• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of support vector machine in drag reduction effect p*rediction of nanoparticles adsorption method on oil reservoir’s micro-channels

    2015-02-16 06:43:31DIQinfeng狄勤豐HUAShuai華帥DINGWeipeng丁偉朋GONGWei龔偉CHENGYichong程毅翀YeFeng葉峰
    關(guān)鍵詞:丁偉

    DI Qin-feng (狄勤豐), HUA Shuai (華帥), DING Wei-peng (丁偉朋), GONG Wei (龔偉), CHENG Yi-chong (程毅翀), Ye Feng (葉峰)

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    2. Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering, Shanghai 200072, China,E-mail: qinfengd@sina.com

    Application of support vector machine in drag reduction effect p*rediction of nanoparticles adsorption method on oil reservoir’s micro-channels

    DI Qin-feng (狄勤豐)1,2, HUA Shuai (華帥)1,2, DING Wei-peng (丁偉朋)1, GONG Wei (龔偉)2, CHENG Yi-chong (程毅翀)1,2, Ye Feng (葉峰)1,2

    1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    2. Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering, Shanghai 200072, China,E-mail: qinfengd@sina.com

    (Received August 29, 2013, Revised November 27, 2013)

    Due to the complexity of influence factors in the nanoparticles adsorption method and the limitation of data samples, the support vector machine (SVM) was used in the prediction method for the drag reduction effect. The basic concept of SVM was introduced, and the -εSVR programming for the kernel function on the radial basis was established firstly with the help of the MATLAB software. Then, an analysis was made for the influencing factors of the drag reduction effect in nanoparticles adsorption. Finally, a prediction model for the drag reduction effect of nanoparticles was established, and the accuracy of training sample and prediction sample was analyzed. The result shows that the SVM has good availability and can be used as a rapid evaluation method of the drag reduction effect prediction of nanoparticles adsorption method.

    nanoparticles adsorption method, support vector machine (SVM), prediction model, rapid evaluation, enhanced oil recovery

    Introduction

    Drag reduction by the hydrophobic nanoparticles adsorption in reservoir microchannels is a new technology to decrease water injection pressure and enhance water injection rate, which has been achieved significant drag reduction effect in oilfield tests. It is of great significance for solving the problem of high injection pressure but less-injection and improving oil recovery during the water flooding development of low permeability oilfields[1-4]. However, the high cost and long period of assessing drag reduction effect during development of the matched nanoparticles for special oil block have severely constrained the application of the technology.

    Support vector machine (SVM) is a novel data mining method based on statistical learning theory(SLT)[5]. In machine learning, SVMs, also support vector networks are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis[6].

    With the development of SLT, SVM develops in theory and application rapidly. It has advantages such as high classification accuracies, few parameters,good generalization ability, and global optimal solution. It demonstrates a number of unique advantages in solving the small size problems, non-linear problems, and high-dimension data problems. SVM has been successfully used in prediction, data fitting, comprehensive evaluation, pattern recognition, and many other things[7,8].

    Due to the complexity of influence factors in the nanoparticles adsorption method on drag reduction effect and the limitation of data samples, we chooseSVM method to study the drag reduction effect. After a brief introduction of basic ideas and theory of SVM,an -εSVR programming with the radial basis function (RBF) was established with the help of the MATLAB software. After the correctness of programmming being verified by one-dimensional function,the programming was used to predict the drag reduction effect of the nanoparticles adsorption method[9].

    1. Svm basic models

    1.1 SVM basic idea

    SVM is developed from the theory of the optimal separating hyperplane in condition of linearly separable. The basic idea of SVM can be explained in the two-dimension case in Fig.1[10-12].

    Fig.1 Optimal separating line in condition of linearly separable

    In Fig.1, the solid and hollow points represent two types of data samples respectively. The so-called optimal separating line is the line which not only can separate the two samples properly, but also make the margin maximal. Former guarantees empirical risk minimization, later makes the actual risk minimum. As can be seen from Fig.1, the optimal separating line only depends on a few samples (support vectors samples, in red circle). This property makes the SVM very suitable in solving small size sample problem.

