• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reducing the tension–compression yield asymmetry of extruded Mg–Zn–Ca alloy via equal channel angular pressing

    2015-02-16 02:56:08TongZhengKmdoZhngMengChengZhng
    Journal of Magnesium and Alloys 2015年4期

    L.B.Tong,M.Y.Zheng,S.Kmdo,D.P.Zhng,J.Meng,L.R.Cheng,*,H.J.Zhng,**

    aState Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun

    130022,China

    bSchool of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    cDepartment of Mechanical Engineering,Nagaoka University of Technology,Nagaoka 940-2188,Japan

    Reducing the tension–compression yield asymmetry of extruded Mg–Zn–Ca alloy via equal channel angular pressing

    L.B.Tonga,M.Y.Zhengb,S.Kamadoc,D.P.Zhanga,J.Menga,L.R.Chenga,*,H.J.Zhanga,**

    aState Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun

    130022,China

    bSchool of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    cDepartment of Mechanical Engineering,Nagaoka University of Technology,Nagaoka 940-2188,Japan

    The influenc of equal channel angular pressing on the tension–compression yield asymmetry of extruded Mg–5.3 Zn–0.6 Ca(weight percent) alloy has been investigated.The microstructure was obviously refine by the large strain during the equal channel angular pressing,accompanied with very fin Ca2Mg6Zn3phases with average diameter of 70 nm.The weak tension–compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall–Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficul to take place with decreasing grain size. The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fin precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.

    Mg–Zn–Ca alloy;Yield asymmetry;Equal channel angular pressing;Twinning;Precipitates

    1.Introduction

    Mg and its alloys are the least of all metals being used in practice for structural materials[1],but the low strength and poor ductility of the Mg alloys prepared by gravity casting limit their industrial applications.The conventional thermomechanical processing,such as extrusion,rolling and forging, can remarkably improve the mechanical properties of cast Mg alloys[2–4].In contrast to cubic metals,the undesirable yield strength asymmetry of wrought Mg alloys during the compression and tension usually appears,due to the low-asymmetry of hexagonal close packing(HCP)structure[5,6].Recent reports have confi med that when the wrought Mg alloys with the conventional basal texture are loaded along the extrusion or rolling direction,the twinning activation results in tension–compression yield asymmetry[7,8].The twinning is strongly dependent on grain size[9],thus the role of the grain refine ment on the yield asymmetry of Mg alloy is of particular interest.Moreover,fin secondary phase particles also contribute to the asymmetry of Mg alloys.Jain et al.[10]reported that the presence of dense Mg17Al12precipitates in aged Mg–8 Al–0.5 Zn alloy could reduce the tension–compression yield asymmetry,through hindering the twin growth.

    Recently,the ternary Mg–Zn–Ca alloys have attracted much attention due to their low cost and superior mechanical properties;Zn and Ca,together with Mg,can obtain a stable intermetallic compound Ca2Mg6Zn3with high hardness and good creep resistance[11,12].During the last decade,equal channel angular pressing(ECAP)is a well-known method of fabricating ultra-fin grained(UFG)metals and alloys,through introducing large strain[13].Previous studies indicated that the grain refinemen and texture evolution occurred during the ECAP, the conventional basal-type texture of wrought Mg alloy was remarkably weakened,and non-basal texture components couldbe formed as well[14–17],which might influencthe yield asymmetry.To date,the systematic investigations of the influ ence of the ECAP processing on the yield asymmetry of wrought Mg–Zn–Ca alloys have not been reported yet,and the corresponding mechanisms remain unclear.The purpose of this work is to investigate the influenc of microstructural and texture evolution from ECAP on the tensile and compressive yield behaviors of extruded Mg–Zn–Ca alloy,and give an insightinto themechanism ofroom-temperatureyield asymmetry.

    2.Materials and methods

    The Mg–5.3 Zn–0.6 Ca(wt.%)alloy was prepared by gravity casting under an SF6and CO2protective atmosphere;the melts were held at 700°C for 10 min and then cast into a steel mold. The cast ingot was homogenized at 460°C for 8 h,and then extruded to a rod bar(with the diameter of 20 mm)at 300°C with extrusion ratio of 10:1.The ECAP billets,with crosssectional dimensions of 10×10 mm2and a length of 65 mm, were machined from the extruded bars along the extrusion direction(ED).The ECAP was carried out at 250°C for four passes(route Bc[13,15],a total strain ofε≈4.2),using a designed die with internal and external angle ofΦ=90°andψ=37°,respectively.

    The microstructure was observed along the longitudinal section(parallel to the normal and extrusion or ECAP direction,ND and ED)using an Olympus optical microscope (OM),a JEOL FESEM JSM-7000F scanning electron microscopy and a Philips Tecnai-F20 transmission electron microscope(TEM),and the quantitative analysis of microstructure was calculated using the software of Image-Pro Plus 5.0.Electron backscattered diffraction(EBSD)analysis was performed using FESEM equipped with TSL MSC-2200.The global textures of Mg–Zn–Ca alloys were measured using the neutron diffractometerTEX-2.Dog-bone shaped tensile specimens with a dimension of 15×6×2 mm3,and rod shaped compressive specimens with a diameter of 8 mm and a length of 12 mm, were cut from the longitudinal section of the extruded and ECAPed bars.The tensile and compressive tests were conducted on Instron 5569 machine with a strain rate of 1.67×10?3s?1at room temperature.

