• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of friction welded AZ31B magnesium–commercial pure titanium dissimilar joints

    2015-02-16 02:56:10KrthikSrinivsBVenktrmn
    Journal of Magnesium and Alloys 2015年4期

    V.Krthik SrinivsB.Venktrmn

    aDepartment of Mechanical Engineering,SSN College of Engineering,Kalavakkam 603 103,Tamil Nadu,India

    bRadiological Safety and Environmental Group,Indira Gandhi Centre for Atomic Research,Kalpakkam 603 102,Tamil Nadu,India

    Characteristics of friction welded AZ31B magnesium–commercial pure titanium dissimilar joints

    A.K.Lakshminarayanana,*,R.Saranarayanana,V.Karthik Srinivasa,B.Venkatramanb

    aDepartment of Mechanical Engineering,SSN College of Engineering,Kalavakkam 603 103,Tamil Nadu,India

    bRadiological Safety and Environmental Group,Indira Gandhi Centre for Atomic Research,Kalpakkam 603 102,Tamil Nadu,India

    It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium–titanium dissimilar joint using tensile testing coupled with digital image correlation,optical and scanning electron microscopy,x-ray diffraction and microhardness measurements.Microstructurally different regions such as contact zone,dynamic recrystallized zone,thermo-mechanically affected zone,and partially deformed zone in the magnesium side were observed.No discernible regions were observed in the titanium side,as it had not undergone any significan plastic deformation.Phase analysis indicated that the aluminium from the magnesium side diffused toward the weld interface and formed a thin continuous intermetallic layer by reacting with thetitanium.Microhardnessmappingshowed a steep hardness gradient from the titanium to magnesium side.Criticalanalysisisdone on the tensile characteristics of the specimen and the response of the local regions to the deformation process is mapped.

    Friction welding;Dissimilar joints;Microstructure;Digital image correlation

    1.Introduction

    Dissimilar combinations are widely gaining prominence as they cater to stringent industrial requirements[1].Dissimilar welded joints of titanium(Ti)and magnesium(Mg)alloy are an attractive combination for automotive applications(e.g. multi-material light weight vehicles).However,their significan difference in the physical properties,like melting point (Ti:1668°C,Mg:650°C),thermalconductivity (Mg: 156 Wm?1k?1,Ti:21.9 Wm?1k?1),lower mutual solubility, absence of reaction layer,unavailability of suitable fille materials makes joining them by fusion welding techniques difficul [2].Hence,an appropriate joining technique that overcomes the above mentioned problems is to be applied.A literature survey indicated that attempts were made to join this combination using techniques like diffusion bonding,laser beam welding, friction stir welding,friction welding and cold metal transfer welding[3–7].Tanabe and Watanab[3]investigated the effect of friction stir welding process parameters,namely rotational speed,tool pin profiland offset distance on the quality of dissimilar commercial pure titanium–AZ31 magnesium alloy joints and indicated that the fracture location was decided by the diffusion of aluminum from the magnesium side to the titanium side.Gao et al.[4]used laser keyhole welding to join Ti-6Al-4V grade titanium to AZ31B magnesium alloy and reported that the laser offset distance plays a major role in the weld quality,and further stated that the optimum laser offset distance should be in the range of 0.2–0.5 mm to get defect free joints.They also stated that titanium alloys with the presence of aluminum and vanadium increase the solubility of magnesium in titanium.Aonuma and Nakata[5]explored the possibility of joining ZK60 magnesium alloy with titanium and they observed that a thin Zn and Zr-rich layer formed at the interface,which had a significan effect on the tensile strength of the joint.Cao et al.[6]joined pure titanium and AZ31 magnesium alloy in a lap configuratio with the use of AZ61 fille wire by cold metal transfer welding and brazing.Although it was reported that sound welds can be obtained using this technique, the observed values of maximum tensile shear failure load were very low.To the best of the authors’knowledge,only one study100 kN displacement controlled servo hydraulic tensile testing machine.The CMOS camera(Marlin-F131)of DIC setup was focused on one side of the surface of the specimen which is coated with random speckle(black and white)pattern.The resolution of 1380×1035 pixels,frame rate of 10HZ,strain resolution of 50με was used for the experiments.DIC systems were started from the beginning of loading capturing images at 50 Hz and 5 Hz frame rate.Images for performing image correlation were captured using a CMOS camera from which strain field were computed using associated DIC processing software (Vic2D).Vickers microhardness testing machine(Maker:was reported by Li et al.[7]on the friction heat production and atomic diffusion behavior during the friction welding of titanium–magnesium dissimilar joints.They reported that rotational speed and axial pressure play a major role in the generation of temperature and friction coefficient However,the microstructural and mechanical characteristics of friction welded magnesium-titanium dissimilar joints have not yet been reported.Hence,an attempt was made to understand the localized tensile characteristics of friction welded Mg-Ti dissimilar joints using digital image correlation and results obtained are correlated with microhardness distribution,microstructural features and phases present at the weld interface.