    The SVM also has strong abilities to deal with nonlinear problems. To nonlinear problems, firstly,SVM project the original training data x to a higher dimensional feature space which can be separated linearly via a nonlinear function ()φx, and then obtain the optimal separating hyperplane in the higher dimensional feature space. In the higher dimensional feature space, the inner product φ(xi)·φ(xj) can be replaced by the kernel function in the original space, i.e., K(xi, xj)=φ(xi)·φ(xj). According to the functional theory, the kernel function corresponds to an inner product in some mapping space when it satisfies Mercer’s condition. To SVM, kernel function plays an important role in solving nonlinear problems, and the radial basis kernel function is commonly used, which can be expressed as Eq.(1)[13,14]

    1.2 Support vector regression

    Support vector regression (SVR) is one type of the SVMs. The optimal hyperplane of SVR is to make the error between the estimating value and the true value minimum. A loss function is needed to introduce for the regression prediction problem, and the insensitive loss function is commonly used[10]. To a sample set ε, in which T={(xi,yi),i=1,...,n},x∈Rd, y∈R, the SVR with ε insensitive loss function can be transformed into the dual problem of a convex quadratic programming optimization. Which can be expressed as Eq.(2).

    where C is constant, and 0C>, indicating the penalty factor.iα andiα*are Lagrange multipliers. Usingioα,ioα*denote the solution of Eq.(2), then the corresponding regression estimation can be described,

    2. -εSVR program implementaion

    2.1 -εSVR programming with MATLAB

    The SVM problems can be solved as a quadratic programming problems, and this make a convenienceto use MATLAB software to solving this problem because there is a specialized functions for solving quadratic programming problems[15]. By using the function “quadprog” in MATLAB software, theioα,ioα*in Eq.(1) to Eq.(4) can be obtained, then the value of bocan be got by Eq.(3) and Eq.(4). As a result, the model based on radial basis kernel function can be determined.

    For model based on radial basis kernel function,the regression result is affected by the kernel parameter σ, insensitive factor ε and penalty factor C, so an optimization method should be used to determine them[16,17]. The web search method for parameters optimization was used in this paper, in which the range of each parameter and their step length must be determined in advance, then the step by step search method was used[18]. Selection of the bound for σ will become crucially important. Smaller σ may lead to over-fitting SVR, excessive σ may causes the kernel function tends to constant values. Based on the experience and fuzzy -Kmeans clustering method selected σ ranges. Finally an optimization criteria, the minimum training sample mean square error (MSE),was used to select the optimal parameters,

    where f(xi) is the predicted value, yiis the original value.

    Fig.2 -εSVR model of the MATLAB programming

    Through the above analysis, a MATLAB programming based on the radial basis kernel function -ε SVR model can be designed and the block diagram was shown in Fig.2.

    2.2 Verification of one-dimensional function

    In order to verify the correctness of the -εSVA program, an one-dimensional test function =y(x-1)2e-x2/10+ζ, in which (x-1)2e-x2/10is the internal relations between data samples, was constructed. A normal distribution noise item ζ~N (0,0.01), in which the mean value is 0 and the variance is 0.01,was introduced to structure this data sample function. In x∈[-10,10], 60 points are randomly selected as data sample, in which the 54 points are randomly picked as the training sample, and the remaining are as the test sample, as shown in Fig.3.

    Fig.3 One-dimensional function and division of sample collection

    In order to optimize the σ, ε and C, an initial parameters range was selected. σ is between 0.2 and 6, and the step length is 0.2. ε is between 0.1 and 3, step 0.1. C is between 10 and 300, step 10. The training samples were imported into operational procedures. After the parameter optimization, optimal σ, ε , C are respectively 0.8, 0.1, 20. At this time,the training sample mean square error is 0.0854.

    Fig.4 One-dimensional function comparing predicted and actual values

    Select the optimal parameters for model training,respectively, to predict the training samples and testing samples. VR ratio (the number of support vectors divided by the number of training samples) is 0.87. The result is shown in Fig.4.