    3.Results and discussion

    3.1.As-received microstructure and texture

    Fig.1 shows the microstructures of the as-extruded and as-ECAPed alloys.The as-extruded alloy exhibited an equiaxed grain structure,with average grain size of 4.0μm(Fig.1a).The dynamic recrystallization process during ECAP results in an obvious grain refinement and the average grain size decreases to 1.0μm,representing an ultra-fin grained structure(Fig.1b). Moreover,the stringer of secondary phases(white contrast), which has been proved as Ca2Mg6Zn3in our previous study [18],is elongated along the ED in the as-extruded alloy.In contrast,a large number of fine spherical particles can be observed in the as-ECAPed alloy,which would hinder the grain growth and promote the grain refinement

    In order to further investigate the detailed constitution and distribution of secondary phases,Fig.2 shows the TEM micrographs of the Mg–Zn–Ca alloys.The coarse Ca2Mg6Zn3phasesbreakintofine particlesintheas-extrudedalloy,withthe average diameter of~500 nm,and very few fine precipitate particles(~100 nm)canbealsoobserved(shownbydashedlines in Fig.2a).There are a large number of fine particles with diameter of~70 nm in the as-ECAPed alloy(black arrows in Fig.2b),which is related to the precipitation process,since the ECAP temperature in this study is about the same as the aging temperature.Fig.2c and d shows the high-resolution electron microscopy(HREM)of the interfaces between the precipitates and α-Mg matrix.These fine precipitates are also proved as Ca2Mg6Zn3phases;the orientation relationship between the Ca2Mg6Zn3precipitatesand α-Mg matrix is (0111)α?Mg//(3302 )Ca2Mg6Zn3[1123]α?Mg//[2023]Ca2Mg6Zn3in both as-extruded and as-ECAPed alloys,while the density of precipitates is dramatically increased after ECAP.The interplanar spacing of(0111)in α-Mg and (3302)in Ca2Mg6Zn3phase is calculated as 0.2453 and 0.2456 nm, respectively,and thus the Ca2Mg6Zn3phases are preferably precipitated along the define habit plane,in order to minimize the lattice mismatch.The volume fraction of Ca2Mg6Zn3precipitatesintheas-extrudedalloyisbelow1.0%,whilealarge quantity of Ca2Mg6Zn3phases can be precipitated during the repeating ECAP processing.Furthermore,the Ca2Mg6Zn3precipitates of the as-ECAPed alloy are much fine than that of as-extruded alloy,due to the lower ECAP temperature.

    Fig.1.SEM micrographs of the(a)as-extruded and(b)as-ECAPed Mg–Zn–Ca alloy.

    Fig.2.TEM analysis of(a)as-extruded and(b)as-ECAPed alloy,(c)and(d)HREM of dashed lined area in(a)and(b).

    Fig.3 shows the texture of the as-extruded and as-ECAPed Mg–Zn–Ca alloys.The as-extruded alloy represents a typical basal texture,with most{0001}planes parallel to ED (Fig.3a).After ECAP for 4 passes,most of{0001}planes have been inclined~45°to both ED and ND,and another weak texture component with{0001}plane parallel to ED can also been observed.The texture evolution during ECAP processing is influence by the strain path;the specimen is rotated around ED in route Bc,which induced the derivation of the conventional basal texture in the as-extruded alloy[18]. Thedifferenttexturesplay an importantrole on the mechanical properties and deformation behaviors of the as-extruded and as-ECAPed alloys,which will be discussed in the following section.

    3.2.Tensile–compressive yield asymmetry

    Fig.4 shows the tensile and compressive curves of the as-extruded and as-ECAPed Mg–Zn–Ca alloys at ambient temperature.An obvious yield asymmetry can be observed in the as-extruded alloy(Fig.4a),and the ratio between compressive yield stress(CYS,~138 MPa)and tensile yield stress (TYS,~178 MPa),corresponding to a 0.2%offset,is calculated as 0.8.Furthermore,the as-extruded alloy presents the different work hardening(WH)behaviors during the tensile and compressive tests.An obvious yield plateau can be observed when the compressive stress is reached above 150 MPa;the WH rate is much lower in this low strain area.With strain proceeding,the compressive curve becomes“concave”,the WH rate is remarkably enhanced,and ultimate compressive stress(UCS)is increased to 447 MPa.These“concave”curves have also been observed previously in the extruded Mg alloys, which resulted fromextension twinning[19].In contrast,the tensile curve is“convex”,representing a lower WH rate,and the ultimate tensile stress(UTS)is 276 MPa.

    After ECAP processing,the tensile and compressive curves are almost the same at the initial stage of deformation(lower strain region);the CYS and TYS are increased to 188 MPa and 180 MPa,respectively,compared with that of the as-extruded alloy;and the CYS/TYS is increased to~1.0(Fig.4b).The work hardening rate is more intensive during the compression, resulting in a higher UCS of 322 MPa,while the elongation is dramatically decreased to 7.1%.The tensile curve is“convex”during the entire plastic deformation,and the compressive curve represents“concave”shape,especially after 3%strain, but the slope is much lower than that of the as-extruded alloy. The ECAP processing can effectively reduce the tension–compression asymmetry of as-extruded Mg–Zn–Ca alloy,which is related to the corresponding microstructure and texture evolution.