    Table 1Chemical composition of base metal,Wt%(measured).

    Fig.1.Dimensions of Specimens.

    2.Experimental work

    The chemical composition and mechanical properties of commercial pure titanium and AZ31B magnesium alloy are presented in Tables 1 and 2 respectively.Before welding,the workpiece was degreased with acetone solution to remove the oxide layer and the surface of the rods to be welded was milled to make the mating surface uniform.Rotary continuous drive friction welding machine(Maker:RV Machine tools,Coimbatore)was employed to fabricate the dissimilar Mg-Ti joints. From the trail runs carried out in our laboratory,the optimum process parameters were identifie and they are presented in Table 3.

    An arrangement was made in such a way that magnesium rod rotate about its axis and titanium rod was kept stationary (Fig.1).The joints fabricated were cut along its cross-section by wire cutting electric discharge machine.The specimen was then polished with emery sheets of varying grit sizes.The polished specimen was etched with 4.2 g picric acid,10 mlacetic acid,10 ml water and 100 ml ethanol for duration of about 30 s.Optical microscope(Maker:Olympus,Japan)was utilized to capture the macrostructure and microstructure of the base metals and different regions of the dissimilar joint.Scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS)was employed to determine the element distribution across the interface of the joint.

    Table 2Mechanical properties of base metals(measured).

    Table 3Welding conditions used.

    Tensile specimens were prepared according to the ASTM E8M-09 standard.The fabricated joint,the specimen used for metallurgical characterization and the tensile test specimen are displayed in Fig.2.The tensile test specimen was loaded onto a

    Fig.2.(a)Mg-Ti Joints,(b)Mg-Ti Joints(cross sectional view),(c)photographs of tensile specimens before testing(d)specimen prepared for DIC test.

    3.2.MicrostructureShimadzu,Japan;Model HMV-T1)was employed with 0.05 kg load for measuring the hardness across the weld.The microhardness map was then constructed using the measured hardness values across the welded joint.Scanning electron microscopy(Maker:FEI Quanta HR-SEM)was applied to understand interfacial characteristics and to observe fracture morphology of failed tensile specimens.

    Fig.3.Macrostructure of friction welded Mg–Ti dissimilar joints.

    3.Results and discussion

    The factors that decide the joint integrity of dissimilar joints are the fl w stress and forging temperature of the base metal to be joined,elemental diffusion across the joint,formation of different phases,width of interlayer thickness and the changes in the grain morphology and its size.These factors can be correlated with the results presented in the following sections.

    3.1.Macrostructure

    The cross sectional macrostructure of friction welded dissimilar Mg-Ti joint is displayed in Fig.3.The flas formation on the magnesium side can be explained by comparing the forging temperatures and fl w stress of the magnesium alloy and the commercial pure titanium.The forging temperature of commercial pure titanium is around 815–900°C,whereas it is in the range of 290–345°C for theAZ31B magnesium alloy[8].

    Fig.4 shows the effect of temperature on the yield stress of commercial pure titanium andAZ31B magnesium alloy[9,10]. Plastic deformation was initiated at the magnesium side due to its lower fl w stress when compared to commercial pure titanium.The excessive plastic deformation and the flas formation observed at the magnesium side are mainly due to the lower yield strength at high higher temperature and lower hot forging temperature as compared to commercial pure titanium.As the specimen was etched,an intermetallic layer at the weld interface and a dynamically recrystallized region at the magnesium side were also observed in the macrostructure.

    Microstructure(Fig.5)shows different regions such as contact zone(CZ),dynamic recrystallized zone(DRX),thermo mechanically affected zone(TMAZ)and partially deformed zone(PDZ)at the magnesium side.No discernible regions were observed at the titanium side as it had not undergone any significan plastic deformation.

    Fig.4.Yield strength comparison between commercial pure titanium and AZ31 magnesium alloy.