    Table1 One-dimensional function test sample training results

    As illustrated in Fig.4, there is only a marginal difference between the training sample predicted values (TRSPV) and the training sample true values(TRSTV), the testing sample predicted values(TESPV)and the testing sample true values (TESTV). The detailed values were given in Table 1. The maximum and the minimum absolute error were about 0.433,0.03 respectively. The test sample mean square error is 0.26332. The method achieves the average accuracy of 0.95 in leave-one-out cross-validations (LOOCV).

    The above results show that the MATLAB program based on the radial basis kernel function can get good prediction result and can be used as a prediction tool.

    3. The drag reduction effect of adsorption nanoparticles factors

    The drag reduction effect of nanoparticles adsorption method are mainly determined by properties of cores, the characteristics of nanomaterials, as well as the matching between the two factors and experimental environment factors. The main parameters which reflect the core physical properties are mineral composition of the cores, permeability, porosity and oil saturation. The main parameters which reflect the properties of nanomaterials are nanomaterials particle size,modifier and activity. The matching of core and nanomaterials can be characterized by the core contact angle with adsorbed nanoparticles. The adsorption concentration, adsorption temperature and adsorption time can be used to described the environmental characteristics.

    Core micro-channel effective aperture will be changed after adsorption of nanoparticles. The average pore diameter of core micro-channel is related to the permeability and porosity of core. Therefore, the core permeability and core porosity are the two effective factors for reference in selecting the suitable nanoparticles. Cores used in the experiment are all through washing oil, which will be regardless of the impact of oil saturation and are all from the same block,with the mineral composition roughly the same, which will be regardless of the influence on the results. Three kinds of nanoparticle in size were used to study the drag reduction performance of nano-material, so the size of nanoparticles is regarded as the influence factors. The modified material of the nanoparticles used in the experiments are all the same, and the activation is over 99%, therefore these two factors are not considered as the influence factors. Drag reduction effect is related to adsorption effect of nanoparticles on the core and the water contact angle of the nanoparticles adsorption layer, which is the characterization of surface wettability. The greater the contact angles the better drag reduction effect, so the contact angle is taken as the influence factor. As the experimental environment parameters, the concentration of nanopaticles in the solution, the temperature and the adsorption time will be fixed, so the experimental environment parameters will not be considered.

    In the drag reduction effect evaluation, the core flow experiment was a direct and final method, and the ratio of core water phase permeability before and after nanoparticles adsorption, kwa/kwb, are used to described the drag reduction effect, so kwa/kwbis selected as the characterization parameter of drag reduction effect, namely the output of the model.

    In conclusion, the core porosity, the core water phase permeability before nanoparticles adsorption,the average particle size of nanoparticles and the contact angel of the nanoparticles adsorption layer on the core are selected as the influence factors, namely the input of the model. The ratio of core water phase permeability before and after nanoparticles adsorption in the core flow experiment, kwa/kwb, is considered as the characterization parameter of drag reduction effect,namely the output of the model.

    Fig.5 The -εSVA prediction model for drag reduction effect of nanoparticles adsorption method

    Table2 Comparison of SVM true and predicted values

    4. Prediction model and result analysis

    Based on the analysis of input and output parameters, the drag reduction effect predication model of ε-SVR programming of the nanoparticles adsorption method was established, as shown in Fig.5. There are four input nodes and one output node.

    Fig.6 Comparison of -εSVR sample true and predicted values

    Due to less training data samples, through properly encrypted search, kernel parameter σ is selected between 0.1 and 6, step 0.1. Insensitive factor ε is selected between 0.01 and 3, step 0.01. Penalty factor C is selected between 10 and 300, step 10. By the parameters optimization based on the minimum mean square error method, the -εSVA prediction model of drag reduction effect of nanoparticles adsorption was established. The optimal σ, ε and C are 1.10, 0.01, 20 respectively. As the calculation results,VR ratio is 0.88. The predicted value and the true value were shown in Table 2, and the contrast diagram was shown in Fig.6.

    As shown in Table 2, the -εSVR programming with radial basis kernel function for training samples have reached a very good prediction accuracy, with the maximum relative error only 0.97%. For the two verification samples, the absolute value of the relative error is between 3.22% and 3.79%, and the average value is only 3.5%. The method achieves the averageaccuracy of 0.942 in LOOCV.