    Fig.3.Pole figure of(a)the as-extruded and(b)as-ECAPed Mg–Zn–Ca alloys.

    3.3.Post-deformation microstructure

    It can be assumed that the different deformation mechanisms during the initial stage of tensile and compressive tests result in the yield asymmetry,and the detailed microstructural evolution during the tensile and compressive tests is shown in Fig.5.The microstructure of the as-extruded alloy after 2%tensile strain (Fig.5a)is almost the same as that of the as-received alloy (Fig.1a),the twinning deformation does not occur,the dislocation slip dominates the initial stage of tensile deformation, and the TYS is mainly influence by grain size and texture. Conversely,a large number of twins can be observed in the specimen compressed to 2%(Fig.5b),and the low angle grain boundaries(LAGBs,≤15°)are also present within the original grains(Fig.5c),which reveal that the initial stage of deformation is controlled by both twinning and dislocation slip.Fig.5d shows the misorientation angle distribution of the as-extruded alloy compressed to 2%;the intensive peak of 85~90°is related to theextension twins.According to the geometric condition,the extension twinning occurs during the tension parallel to thec-axis or compression perpendicular toc-axis and results in the elongation of Mg alloys alongc-axis.Therefore,for the as-extruded Mg–Zn–Ca alloy with basal texture(Fig.3a),the twinning can only occur during the compression along the ED.

    Fig.4.Room-temperature tensile and compressive curves of the(a)as-extruded and(b)as-ECAPed Mg–Zn–Ca alloys.

    Fig.5.Optical microstructure of the as-extruded alloy with(a)2%tensile strain and(b)2%compressive strain,(c)orientation imaging microscopy and(d) misorientation angle distribution of the as-extruded alloy with 2%compressive strain.

    Fig.6 shows the microstructure of the as-ECAPed alloy deformed to 2%.Twinning deformation cannot be observed during both the tension and compression,and the grain size of α-Mg,the size and distribution of the secondary phase are almost the same with that of Fig.1b.Therefore,the twinning can hardly occur in the as-ECAPed alloy,which is related to its UFG structure.It was reported that the Hall–Petch slope of twinning was greater than that of dislocation slip[9,19,20]; with decreasing grain size,the increase rate of critical resolvedshear stress(CRSS)for twinning was much higher.Therefore, the twinning activation is more difficul than dislocation slip in fine-rained Mg alloys.

    Fig.6.SEM micrographs of as-ECAPed alloy deformed to 2%during(a)tension,(b)compression.

    For the as-extruded alloy,the fl w stress for twinning activation is much lower than that of dislocation slip due to the intensive basal texture,and the twinning process cannot increase the dislocation density,resulting in a low WH rate. With further straining,a large number of twinning boundaries have been formed,which introduces the additional barriers to dislocation movement[19],and thus the WH rate is remarkably increased,representing a“concave”compressive curve,and the detailed contribution of twinning activation to the yield stress of Mg–Zn–Ca alloys will be discussed in the following section.

    3.4.Deformation mechanism

    Based on the above analysis,the deformation mechanism of the as-extruded and as-ECAPed Mg–Zn–Ca alloys has been clarified The tension–compression yield asymmetry resulted from {1012}twinning,which is mainly influence by three aspects:grain size,crystallographic texture and precipitation.

    In the current study,the compressive deformation of the as-extruded alloy is mainly controlled by twinning and basal slip;using the law of mixture,the yield stress can be represented as[21]:

    whereXTWis the volume fraction of grains within which the twinning takes place,σYSis the yield stress,and theσbasalandσTWare the stress in the grains undergoing basal slip and twinning,respectively.The twinning activation is not observed in the as-extruded alloy during the tensile test,and thus theσYSis mainly attributed to the basal slip;theσbasalis~178 MPa.The value ofXTWis measured as 37%in the specimen compressed to 2%,and the correspondingσTWis calculated as~70 MPa.

    The yield stress for twinning(σTW)is determined by the CRSS(τTW)and orientation factor(Schmid factor,SF,mTW).The crystallographic texture of Mg alloy determines the orientation relationship between each grain and applied stress,and thus the conventional Hall–Petch relationship can be modifie as Equation(2),which is also applied when the yielding behavior is controlled largely by dislocation slip.

    The conventional basal fibe texture has been reported in the extruded Mg–Zn–Ca alloy[22];the corresponding value of average Schmid factor(mbasal)for basal slip is only 0.23,while the value ofmTWis calculated as 0.43 from EBSD analysis. According to the previous study[23],the intensive basal texture results in the groups of grains with similar orientation,facilitating the propagation of basal slip across the grain boundaries, and thus the value ofkis~180 MPa.The yielding behavior of the as-extruded alloy is mainly controlled by basal slip system during the initial stage of tension,and the CRSS of basal slip (τbasal)is calculated as 21 MPa,which is similar to the published value of AZ31 alloy[24].