    In the contact zone of magnesium side,titanium fragments were observed due to the mechanical metal transfer caused by the higher strain rate and severe plastic deformation on the rubbing surface.Very fin grains were also observed due to recrystallization.Dynamically recrystallized zone is observed next to contact zone.This zone does not undergo rubbing action and is formed due to heavy plastic deformation at higher temperature.This usually results in the formation of a large number of dislocations[11].The increase in dislocation density also increases the sub grain cell structure and leads to the formation of very fin dynamically recrystallized grains.In the thermomechanicallyaffectedzoneandpartiallydeformedzone, grainsarepulledsuchthattheyareorientedperpendiculartothe axis of rotation.This effect is higher in the thermomechanically affected zone as compared to the partially deformed zone due to its presence at the vicinity of weld interface and a higher strain rate.However,the grain orientation at the contact zone becomes parallel to the weld interface due to heavy deformation.Also, there is a significan variation in the grain size of magnesium from the contact zone to the unaffected base metal region as displayed in Fig.5.However,to understand the interface characteristics of Mg-Ti dissimilar friction weld,which is not clearly evidenced in the optical micrograph,scanning electron micrograph was used to analyze the weld interface and is presented in Fig.6.SEM analysis showed a thin,discontinuous intermetallic layer at the weld interface growing into the magnesium side of the joint.The average layer thickness of the intermetalliclayerappearstobelessthan15μmwithwavyweld interface.

    Fig.5.Optical micrograph showing different regions of friction welded Mg-Ti joint.

    3.3.Phase analysis

    In dissimilar friction welding,high temperature solid state diffusion of various elements is the primary mechanism which improves the joint integrity due to the simultaneous application of rotation and applied forge pressure.Also,recent research results[12,13]have proved that the joint strength of dissimilar joints increased with the increase in the mutual solubility of elements present within the materials that are to be joined. SEM-EDS line scan was used to identify the elemental distribution across the friction welded magnesium–titanium dissimilar joint and it indicates that Al is concentrated at the weld interface,whereas titanium and magnesium changed gradually (Fig.7).

    To identify the phases present,XRD analysis was carried out and the presence of TiAl3,Mg17Al12was confi med.It is well known from the Mg-Ti binary equilibrium diagram that[14]the maximum solubility of titanium in magnesium is about 0.12% and solubility of magnesium in titanium is zero and hence it is not possible to form a solid solution or an intermetallic between titanium and magnesium.However,titanium can react with aluminum present in the magnesium alloy and can form various intermetallic compounds like Ti3Al,TiAl and TiAl3.Due to the higher temperature and heavy deformation involved during friction welding,aluminum diffused toward the titanium interface since the mutual solubility between aluminum and titanium is higher when compared to magnesium and titanium,which resulted in the formation of Ti3Al intermetallic compound as is evident from the XRD results(Fig.8).

    Fig.6.Scanning electron micrograph of Mg-Ti friction weld interface.

    3.4.Microhardness map

    The microhardness map shown in Fig.9 reveals that there is a steep gradient of hardness values from the titanium side to magnesium side.The interlayer,which formed between the magnesium and titanium,recorded a hardness value in the range of 100–130 HV.The hardness values are increased in the magnesium side for a distance of approximately 30μm from the weld interface.This is mainly due to the grain refine ment,precipitation of Mg17Al12,and Ti fragments in the magnesium side near the interface.However,no such change in hardness values was observed on titanium side due to the restricted deformation of titanium compared to the magnesium alloy during friction welding.

    Fig.7.SEM–EDS line scan across the Mg-Ti friction weld interface.

    Fig.8.XRD pattern observed across the Mg-Ti friction weld.

    3.5.Tensile properties evaluation using DIC

    It is observed that the friction welded magnesium–titanium dissimilar joint failed at the magnesium side nearer to the interface and the tensile properties are comparable with the base magnesium alloy.Joint efficien y is found to be 104%, which is a ratio of tensile strength of welded joint to the tensile strength of lower strength base metal in case of dissimilar joint.However,the ductility of the joint is reduced by 50% compared to the base metal.The series of images depicted in Fig.10 shows the temporal strain evolution in the magnesiumtitanium friction weld.These images do not suggest a predominantly ductile behavior,or a pure brittle characteristic.The magnesium-titanium friction welded joint is characterized by a small elastic limit,the elastic strength being about 100 MPa. The unusual elongation characteristics of the alloy can be attributed to the difference in ductility and strength of the two materials.Titanium is a comparatively strong and ductile material (with about 30–40%elongation at room temperature),whereas magnesium is relatively less strong.The ductility of magnesium at room temperature is limited due to its hexagonal closepacked crystal structure that results in a limited number of active slip systems.

    Fig.9.Microhardness map across the weld.

