛片| 男女下面插进去视频免费观看| 身体一侧抽搐| 欧美成人免费av一区二区三区| 国产欧美日韩精品亚洲av| 成人永久免费在线观看视频| 青草久久国产| 日本欧美视频一区| 亚洲精品久久午夜乱码| 男女下面插进去视频免费观看| 99久久久亚洲精品蜜臀av| 成人三级做爰电影| 国产精品日韩av在线免费观看 | 国产蜜桃级精品一区二区三区| 可以在线观看毛片的网站| 69av精品久久久久久| 悠悠久久av| 成年女人毛片免费观看观看9| 在线免费观看的www视频| 一本大道久久a久久精品| 国产精品av久久久久免费| 一级a爱视频在线免费观看| 很黄的视频免费| 80岁老熟妇乱子伦牲交| netflix在线观看网站| 男人的好看免费观看在线视频 | 天堂影院成人在线观看| 国产一区二区三区在线臀色熟女 | 三级毛片av免费| 精品人妻在线不人妻| 亚洲午夜理论影院| 黄片大片在线免费观看| 亚洲成人精品中文字幕电影 | 男女做爰动态图高潮gif福利片 | 亚洲精品一卡2卡三卡4卡5卡| 美女 人体艺术 gogo| 国产高清激情床上av| 精品卡一卡二卡四卡免费| 亚洲五月婷婷丁香| 天天躁狠狠躁夜夜躁狠狠躁| 韩国精品一区二区三区| 黄色丝袜av网址大全| 俄罗斯特黄特色一大片| 国产无遮挡羞羞视频在线观看| av网站在线播放免费| 国产一区二区在线av高清观看| 九色亚洲精品在线播放| 亚洲欧美激情综合另类| 日本精品一区二区三区蜜桃| 亚洲午夜精品一区,二区,三区| 精品国产一区二区久久| 国产精品免费一区二区三区在线| 国产精品久久久久成人av| 一级作爱视频免费观看| 黄色女人牲交| 国产伦一二天堂av在线观看| 国产av又大| 日韩精品免费视频一区二区三区| 看片在线看免费视频| 久久久久国内视频| 丁香欧美五月| 可以在线观看毛片的网站| 国产黄色免费在线视频| 在线视频色国产色| 免费观看精品视频网站| 色精品久久人妻99蜜桃| 男女午夜视频在线观看| 国产精品 欧美亚洲| 亚洲九九香蕉| 老熟妇仑乱视频hdxx| 正在播放国产对白刺激| 51午夜福利影视在线观看| ponron亚洲| 欧美大码av| 久久99一区二区三区| 婷婷精品国产亚洲av在线| 我的亚洲天堂| 一级,二级,三级黄色视频| 无遮挡黄片免费观看| 一级毛片精品|