    It was reported that the value ofτTWwas~30 MPa[25], assuming that the transition from twinning to dislocation slip dominated deformation occurs when the value ofσTWis twice as high asσbasalin the as-ECAPed alloy(the value ofmbasalandmTWis calculated as 0.28 and 0.39 by EBSD analysis),and the corresponding value ofkTWis calculated as 433 MPaμm1/2in this study according to Equation(2),which is much higher than that of dislocation slip in Mg alloy(150~350 MPa)[26–28]. The higher Hall–Petch slope(kTW)results in the effect of grain size on twinning deformation is more obvious than dislocation slip,which hinders the twinning activation,and thus the dislocation slip is the main mechanism in the as-ECAPed alloy with a UFG structure.

    Furthermore,the crystallographic texture plays an important role on the yield asymmetry.Yin et al.[25]reported that when the load direction was 45°tilting to extrusion direction,the twined grain fraction after tension and compression was almost the same in extruded AZ31 alloy with characteristic basal texture,which reduced the yield asymmetry.Therefore,the volume fraction of extension twins is related to the crystallographic texture.In the current study,most of{0002}planes in the as-ECAPed alloy were inclined about 36°to ED[22];the Schmid factor for extension twinning is remarkably decreased, and thus the twinning activation is restricted during tension or compression.On the other hand,the basal slip is favorably activated and dominates the initial stage of deformation, because this non-basal texture increases the Schmid factor for basal slip,which also reduces the yield asymmetry.

    Considering the contribution from the precipitations based on theOrowan strengthening mechanism[29],theτTWshouldbe modifie by:

    whereτT0Wis the CRSS of extension twinning regardless of the precipitation,Gis shear modulus(19,200–8.6T)MPa,bis Burgers vector(3.21×10?10m for Mg),λanddPare the effective planar spacing and the mean planar diameter of precipitations,respectively,andr0is the core radius of dislocations;it is convenient to assumer0=b.The contribution of precipitation toτTWcan be calculated as≤0.005(the volume fraction of precipitate is very low,and thus the value ofλis very large)and~3.7 MPa in the as-extruded and as-ECAPed alloys, respectively.Therefore,the precipitation of fin Ca2Mg6Zn3phase also restricts the activation of extension twinning and reduces the yield asymmetry of the as-ECAPed alloy(even if this contribution is much lower than the grain refinement) which is consistent with the previous study[10].Although the effect of Ca2Mg6Zn3precipitation on the twinning activation can be represented quantitatively,the Orowan mechanism for twinning activation,especially the effect of morphology and orientation of precipitates on the CRSS for twinning and the rate of twinning propagation,is still unclear,and more details are needed for further study.

    4.Conclusions

    1.The coarse Ca2Mg6Zn3phases break into fine particles after extrusion,and much fine Ca2Mg6Zn3phases of~70 nm precipitate along the define habit plane during the repeated ECAP processing.

    2.The grain refinemen and higher Hall–Petch slope restrict the activation of extension twinning in the as-ECAPed alloy,and the compression–tension yield asymmetry is remarkably reduced;the value of CYS/TYS is nearly 1.0.

    3.The texture evolution during ECAP decreases the Schmid factor for twinning,and the fin precipitations increase the CRSS of twinning activation,which also contribute to the reduction of yield asymmetry.

    Acknowledgements

    The authors wish to highly acknowledge Prof.L.M.Wang of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,for his valuable suggestions and discussions. Thanks to the financia aid from the National Science&Technology Pillar Program(Grant No.2012BAE01B04),the National Natural Science Foundation of China(Grant No. 51401200),the Natural Science Foundation of Jilin Province (Grant No.20140520099JH).

    [1]B.L.Mordike,T.Ebert,Mater.Sci.Eng.A Struct.Mater.302(2001) 37–45.

    [2]T.Homma,N.Kunito,S.Kamado,Scr.Mater.61(2009)644–647.

    [3]X.Li,T.Al-Samman,G.Gottstein,Mater.Des.32(2011)4385–4393.

    [4]S.K.Panigrahi,W.Yuan,R.S.Mishra,R.DeLorme,B.Davis,R.A. Howell,et al.,Mater.Sci.Eng.A Struct.Mater.530(2011)28–35.

    [5]E.A.Ball,P.B.Prangnell,Scr.Mater.31(1994)111–116.

    [6]Z.Zachariah,S.S.V.Tatiparti,S.K.Mishra,N.Ramakrishnan,U. Ramamurty,Mater.Sci.Eng.A Struct.Mater.572(2013)8–18.

    [7]X.Y.Lou,M.Li,R.K.Boger,S.R.Agnew,R.H.Wagoner,Int.J.Plast.23 (2007)44–86.

    [8]P.Klimanek,A.P?tzsch,Mater.Sci.Eng.A Struct.Mater.324(2002) 145–150.

    [9]M.R.Barnett,Scr.Mater.59(2008)696–698.

    [10]J.Jain,W.J.Poole,C.W.Sinclair,M.A.Gharghouri,Scr.Mater.62(2010) 301–304.

    [11]T.V.Larionova,W.W.Park,B.S.You,Scr.Mater.45(2001)7–12.