    The strain evolution obtained through DIC showed that the strain localization was higher near the ends of gauge length during elastic and part of plastic region.This may be due to the stress concentration of fille given the specimen near the grip length.After sufficien plastic deformation in this region,strain localization changed to the vicinity of the weld interface where the fina fracture took place with higher strains.This small region,apparently being the weakest zone of the material,starts accumulating strain.Meanwhile,the titanium end of the material hardly deformed as the weaker magnesium shared the most of the applied load.This magnesium region,with time,gets strained even more,though the elongation is not drastic until 139.3 s.This reflect the brittle nature of the magnesium in the vicinity of weld interface.The specimen fails at 139.4 s after the start of application of load,and the difference in elongation between 139.3th and 148th second being about 6.25%indeed suggests that the tensile nature of titanium is being limited by the reduced strength and ductility of pure magnesium at room temperature.This non-uniform response of the Mg-Ti friction welded joint can hence be attributed to the steep property gradient between the materials constituting the joint.

    3.6.Fracture morphology

    Mg-Ti dissimilar friction welded joint failed at the vicinity of the intermetallic zone,which indicates that this is the weakest region.SEM fractograph of friction welded Mg-Ti dissimilar joint is displayed in Fig.11.The fractured surface showed a mixed mode of failure with the wavy nature of edges and some portions with fla deboning.This wavy nature with discontinuous crack growth resulted in a well-developed chevron pattern.This kind fracture is caused by initiations of multiple cracks by the presence of hard particles in a soft matrix.EDS analysis of fractured surface also confi med the presence of Ti particles which triggered the formation of multiple cracks.Since the chevron pattern of failure occurs with only plastic deformation,it is concluded that the failure of Mg-Ti friction weld is intermediate between brittle and ductile fracture.

    4.Conclusions

    An attempt was made to join AZ31B magnesium and commercially pure titanium by friction welding and the metallurgical and mechanical properties were evaluated.From this investigation,the following important conclusions were derived.

    ?Microstructure of friction welded magnesium–titanium friction weld indicates that grain refinemen has occurred due to the mechanical metal transfer caused by the higher strain rate and severe plastic deformation on the rubbing surface. Also,a thin discontinuous intermetallic layer of less than 15μm at the weld interface was formed,which had ultimately grown into the magnesium side of the joint.

    Fig.10.DIC strain map at various stages of tensile testing.

    ?EDS and XRD analysis confi med the presence of Al concentration andTi3Al intermetallics at the weld interface.This is also confi med by microhardness map constructed using Vickers microhardness measurements across the weld.

    ?The temporal strain evolution of the specimen obtained using digital image correlation suggests neither a predominantly tensile characteristic nor a pure brittle nature of magnesium–titanium joints.

    ?Mg-Ti friction welds failed in the magnesium side,in the vicinity of the intermetallic zone,which indicates that this was the weakest region of the Mg/Ti dissimilar friction welds.Chevron pattern of failure was observed,which is in agreement with the tensile test results.

    Acknowledgement

    The authors are grateful to Mr.N.Srinivasan,Research Fellow,Indira Gandhi Centre for Atomic Research(IGCAR), Kalpakkam,Tamil Nadu,India,for the help rendered to carryout digital image correlation experiments.

    Fig.11.Fracture surface of Mg-Ti friction weld.

    [1]Y.V.Budkin,Weld.Int.25(2011)523–525.

    [2]M.Gao,Z.M.Wang,X.Y.Li,X.Y.Zeng,Metall.Mater.Trans.A 43A (2012)163–172.

    [3]H.Tanabe,T.Watanab,Weld.Inter.22(2008)588–596.

    [4]M.Gao,Z.M.Wang,X.Y.Li,X.Y.Zeng,Sci.Technol.Weld.Join. 16(2011)488–496.

    [5]M.Aonuma,K.Nakata,Mater.Sci.Eng.B 177(2012)543–548.

    [6]R.Cao,T.Wang,C.Wang,Z.Feng,Q.Lin,J.H.Chen,J Alloys Comp. 605(2014)12–20.

    [7]R.Li,J.Li,J.Xiong,F.Zhang,K.Zhao,C.Ji,Trans.Non Ferrous Met. Soc.China 22(2012)2665–2671.

    [8]G.E.Dieter,H.A.Kuhn,S.Lee,Handbook of Workability and Process Design,ASM International,Materials Park,2003.

    [9]C.Leyens,M.Peters,Titanium and Titanium Alloys:Fundamentals and Applications,WILEY-VCH,Germany,2003.

    [10]R.S.Busk,Handbook of Materials Selection,John Wiley&Sons,Inc., New York,2002.

    [11]H.C.Dey,M.Ashfaq,A.K.Bhaduri,K.Prasad Rao,J.Mater.Process. Technol.209(2009)5862–5870.