    As shown in Fig.6, with parameter optimization process, the -εSVR programming can reach a fairly good prediction precision for training samples. The results show that SVM has good availability in the drag reduction effect prediction of nanoparticle adsorption method.

    5. Conclusions

    Based on SVM and the analysis on the drag reduction effect of the nanoparticles adsorption method,the following conclusions can be reached:

    (1) The SVM has unique advantages in solving small sample, nonlinearity, convergence rate, noise resistance, and high dimensional pattern recognition problems. A -εSVR programming with radial basis kernel function is established with the help of using MATLAB software. The results show that this programming has fairly good establishment and prediction accuracy of regression model for one-dimensional functions.

    (2) The core porosity, water phase permeability,particle size of nanoparticles and contact angel were selected as the input parameters of the drag reduction effect predication model of -εSVR programming of the nanoparticles adsorption method and the ratio(kwa/kwb) as the output of the model. The results show that, based on the training sample, this model has quite good prediction accuracy for the verification sample, and can be used as a rapid evaluation tool for drag reduction effect predication.

    [1] DI Qin-feng, GU Chun-yuan and SHI Li-yi. Pressure drop mechanism of enhancing water injection technology with hydrophobicity nanometer SiO2[J]. Drilling and Production Technology, 2007, 30(4): 91-94(in Chinese).

    [2] GU Chun-yuan, DI Qin-feng and FANG Hai-ping. Slip velocity model of porous walls absorbed by hydrophobic nanoparticles SiO2[J].Journal of Hydrodynamics, Ser. B, 2007, 19(3): 365-371.

    [3] ZHANG Ren-liang, DI Qin-feng and WANG Xin-liang et al. Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by lattice Boltzmann method[J]. Journal of Hydrodynamics, 2010, 22(3): 366-372.

    [4] ZHANG Ren-liang, DI Qin-feng and WANG Xin-liang et al. Numerical study of the relationship between apparent slip length and contact angle by lattice Boltzmann method[J]. Journal of Hydrodynamics, 2012, 24(4):535-540.

    [5] BAI Peng. Support vector machine and its application in mixed gas infrared spectrum analysis[M]. Xi’an, China: Xidian University Press, 2008(in Chinese).

    [6] LEE Y.-J., MANGARASIAN O. L. SSVM: A smooth support vector machine for classification[J]. Computational Optimization and Applications, 2001, 22(1):5-21.

    [7] CHANG Tian-tian LIU Hong-wei. Support vector machine ensemble learning algorithm research based on heterogeneous data[J]. Journal of Xidian University, 2010, 37(1): 136-141(in Chinese).

    [8] GUO Hui, WANG Ling and LIU He-ping. Integrating kernel principal component analysis with least squares support vector machines for time series forecasting problems[J]. Journal of University of Science and Technology Bejing, 2006, 28(3): 303-307(in Chinese).

    [9] SUYKENS J. A. K. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999,9(3): 293-300.

    [10] BAI Peng, ZHANG Xi-bin and ZHANG Bin. Support vector machine theory and engineering application examples[M]. Xi’an, China: Xi?an Electronic Sience and Technology University Press, 2008(in Chinese).

    [11] DENG Nai-yang, TIAN Ying-jie. Support vector machine (SVM): Theory, algorithms, and development[M]. Beijing, China: Science Press, 2009.

    [12] HASTIE T. The entire regularization path for the support vector machine[J]. Journal of Machine Learning Research, 2004, 5: 1391-1415.

    [13] ZHANG Qian, YANG Yai-quan. Research on the kernel function of support vector machine[J]. Electric Power Science and Engineering, 2012, 28(5): 42-46(in Chinese).

    [14] ZHU Shu-xian, ZHANG Yen-jie. Research for selection of kernel functions used in support vector machine[J]. Science Technology and Engineering, 2008, 8(16):4513-4518(in Chinese).

    [15] ZHU Guo-qiang, LIU Shi-rong. Support vector machine and its applications to function approximation[J], Journal of East China University of Science and Technology, 2002, 28(5): 555-559(in Chinese).