    [12]J.C.Oh,T.Ohkubo,T.Mukai,K.Hono,Scr.Mater.53(2005)675–679. [13]R.Z.Valiev,T.G.Langdon,Prog.Mater.Sci.51(2006)881–981.

    [14]S.R.Agnew,P.Mehrotra,T.M.Lillo,G.M.Stoica,P.K.Liaw,Acta Mater. 53(2005)3135–3146.

    [15]W.M.Gan,M.Y.Zheng,H.Chang,X.J.Wang,X.G.Qiao,K.Wu,et al., J.Alloys Compd.470(2009)256–262.

    [16]F.Akbaripanah,F.Fereshteh-Saniee,R.Mahmudi,H.K.Kim,Mater.Des. 43(2013)31–39.

    [17]R.Jahadi,M.Sedighi,H.Jahed,Mater.Sci.Eng.A Struct.Mater.593 (2014)178–184.

    [18]L.B.Tong,M.Y.Zheng,H.Chang,X.S.Hu,K.Wu,S.W.Xu,et al.,Mater. Sci.Eng.A Struct.Mater.523(2009)289–294.

    [19]M.R.Barnett,Z.Keshavarz,A.G.Beer,D.Atwell,Acta Mater.52(2004) 5093–5103.

    [20]Q.Yu,Z.W.Shan,J.Li,X.X.Huang,L.Xiao,J.Sun,et al.,Nature 463 (2010)335–338.

    [21]M.R.Barnett,C.H.J.Davies,X.Ma,Scr.Mater.52(2005)627–632.

    [22]L.B.Tong,M.Y.Zheng,X.S.Hu,K.Wu,S.W.Xu,S.Kamado,et al., Mater.Sci.Eng.A Struct.Mater.527(2010)4250–4256.

    [23]C.H.Cáceres,P.Lukácˇ,A.Blake,Phil.Mag.88(2008)991–1003.

    [24]S.R.Agnew,D.W.Brown,C.N.Tomé,Acta Mater.54(2006)4841–4852.

    [25]D.L.Yin,J.T.Wang,J.Q.Liu,X.Zhao,J.Alloys Compd.478(2009) 789–795.

    [26]D.V.Wilson,J.A.Chapman,Philos.Mag.8(1963)1543–1551.

    [27]A.Jain,O.Duygulu,D.W.Brown,C.N.Tome,S.R.Agnew,Mater.Sci. Eng.A Struct.Mater.486(2008)545–555.

    [28]W.J.Kim,C.W.An,Y.S.Kim,S.I.Hong,Scr.Mater.47(2002)39–44.

    [29]A.J.Ardell,Metall.Mater.Trans.A 16(1985)2131–2165.

    Received 17 July 2015;revised 11 August 2015;accepted 25 August 2015 Available online 2 December 2015

    *Corresponding author.State Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China.Tel.:+86 431 85262414;fax:+86 431 85685653.

    E-mail address:lrcheng@ciac.ac.cn(L.R.Cheng).

    **Corresponding author.State Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China.Tel.:+86 431 85262127;fax:+86 431 85698041.

    E-mail address:hongjie@ciac.ac.cn(H.J.Zhang).