    [12]L.H.Shah,M.Ishak,Mater.Manuf.Process.29(2014)928–933.

    [13]W.Shouzheng,L.Yajiang,W.Juan,L.Kun Mater.Manuf.Process. 29(2014)961–968.

    [14]J.L.Murray,Bull.Alloy Phase Dia.,7(1986)245–248.

    Received 2 February 2015;revised 16 November 2015;accepted 17 November 2015 Available online 7 December 2015

    *Corresponding author.Department of Mechanical Engineering,SSN College of Engineering,Kalavakkam 603 103,Tamil Nadu,India.Tel.: +914427474844;fax:+914427474844.

    E-mailaddress:lakshminarayananak@ssn.edu.in (A.K. Lakshminarayanan).

    http://dx.doi.org/10.1016/j.jma.2015.11.004

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    香蕉丝袜av| 黄频高清免费视频| 国产成人av教育| 最新美女视频免费是黄的| 不卡av一区二区三区| 老司机靠b影院| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 亚洲人成伊人成综合网2020| 国产亚洲精品综合一区在线观看 | 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 香蕉丝袜av| x7x7x7水蜜桃| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久| 成人手机av| 一本精品99久久精品77| 亚洲三区欧美一区| 亚洲激情在线av| 欧美在线一区亚洲| www.精华液| 超碰成人久久| 一区二区日韩欧美中文字幕| 在线观看午夜福利视频| 最新美女视频免费是黄的| 亚洲精品一卡2卡三卡4卡5卡| 美女午夜性视频免费| 少妇裸体淫交视频免费看高清 | 中出人妻视频一区二区| 国产乱人伦免费视频| 国产一区在线观看成人免费| 久久久久久久精品吃奶| www.熟女人妻精品国产| 国产99白浆流出| 黄片小视频在线播放| 午夜福利在线观看吧| 精品久久久久久成人av| 欧美日韩精品网址| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 九色国产91popny在线| 一级黄色大片毛片| 波多野结衣高清作品| 禁无遮挡网站| 中文字幕av电影在线播放| 悠悠久久av| 久久精品影院6| 制服诱惑二区| 成人精品一区二区免费| 91成人精品电影| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| 精品久久久久久久人妻蜜臀av| 少妇粗大呻吟视频| 国产精品九九99| 麻豆成人午夜福利视频| 男男h啪啪无遮挡| 999久久久国产精品视频| 亚洲精品国产精品久久久不卡| 久9热在线精品视频| 脱女人内裤的视频| 国产野战对白在线观看| 亚洲黑人精品在线| 国产精品一区二区免费欧美| 妹子高潮喷水视频| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 男男h啪啪无遮挡| 亚洲av成人不卡在线观看播放网| 51午夜福利影视在线观看| 成年女人毛片免费观看观看9| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 夜夜爽天天搞| 黄片播放在线免费| 麻豆久久精品国产亚洲av| 日韩三级视频一区二区三区| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 欧美av亚洲av综合av国产av| 久久久久久久精品吃奶| 精品久久久久久久久久久久久 | 国产成人精品久久二区二区91| 人妻久久中文字幕网| 岛国在线观看网站| 亚洲片人在线观看| 午夜免费激情av| 人人澡人人妻人| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 中文字幕人妻熟女乱码| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 国产高清有码在线观看视频 | 欧美一级a爱片免费观看看 | 色综合站精品国产| 特大巨黑吊av在线直播 | 欧美午夜高清在线| 香蕉国产在线看| 怎么达到女性高潮| 亚洲国产精品sss在线观看| 国产成人精品久久二区二区91| √禁漫天堂资源中文www| 午夜激情av网站| 国产主播在线观看一区二区| 99精品久久久久人妻精品| 99久久99久久久精品蜜桃| 国产男靠女视频免费网站| 免费女性裸体啪啪无遮挡网站| 欧美成人免费av一区二区三区| 欧美日韩精品网址| АⅤ资源中文在线天堂| 在线av久久热| 变态另类成人亚洲欧美熟女| 日本精品一区二区三区蜜桃| 日韩一卡2卡3卡4卡2021年| 