    [16] XIAO Jian, YU Long and BAI Yi-feng. Survey of the selection of kernels and hyper-parameters in support vector regression[J]. Journal of Southwest Jiaotong University, 2008, 43(3): 297-303(in Chinese).

    [17] CHENG Peng, WANG Xi-li. Influence of SVR parameter on non-linear function approximation[J]. Computer Engineering, 2011, 37(3): 190-191(in Chinese).

    [18] WANG Xing-ling, LI Zhang-bin. Identifying the parameters of the kernel function in support vector machines based on the grid-search method[J]. Journal of Ocean University of Qingdao, 2005, 35(5): 859-862(in Chinese).

    10.1016/S1001-6058(15)60461-9

    * Project supported by the National Natural Science Foundation of China (Grant No. 50874071), the Chinese National Programs for High Technology Research and Development(Grant No. SS2013AA061104), Shanghai Program for Innovative Research Team in Universities, Shanghai Leading Academic Discipline Project (Grant No. S30106) and the Shanghai Leading Talents Project and the Key Program of Science and Technology Commission of Shanghai Municipality (Grant No. 12160500200).

    Biography: DI Qin-feng (1963-), Male, Ph. D., Professor

    猜你喜歡
    丁偉
    安徽阜陽(yáng):老兵代駕“駕”出愛(ài)心路
    我國(guó)主要煙草青枯病病圃青枯菌系統(tǒng)發(fā)育分析
    跳樓風(fēng)波
    爸爸不是壞人
    爸爸不是壞人
    町町單車悲劇
    藝技盡善筆色盡美,靈動(dòng)造化縱橫才華
    沈綠柚的成長(zhǎng)五幕劇
    Synthesis of Hierarchical MgO-Containing Silicalite-1 Zeolites with High Hydrothermal Stability
    關(guān)于沈綠柚同學(xué)成長(zhǎng)的五幕劇
    視野(2009年17期)2009-10-14 08:52:08
    性色av一级| 9热在线视频观看99| 精品少妇内射三级| 黄色a级毛片大全视频| 日本av手机在线免费观看| 亚洲成人手机| 中文字幕精品免费在线观看视频| 人妻人人澡人人爽人人| 亚洲一区中文字幕在线| a级毛片黄视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品乱久久久久久| 欧美另类亚洲清纯唯美| 成人影院久久| 人人澡人人妻人| 亚洲欧美日韩高清在线视频 | 日韩熟女老妇一区二区性免费视频| 亚洲国产看品久久| 日韩视频在线欧美| 男人添女人高潮全过程视频| 午夜福利乱码中文字幕| 在线天堂中文资源库| 日韩欧美国产一区二区入口| 亚洲精品自拍成人| 久久精品人人爽人人爽视色| 最近中文字幕2019免费版| 一个人免费在线观看的高清视频 | 性色av乱码一区二区三区2| 国产成人精品久久二区二区91| a在线观看视频网站| 亚洲精品自拍成人| 99香蕉大伊视频| 精品久久久久久电影网| 2018国产大陆天天弄谢| 亚洲综合色网址| 国产精品欧美亚洲77777| 午夜福利视频精品| 建设人人有责人人尽责人人享有的| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 狂野欧美激情性xxxx| 91九色精品人成在线观看| 成人国产一区最新在线观看| 最近中文字幕2019免费版| 极品人妻少妇av视频| 一级毛片精品| 在线观看人妻少妇| 永久免费av网站大全| 老司机福利观看| 国产老妇伦熟女老妇高清| 亚洲第一av免费看| 久久久久国内视频| 久久久久久久精品精品| 