    http://dx.doi.org/10.1016/j.jma.2015.08.007

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    精品国产亚洲在线| 欧美日韩一级在线毛片| 精品久久久久久久久久免费视频| 亚洲三区欧美一区| 国产精品免费一区二区三区在线| 嫁个100分男人电影在线观看| 国产单亲对白刺激| 国产熟女xx| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| tocl精华| 国产高清videossex| 色老头精品视频在线观看| 嫩草影视91久久| 国产av不卡久久| a级毛片在线看网站| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 午夜日韩欧美国产| 欧美性长视频在线观看| 精品福利观看| 在线观看66精品国产| 中文亚洲av片在线观看爽| 老汉色∧v一级毛片| 神马国产精品三级电影在线观看 | 欧美av亚洲av综合av国产av| av欧美777| 亚洲第一青青草原| 19禁男女啪啪无遮挡网站| 免费高清在线观看日韩| 两个人视频免费观看高清| 一本久久中文字幕| 夜夜夜夜夜久久久久| 亚洲男人的天堂狠狠| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人的私密视频| 国产一区二区三区在线臀色熟女| 亚洲免费av在线视频| 精品久久久久久久人妻蜜臀av| 亚洲成人久久性| 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看| 国产激情欧美一区二区| 亚洲久久久国产精品| 免费女性裸体啪啪无遮挡网站| 免费在线观看成人毛片| 亚洲午夜理论影院| 成人三级黄色视频| 99久久无色码亚洲精品果冻| 日韩欧美国产在线观看| 欧美精品亚洲一区二区| 免费在线观看完整版高清| 亚洲精品久久国产高清桃花| 亚洲av成人av| 99riav亚洲国产免费| 国产精品永久免费网站| 动漫黄色视频在线观看| 国产精品九九99| 国产真实乱freesex| 91老司机精品| 国产一级毛片七仙女欲春2 | 精品国产乱子伦一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲熟妇熟女久久| 午夜激情福利司机影院| 亚洲自偷自拍图片 自拍| 亚洲自拍偷在线| 久久中文字幕一级| 亚洲精品国产一区二区精华液| 熟妇人妻久久中文字幕3abv| 久久亚洲精品不卡| 视频在线观看一区二区三区| xxx96com| 此物有八面人人有两片| 丝袜美腿诱惑在线| 法律面前人人平等表现在哪些方面| 白带黄色成豆腐渣| 午夜福利在线在线| 国产黄色小视频在线观看| 成年女人毛片免费观看观看9| 久久久久免费精品人妻一区二区 | 一本久久中文字幕| 啦啦啦韩国在线观看视频| 久久久久久人人人人人| 国产又色又爽无遮挡免费看| 亚洲精品美女久久av网站| 大型av网站在线播放| 亚洲欧美精品综合久久99| 女性被躁到高潮视频| 男人舔女人下体高潮全视频| 国产色视频综合| 中文在线观看免费www的网站 | 757午夜福利合集在线观看| 午夜福利18| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 久久国产亚洲av麻豆专区| 男人舔奶头视频| 欧美日韩亚洲综合一区二区三区_| 久久久精品国产亚洲av高清涩受| 久久久久国产精品人妻aⅴ院| 巨乳人妻的诱惑在线观看| 搡老妇女老女人老熟妇| svipshipincom国产片| 亚洲人成网站在线播放欧美日韩| 十八禁网站免费在线| 中文字幕人妻熟女乱码| 色综合婷婷激情| 村上凉子中文字幕在线| 男女之事视频高清在线观看| 老司机福利观看| 一级黄色大片毛片| 十八禁网站免费在线| 女警被强在线播放| 一本大道久久a久久精品| 午夜福利18| 夜夜爽天天搞| 丁香六月欧美| 精品国产一区二区三区四区第35| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 久久久久亚洲av毛片大全| av在线天堂中文字幕| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 精品国产美女av久久久久小说| 国产精华一区二区三区| 国产亚洲精品一区二区www| 国产一区在线观看成人免费| 高清毛片免费观看视频网站| netflix在线观看网站| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 老熟妇仑乱视频hdxx| 久久中文字幕一级| 人人澡人人妻人| 男人舔女人的私密视频| 18美女黄网站色大片免费观看| 久久热在线av| 精品久久久久久,| 欧美黑人巨大hd| 亚洲天堂国产精品一区在线| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 99国产极品粉嫩在线观看| 51午夜福利影视在线观看| 国产精品永久免费网站| 日本五十路高清| 99国产精品一区二区蜜桃av| 成人欧美大片| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 色老头精品视频在线观看| 亚洲精品色激情综合| 国内精品久久久久久久电影| 侵犯人妻中文字幕一二三四区| 18禁国产床啪视频网站| 欧美丝袜亚洲另类 | 国产99久久九九免费精品| 亚洲真实伦在线观看| 最近最新中文字幕大全免费视频| 夜夜躁狠狠躁天天躁| 久久精品人妻少妇| 中国美女看黄片| 亚洲 欧美一区二区三区| 亚洲精品一区av在线观看| 欧美在线一区亚洲| 丁香六月欧美| 久久精品国产清高在天天线| 亚洲一区高清亚洲精品| 丝袜在线中文字幕| 人成视频在线观看免费观看| 麻豆一二三区av精品| 精品国产一区二区三区四区第35| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区mp4| 久久香蕉国产精品| 老司机福利观看| 久久婷婷成人综合色麻豆| 黄频高清免费视频| 看片在线看免费视频| 18禁黄网站禁片免费观看直播| 午夜免费激情av| 亚洲中文日韩欧美视频| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 91老司机精品| 草草在线视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产乱人伦免费视频| 长腿黑丝高跟| 正在播放国产对白刺激| 国产三级在线视频| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 国产精品日韩av在线免费观看| 成人三级做爰电影| 伊人久久大香线蕉亚洲五| 免费搜索国产男女视频| 看片在线看免费视频| 