欧美乱码精品一区二区三区| www日本黄色视频网| 欧美黑人巨大hd| 观看免费一级毛片| 免费看a级黄色片| 欧美zozozo另类| 欧美大码av| 国产精品综合久久久久久久免费| 亚洲av熟女| 亚洲第一电影网av| 国产精品综合久久久久久久免费| 久久精品国产亚洲av高清一级| 很黄的视频免费| 久久国产精品人妻蜜桃| 亚洲成人免费电影在线观看| 亚洲第一av免费看| 18禁裸乳无遮挡免费网站照片 | 国产一卡二卡三卡精品| 久久这里只有精品19| 无限看片的www在线观看| 久久狼人影院| 久久香蕉激情| 成人国产综合亚洲| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| 婷婷精品国产亚洲av| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 日本熟妇午夜| 精品乱码久久久久久99久播| 十分钟在线观看高清视频www| 曰老女人黄片| 成人免费观看视频高清| 人妻久久中文字幕网| 亚洲 欧美 日韩 在线 免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合久久99| 侵犯人妻中文字幕一二三四区| 长腿黑丝高跟| 亚洲成国产人片在线观看| 在线观看66精品国产| 哪里可以看免费的av片| 国产激情久久老熟女| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 性欧美人与动物交配| 国产精品1区2区在线观看.| 波多野结衣高清作品| 桃色一区二区三区在线观看| 一级黄色大片毛片| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 99国产精品一区二区三区| 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 国产亚洲精品久久久久5区| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 亚洲在线自拍视频| 亚洲全国av大片| 一本综合久久免费| 亚洲精品国产区一区二| or卡值多少钱| 精品欧美一区二区三区在线| 国产精品99久久99久久久不卡| 午夜福利18| 最近最新中文字幕大全免费视频| 日本一本二区三区精品| 午夜免费成人在线视频| 人成视频在线观看免费观看| 成人欧美大片| 久久精品夜夜夜夜夜久久蜜豆 | 母亲3免费完整高清在线观看| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久末码| 精品久久久久久久人妻蜜臀av| av中文乱码字幕在线| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 人人妻人人澡欧美一区二区| 一区二区三区精品91| 欧美日本视频| 日韩欧美一区视频在线观看| 99热6这里只有精品| 欧美日韩瑟瑟在线播放| 黄色视频不卡| 国产激情久久老熟女| 亚洲精品在线美女| 国产精品精品国产色婷婷| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 亚洲精品中文字幕一二三四区| 最近最新中文字幕大全电影3 | 午夜免费激情av| 看片在线看免费视频| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 欧美 亚洲 国产 日韩一| 18禁国产床啪视频网站| www国产在线视频色| 黄网站色视频无遮挡免费观看| 香蕉av资源在线| 久久久久久国产a免费观看| 亚洲中文av在线| 嫩草影院精品99| 人人妻人人澡欧美一区二区| 18禁国产床啪视频网站| 叶爱在线成人免费视频播放| 后天国语完整版免费观看| 老司机午夜福利在线观看视频| 国内精品久久久久精免费| 亚洲国产精品合色在线| 神马国产精品三级电影在线观看 | 欧美激情 高清一区二区三区| 人成视频在线观看免费观看| 精品午夜福利视频在线观看一区| 亚洲国产欧美网| 亚洲av五月六月丁香网| 色在线成人网| 一本一本综合久久| 国语自产精品视频在线第100页| 啦啦啦 在线观看视频| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 国产精品久久视频播放| 搞女人的毛片| 成人亚洲精品一区在线观看| 怎么达到女性高潮| 午夜a级毛片| 国产极品粉嫩免费观看在线| 午夜两性在线视频| 国产成人精品无人区| 亚洲 欧美一区二区三区| www日本黄色视频网| 亚洲色图 男人天堂 中文字幕| 中文字幕精品免费在线观看视频| av有码第一页| 黑人欧美特级aaaaaa片| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 国产一级毛片七仙女欲春2 | 999精品在线视频| а√天堂www在线а√下载| 亚洲欧美日韩高清在线视频| 国产精品久久久人人做人人爽| 精品一区二区三区四区五区乱码| 亚洲成人久久性| 亚洲国产精品成人综合色| 国产激情欧美一区二区| 亚洲,欧美精品.