男人舔女人的私密视频| 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合| 五月天丁香电影| 免费少妇av软件| 国产亚洲精品久久久久5区| 亚洲av男天堂| 精品福利观看| 欧美黑人欧美精品刺激| 午夜老司机福利片| 热99国产精品久久久久久7| 亚洲欧美色中文字幕在线| 国产亚洲精品久久久久5区| 日韩中文字幕视频在线看片| 97精品久久久久久久久久精品| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 国产精品 欧美亚洲| 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 1024视频免费在线观看| 久久综合国产亚洲精品| 日韩欧美国产一区二区入口| 亚洲精品粉嫩美女一区| 人成视频在线观看免费观看| 免费人妻精品一区二区三区视频| 波多野结衣一区麻豆| 国产区一区二久久| 多毛熟女@视频| 色视频在线一区二区三区| 看免费av毛片| 成年人午夜在线观看视频| 建设人人有责人人尽责人人享有的| 欧美+亚洲+日韩+国产| 免费黄频网站在线观看国产| 宅男免费午夜| 大香蕉久久网| 亚洲激情五月婷婷啪啪| 我的亚洲天堂| 精品人妻一区二区三区麻豆| av超薄肉色丝袜交足视频| 国产高清国产精品国产三级| 久久人人97超碰香蕉20202| 国产一区二区激情短视频 | 青春草视频在线免费观看| 纵有疾风起免费观看全集完整版| 国产成人av激情在线播放| 丝袜在线中文字幕| videosex国产| 18禁裸乳无遮挡动漫免费视频| 老司机亚洲免费影院| 日韩电影二区| a在线观看视频网站| 黄色a级毛片大全视频| 在线亚洲精品国产二区图片欧美| 欧美xxⅹ黑人| 丰满迷人的少妇在线观看| 黄色 视频免费看| 成人亚洲精品一区在线观看| 欧美另类亚洲清纯唯美| 国产高清视频在线播放一区 | 亚洲精品久久午夜乱码| 免费一级毛片在线播放高清视频 | 亚洲欧美精品综合一区二区三区| 国产高清视频在线播放一区 | 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 精品国产一区二区三区四区第35| 91av网站免费观看| 免费高清在线观看视频在线观看| 国产区一区二久久| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区91| 免费不卡黄色视频| 久久久久久久精品精品| 国产97色在线日韩免费| 亚洲avbb在线观看| 丰满少妇做爰视频| 成人av一区二区三区在线看 | 久久影院123| 亚洲精品成人av观看孕妇| 久久久欧美国产精品| 中国美女看黄片| 亚洲avbb在线观看| 精品久久久精品久久久| 黑人巨大精品欧美一区二区蜜桃| 捣出白浆h1v1| 久久久久久久久久久久大奶| 久久久国产成人免费| 久久午夜综合久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 国产激情久久老熟女| 啦啦啦在线免费观看视频4| av免费在线观看网站| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 中文字幕另类日韩欧美亚洲嫩草| 人成视频在线观看免费观看| 日韩一卡2卡3卡4卡2021年| 久久午夜综合久久蜜桃| 曰老女人黄片| 国产欧美日韩一区二区三 | 国产亚洲av高清不卡| 日韩,欧美,国产一区二区三区| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 成人免费观看视频高清| 99精品久久久久人妻精品| xxxhd国产人妻xxx| 在线十欧美十亚洲十日本专区| 成人国产一区最新在线观看| 亚洲精品美女久久av网站| 视频在线观看一区二区三区| www.精华液| 下体分泌物呈黄色| 国产日韩欧美在线精品| 叶爱在线成人免费视频播放| 久久性视频一级片| av天堂久久9| 一级a爱视频在线免费观看| 丝袜喷水一区| 90打野战视频偷拍视频| 免费高清在线观看视频在线观看| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久小说| 老司机深夜福利视频在线观看 | 久久青草综合色| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 老司机深夜福利视频在线观看 | 欧美日韩国产mv在线观看视频| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到| 亚洲精品国产精品久久久不卡| 人成视频在线观看免费观看| 桃花免费在线播放| 最黄视频免费看| 国产黄色免费在线视频| 成年女人毛片免费观看观看9 | 999精品在线视频| 成年动漫av网址| 国产福利在线免费观看视频| 十分钟在线观看高清视频www| 亚洲欧美清纯卡通| 亚洲天堂av无毛| av片东京热男人的天堂| 国产免费视频播放在线视频| www.