亚洲片人在线观看| e午夜精品久久久久久久| 精品少妇一区二区三区视频日本电影| 中文字幕另类日韩欧美亚洲嫩草| 九色国产91popny在线| 午夜影院日韩av| 久久精品成人免费网站| 久久精品亚洲精品国产色婷小说| 88av欧美| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文字幕一区二区三区有码在线看 | 观看免费一级毛片| 精华霜和精华液先用哪个| 国产色视频综合| 99国产精品一区二区三区| 亚洲av美国av| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区mp4| 亚洲性夜色夜夜综合| 正在播放国产对白刺激| 在线视频色国产色| 99久久国产精品久久久| 日本黄色视频三级网站网址| 亚洲一码二码三码区别大吗| 亚洲一区二区三区不卡视频| 国产精品九九99| 高清在线国产一区| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 久久中文字幕人妻熟女| 看片在线看免费视频| 免费av毛片视频| 日本撒尿小便嘘嘘汇集6| 欧美三级亚洲精品| 免费看十八禁软件| www日本在线高清视频| av有码第一页| 国产精品 欧美亚洲| 国产精品久久久久久亚洲av鲁大| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 亚洲久久久国产精品| 亚洲avbb在线观看| 亚洲自拍偷在线| 一级作爱视频免费观看| 熟女电影av网| 一个人观看的视频www高清免费观看 | 亚洲无线在线观看| 欧美大码av| 久久国产乱子伦精品免费另类| 18禁裸乳无遮挡免费网站照片 | 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 99精品在免费线老司机午夜| 亚洲精品色激情综合| 国产亚洲欧美精品永久| 无遮挡黄片免费观看| 国产真实乱freesex| 久热爱精品视频在线9| 国产精品av久久久久免费| 精品国内亚洲2022精品成人| 欧美黑人欧美精品刺激| 久久伊人香网站| 日韩成人在线观看一区二区三区| xxxwww97欧美| 亚洲 国产 在线| 十八禁人妻一区二区| 99国产精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 男女下面进入的视频免费午夜 | 12—13女人毛片做爰片一| 久久亚洲真实| 成人国产综合亚洲| 日本a在线网址| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| 级片在线观看| 黄色女人牲交| 法律面前人人平等表现在哪些方面| 村上凉子中文字幕在线| 国产亚洲欧美98| 成人av一区二区三区在线看| 欧美乱妇无乱码| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 一本大道久久a久久精品| 亚洲av日韩精品久久久久久密| 中文在线观看免费www的网站 | 色精品久久人妻99蜜桃| 欧美不卡视频在线免费观看 | 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 两人在一起打扑克的视频| 欧美一区二区精品小视频在线| 黄片大片在线免费观看| 亚洲熟女毛片儿| 69av精品久久久久久| 成人永久免费在线观看视频| 视频区欧美日本亚洲| 啦啦啦观看免费观看视频高清| 一进一出好大好爽视频| 级片在线观看| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 国产一区在线观看成人免费| 成熟少妇高潮喷水视频| 巨乳人妻的诱惑在线观看| e午夜精品久久久久久久| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 亚洲国产高清在线一区二区三 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品中文字幕一二三四区| 久久久久久久久中文| 亚洲久久久国产精品| 最近最新中文字幕大全电影3 | 最近最新免费中文字幕在线| 亚洲 欧美一区二区三区| 美女大奶头视频| 免费搜索国产男女视频| 成人一区二区视频在线观看| 亚洲国产看品久久| 亚洲成av人片免费观看| 国产亚洲精品综合一区在线观看 | 草草在线视频免费看| 国产av又大| 国产亚洲精品av在线| 久久99热这里只有精品18| 在线观看日韩欧美| 亚洲自偷自拍图片 自拍| 国产一卡二卡三卡精品| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 国产精品久久久久久精品电影 | 天天躁夜夜躁狠狠躁躁| 国产精品av久久久久免费| 亚洲第一电影网av| 2021天堂中文幕一二区在线观 | 日韩免费av在线播放| 久9热在线精品视频| 日本黄色视频三级网站网址| 日本 欧美在线| 激情在线观看视频在线高清| 亚洲七黄色美女视频| 欧美乱色亚洲激情| 亚洲精品中文字幕一二三四区| 国产熟女xx| 亚洲九九香蕉| 少妇熟女aⅴ在线视频| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久人妻福利社区极品人妻图片| 中文字幕精品免费在线观看视频| 成人午夜高清在线视频 | 午夜福利免费观看在线| 9191精品国产免费久久| a级毛片a级免费在线| 色综合婷婷激情| 亚洲狠狠婷婷综合久久图片| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕人妻熟女| 欧美精品啪啪一区二区三区| 人成视频在线观看免费观看| 麻豆成人av在线观看| www.www免费av| 亚洲三区欧美一区| 香蕉国产在线看| 天天一区二区日本电影三级| 免费搜索国产男女视频| 亚洲人成网站在线播放欧美日韩| 久久午夜亚洲精品久久| 成人av一区二区三区在线看| 99热6这里只有精品| av中文乱码字幕在线| 十分钟在线观看高清视频www| 亚洲成人精品中文字幕电影| 熟女少妇亚洲综合色aaa.