| 久久久国产成人精品二区| 不卡一级毛片| 亚洲五月婷婷丁香| 777久久人妻少妇嫩草av网站| 午夜福利免费观看在线| 国内精品久久久久精免费| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 一区二区三区激情视频| 欧美黑人巨大hd| 精品国产国语对白av| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 国产又爽黄色视频| 久久久国产成人精品二区| 国产爱豆传媒在线观看 | 两个人看的免费小视频| 久热这里只有精品99| 免费在线观看成人毛片| 久久婷婷成人综合色麻豆| 久久久久久大精品| 国产国语露脸激情在线看| 少妇裸体淫交视频免费看高清 | 变态另类丝袜制服| bbb黄色大片| 亚洲专区字幕在线| 国内揄拍国产精品人妻在线 | 欧美一级a爱片免费观看看 | 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| www.熟女人妻精品国产| 国产一级毛片七仙女欲春2 | 精品高清国产在线一区| 午夜福利欧美成人| 亚洲五月婷婷丁香| 黑人操中国人逼视频| 中文字幕人成人乱码亚洲影| 最近最新免费中文字幕在线| 久久青草综合色| 村上凉子中文字幕在线| 国产高清有码在线观看视频 | 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点| 日韩精品青青久久久久久| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 久久热在线av| 国产视频一区二区在线看| 精品久久久久久,| 在线观看日韩欧美| 黄色 视频免费看| 十八禁人妻一区二区| www日本在线高清视频| 久久久久久久午夜电影| 可以在线观看毛片的网站| 宅男免费午夜| 级片在线观看| 丰满的人妻完整版| 久久伊人香网站| 成人三级黄色视频| 国产精品亚洲av一区麻豆| 亚洲专区中文字幕在线| 欧美日韩一级在线毛片| 久久久久久人人人人人| 免费人成视频x8x8入口观看| 亚洲 欧美一区二区三区| 在线免费观看的www视频| 无人区码免费观看不卡| 国产精品一区二区精品视频观看| 男女之事视频高清在线观看| 亚洲自偷自拍图片 自拍| 国产精品爽爽va在线观看网站 | 两个人免费观看高清视频| 国产单亲对白刺激| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 一区二区日韩欧美中文字幕| 法律面前人人平等表现在哪些方面| 搡老岳熟女国产| 国产视频内射| 午夜福利18| 桃色一区二区三区在线观看| 午夜影院日韩av| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观 | 国产高清激情床上av| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 国产激情久久老熟女| av欧美777| 国产精品久久电影中文字幕| 久热这里只有精品99| 色尼玛亚洲综合影院| 国产在线观看jvid| 丝袜人妻中文字幕| 国产精品 国内视频| 视频在线观看一区二区三区| 国产97色在线日韩免费| 免费在线观看影片大全网站| 黄频高清免费视频| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 99riav亚洲国产免费| 在线国产一区二区在线| 少妇被粗大的猛进出69影院| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 精品国产乱码久久久久久男人| 国产精品一区二区免费欧美| 美女大奶头视频| 久久香蕉激情| 国产精品99久久99久久久不卡| 欧美性猛交╳xxx乱大交人| www.精华液| 男人舔女人的私密视频| 制服诱惑二区| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 国产精品综合久久久久久久免费| 国产国语露脸激情在线看| 男人舔奶头视频| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频| 久久香蕉国产精品| 色播在线永久视频| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 俺也久久电影网| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 不卡一级毛片| 非洲黑人性xxxx精品又粗又长| 国产精品影院久久| 婷婷丁香在线五月| 亚洲片人在线观看| 黄片播放在线免费| 久久久水蜜桃国产精品网| 一级毛片精品| 国产精品自产拍在线观看55亚洲| 欧美绝顶高潮抽搐喷水| 啪啪无遮挡十八禁网站| 熟女电影av网| 日本一区二区免费在线视频| 久久国产乱子伦精品免费另类| www国产在线视频色| 一区福利在线观看| 最新美女视频免费是黄的| 十八禁网站免费在线| 窝窝影院91人妻| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 国产精品 国内视频| 成人特级黄色片久久久久久久| 欧美乱妇无乱码| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 村上凉子中文字幕在线| 色尼玛亚洲综合影院| 美女高潮喷水抽搐中文字幕| 国产精品野战在线观看| 男女之事视频高清在线观看| 又紧又爽又黄一区二区| 在线观看免费午夜福利视频| 最好的美女福利视频网| 欧美日韩亚洲国产一区二区在线观看| 一进一出好大好爽视频| 免费一级毛片在线播放高清视频| 免费女性裸体啪啪无遮挡网站| 欧美激情久久久久久爽电影| 