| 波多野结衣av一区二区av| 老司机午夜十八禁免费视频| 日韩欧美国产一区二区入口| www国产在线视频色| 一级a爱片免费观看的视频| 在线看三级毛片| 亚洲自拍偷在线| 99久久综合精品五月天人人| 久久99热这里只有精品18| 亚洲欧洲精品一区二区精品久久久| 在线永久观看黄色视频| 人人澡人人妻人| 亚洲精品美女久久av网站| 国产激情偷乱视频一区二区| 成在线人永久免费视频| 757午夜福利合集在线观看| 久久亚洲真实| 女同久久另类99精品国产91| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| aaaaa片日本免费| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 久久精品aⅴ一区二区三区四区| 日本三级黄在线观看| 少妇被粗大的猛进出69影院| 黄片播放在线免费| 男女床上黄色一级片免费看| 日日摸夜夜添夜夜添小说| 亚洲av日韩精品久久久久久密| 欧美日本视频| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 大香蕉久久成人网| 自线自在国产av| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 国产精品 欧美亚洲| 国产精品免费一区二区三区在线| 一级毛片精品| 日本免费a在线| 色老头精品视频在线观看| 在线观看午夜福利视频| 久久久久久人人人人人| av片东京热男人的天堂| 美女大奶头视频| 成人18禁在线播放| 老汉色av国产亚洲站长工具| 变态另类丝袜制服| 免费一级毛片在线播放高清视频| 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 国产真实乱freesex| 午夜免费成人在线视频| 99热这里只有精品一区 | 91老司机精品| 国产蜜桃级精品一区二区三区| 两人在一起打扑克的视频| 日韩欧美 国产精品| 大香蕉久久成人网| 国产精品免费视频内射| 日本免费a在线| 亚洲av成人一区二区三| 天堂√8在线中文| 两个人看的免费小视频| 他把我摸到了高潮在线观看| 老司机福利观看| 波多野结衣av一区二区av| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站 | 美女午夜性视频免费| 国产97色在线日韩免费| 精品电影一区二区在线| 青草久久国产| 在线观看免费视频日本深夜| a级毛片在线看网站| 成年版毛片免费区| 99国产精品一区二区蜜桃av| 国产午夜福利久久久久久| 国产成人一区二区三区免费视频网站| 成人三级黄色视频| 国产高清videossex| 一二三四社区在线视频社区8| 久久 成人 亚洲| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲七黄色美女视频| 国产亚洲av高清不卡| 操出白浆在线播放| 欧美av亚洲av综合av国产av| 99热这里只有精品一区 | 757午夜福利合集在线观看| 18禁裸乳无遮挡免费网站照片 | 搡老妇女老女人老熟妇| 亚洲五月色婷婷综合| 久99久视频精品免费| 97人妻精品一区二区三区麻豆 | 啦啦啦免费观看视频1| 国产av一区在线观看免费| 长腿黑丝高跟| 99国产精品一区二区三区| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av在线| 色av中文字幕| АⅤ资源中文在线天堂| 在线十欧美十亚洲十日本专区| www.www免费av| 韩国精品一区二区三区| 欧美另类亚洲清纯唯美| 国产黄a三级三级三级人| 免费在线观看视频国产中文字幕亚洲| 大香蕉久久成人网| 国产野战对白在线观看| 正在播放国产对白刺激| 亚洲人成77777在线视频| 国产乱人伦免费视频| 在线观看日韩欧美| 久久狼人影院| 免费观看精品视频网站| 黄频高清免费视频| 久久久久久免费高清国产稀缺| av片东京热男人的天堂| 久久中文看片网| 中文资源天堂在线| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av在线| 国产精品永久免费网站| 久久久久久久午夜电影| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 日韩 欧美 亚洲 中文字幕| 精品国产乱子伦一区二区三区| 少妇裸体淫交视频免费看高清 | 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| 露出奶头的视频| 国产黄片美女视频| 美女 人体艺术 gogo| 国产主播在线观看一区二区| 波多野结衣巨乳人妻| a级毛片在线看网站| 嫩草影视91久久| 我的亚洲天堂| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 成年女人毛片免费观看观看9| 日本精品一区二区三区蜜桃| 中文字幕精品免费在线观看视频| 午夜精品在线福利| 中文字幕人成人乱码亚洲影| 日日摸夜夜添夜夜添小说| 一个人观看的视频www高清免费观看 | 97超级碰碰碰精品色视频在线观看| 精品国产美女av久久久久小说| 亚洲av成人一区二区三| a在线观看视频网站| 免费看a级黄色片| 国产人伦9x9x在线观看| 国产精品爽爽va在线观看网站 | 国产成人精品久久二区二区91| 国产一级毛片七仙女欲春2 | 日韩欧美一区视频在线观看| 热re99久久国产66热| 久久精品成人免费网站| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 亚洲精品中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 成人三级做爰电影| 久久久久久久午夜电影| 在线观看免费视频日本深夜| 国产精品亚洲av一区麻豆| 亚洲国产欧洲综合997久久, | 午夜福利视频1000在线观看| 97人妻精品一区二区三区麻豆 | 国产又色又爽无遮挡免费看| 真人做人爱边吃奶动态| 欧美成人一区二区免费高清观看 | 老汉色∧v一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品日韩av在线免费观看| 少妇 在线观看| 亚洲欧美激情综合另类| 亚洲av美国av| 岛国在线观看网站| 热99re8久久精品国产| 1024香蕉在线观看| 日韩国内少妇激情av| av福利片在线| 免费av毛片视频| 又黄又粗又硬又大视频| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| 亚洲一区二区三区不卡视频| 国产色视频综合| 国产精品香港三级国产av潘金莲| 一区二区三区国产精品乱码| 午夜免费激情av| 国产真人三级小视频在线观看| 99国产精品99久久久久| 午夜免费激情av| 亚洲国产精品999在线| 一级毛片精品| 99riav亚洲国产免费| 搡老岳熟女国产| 国产精品野战在线观看| a在线观看视频网站| 啦啦啦免费观看视频1| 精品高清国产在线一区| 久久性视频一级片| 久久国产精品男人的天堂亚洲| 男男h啪啪无遮挡| a在线观看视频网站| www日本黄色视频网| 国产1区2区3区精品| 嫁个100分男人电影在线观看| 国产一区在线观看成人免费| 人人妻人人看人人澡| 丝袜人妻中文字幕| www日本黄色视频网| 国产亚洲精品综合一区在线观看 | 国产aⅴ精品一区二区三区波| 精品免费久久久久久久清纯| 嫩草影视91久久| 黄色a级毛片大全视频| 男女视频在线观看网站免费 |