丝袜人妻中文字幕| 亚洲全国av大片| 欧美中文日本在线观看视频| 草草在线视频免费看| 91老司机精品| 淫秽高清视频在线观看| 欧美性长视频在线观看| 中国美女看黄片| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 久久国产精品男人的天堂亚洲| 久久久久精品国产欧美久久久| 久久精品aⅴ一区二区三区四区| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女| 757午夜福利合集在线观看| 国产精品 国内视频| 久久婷婷成人综合色麻豆| 欧美色欧美亚洲另类二区| 国产又爽黄色视频| 人人澡人人妻人| 精品久久久久久久毛片微露脸| 国产免费男女视频| 午夜免费激情av| 大型黄色视频在线免费观看| 可以免费在线观看a视频的电影网站| 久久精品夜夜夜夜夜久久蜜豆 | 日本三级黄在线观看| www.999成人在线观看| 9191精品国产免费久久| 日韩av在线大香蕉| 亚洲精品在线美女| 亚洲免费av在线视频| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 香蕉丝袜av| 又紧又爽又黄一区二区| 国产国语露脸激情在线看| 欧美在线黄色| 人妻丰满熟妇av一区二区三区| av在线天堂中文字幕| 免费无遮挡裸体视频| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 正在播放国产对白刺激| 琪琪午夜伦伦电影理论片6080| 欧美精品啪啪一区二区三区| 久久九九热精品免费| 久久欧美精品欧美久久欧美| 精品久久久久久成人av| 国产午夜精品久久久久久| 天天一区二区日本电影三级| 亚洲国产欧美一区二区综合| 日本免费一区二区三区高清不卡| 久久久久国产一级毛片高清牌| 欧美午夜高清在线| 99久久99久久久精品蜜桃| 99国产精品一区二区蜜桃av| 悠悠久久av| 久久久久国产一级毛片高清牌| 岛国视频午夜一区免费看| 欧美日本视频| 俺也久久电影网| 婷婷精品国产亚洲av在线| 99久久综合精品五月天人人| 国产私拍福利视频在线观看| 国产激情偷乱视频一区二区| 18禁美女被吸乳视频| 午夜激情av网站| 99在线视频只有这里精品首页| 午夜影院日韩av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品粉嫩美女一区| 超碰成人久久| 亚洲精品久久国产高清桃花| 欧美一区二区精品小视频在线| 国产日本99.免费观看| 99re在线观看精品视频| 精品久久久久久久久久免费视频| 亚洲av电影在线进入| 婷婷亚洲欧美| 一本一本综合久久| 2021天堂中文幕一二区在线观 | 88av欧美| 精品卡一卡二卡四卡免费| cao死你这个sao货| 不卡一级毛片| 国产成人欧美在线观看| 99热只有精品国产| 国产伦在线观看视频一区| 亚洲精品久久国产高清桃花| 亚洲 国产 在线| 亚洲avbb在线观看| 19禁男女啪啪无遮挡网站| 亚洲最大成人中文| 麻豆国产av国片精品| 国产真人三级小视频在线观看| 欧美大码av| 嫩草影院精品99| 国语自产精品视频在线第100页| 久9热在线精品视频| 国产男靠女视频免费网站| 成人三级做爰电影| 天堂√8在线中文| 欧美国产精品va在线观看不卡| 亚洲成av人片免费观看| 2021天堂中文幕一二区在线观 | 亚洲国产欧洲综合997久久, | 欧美在线一区亚洲| 欧美亚洲日本最大视频资源| www国产在线视频色| 88av欧美| 欧美 亚洲 国产 日韩一| 久久九九热精品免费| www.自偷自拍.com| 一级作爱视频免费观看| 午夜视频精品福利| 一级作爱视频免费观看| 在线观看www视频免费| 大香蕉久久成人网| 一级a爱视频在线免费观看| 在线观看午夜福利视频| 国产aⅴ精品一区二区三区波| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 亚洲性夜色夜夜综合| 99国产精品一区二区三区| 日韩av在线大香蕉| 亚洲三区欧美一区| 亚洲人成电影免费在线| 久久久久亚洲av毛片大全| 可以免费在线观看a视频的电影网站| 亚洲片人在线观看| 黄片播放在线免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜理论影院| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 欧美乱妇无乱码| 亚洲精品在线观看二区| 美女扒开内裤让男人捅视频| 免费电影在线观看免费观看| 天天一区二区日本电影三级| 国产麻豆成人av免费视频| 国产91精品成人一区二区三区| 亚洲自偷自拍图片 自拍| 欧美日韩福利视频一区二区| 男女做爰动态图高潮gif福利片| 国产熟女xx| 久久久国产成人免费| 国产免费av片在线观看野外av| 成人永久免费在线观看视频| 在线观看免费日韩欧美大片| 一a级毛片在线观看| 成人精品一区二区免费| 禁无遮挡网站| 日韩精品免费视频一区二区三区| 国产亚洲精品av在线| 1024手机看黄色片| 国产主播在线观看一区二区| 搡老熟女国产l中国老女人| 国产熟女午夜一区二区三区| 色综合亚洲欧美另类图片| 女人爽到高潮嗷嗷叫在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品夜夜夜夜夜久久蜜豆 | 成年版毛片免费区|