自偷自拍.com| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 日韩大片免费观看网站| 菩萨蛮人人尽说江南好唐韦庄| 成人18禁高潮啪啪吃奶动态图| 青青草视频在线视频观看| 99热全是精品| 80岁老熟妇乱子伦牲交| 免费观看人在逋| 狂野欧美激情性xxxx| 精品福利观看| 免费女性裸体啪啪无遮挡网站| 制服人妻中文乱码| 精品一区二区三卡| 亚洲欧美成人综合另类久久久| 777久久人妻少妇嫩草av网站| 大香蕉久久网| 精品一区二区三区av网在线观看 | 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 91成年电影在线观看| 国产激情久久老熟女| 飞空精品影院首页| 免费高清在线观看视频在线观看| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 日本撒尿小便嘘嘘汇集6| 日韩一区二区三区影片| 亚洲一码二码三码区别大吗| 日韩免费高清中文字幕av| www.999成人在线观看| 久久精品国产亚洲av香蕉五月 | 日韩大码丰满熟妇| 欧美日韩av久久| 午夜福利免费观看在线| 久久综合国产亚洲精品| 久久天堂一区二区三区四区| 熟女少妇亚洲综合色aaa.| 亚洲精品国产av蜜桃| 精品福利永久在线观看| av不卡在线播放| 捣出白浆h1v1| 国产精品一区二区免费欧美 | 国产精品一区二区免费欧美 | 精品少妇久久久久久888优播| 日韩电影二区| 老司机午夜福利在线观看视频 | 久久狼人影院| 一本色道久久久久久精品综合| 黄色 视频免费看| av超薄肉色丝袜交足视频| 99久久99久久久精品蜜桃| 深夜精品福利| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 老鸭窝网址在线观看| netflix在线观看网站| 午夜福利,免费看| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 中文字幕另类日韩欧美亚洲嫩草| 性高湖久久久久久久久免费观看| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区三 | 纵有疾风起免费观看全集完整版| 脱女人内裤的视频| 欧美97在线视频| 久久久国产成人免费| 精品卡一卡二卡四卡免费| 精品亚洲成国产av| 欧美精品一区二区大全| 啦啦啦在线免费观看视频4| 色视频在线一区二区三区| 丝袜喷水一区| 精品熟女少妇八av免费久了| netflix在线观看网站| 一区福利在线观看| 欧美日韩视频精品一区| av电影中文网址| 一区二区日韩欧美中文字幕| 亚洲精品日韩在线中文字幕| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 麻豆国产av国片精品| netflix在线观看网站| 热99久久久久精品小说推荐| 国产成人av教育| 久久久精品94久久精品| 久久精品国产a三级三级三级| av超薄肉色丝袜交足视频| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 香蕉国产在线看| 亚洲精品国产av成人精品| kizo精华| 极品人妻少妇av视频| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 婷婷丁香在线五月| 老司机影院成人| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人的私密视频| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| 性色av一级| 丝袜美腿诱惑在线| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 午夜福利在线免费观看网站| 女人精品久久久久毛片| 欧美精品啪啪一区二区三区 | 91精品伊人久久大香线蕉| 国产精品免费视频内射| 国产一区二区三区综合在线观看| 91麻豆av在线| 亚洲精品在线美女| 精品久久久久久久毛片微露脸 | 欧美激情极品国产一区二区三区| 免费人妻精品一区二区三区视频| 日日夜夜操网爽| 午夜福利视频在线观看免费| 亚洲七黄色美女视频| 国产日韩一区二区三区精品不卡| 啦啦啦啦在线视频资源| 日韩视频一区二区在线观看| 免费久久久久久久精品成人欧美视频| 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 少妇的丰满在线观看| 国产日韩欧美视频二区| 国产成人精品在线电影| 精品国产乱子伦一区二区三区 | 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 亚洲久久久国产精品| 久久热在线av| 中文字幕人妻丝袜一区二区| xxxhd国产人妻xxx| 99国产精品免费福利视频| 国产一区二区 视频在线| 18禁国产床啪视频网站| 人人妻人人添人人爽欧美一区卜| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| 国产欧美日韩精品亚洲av| 久久综合国产亚洲精品| 国产一区二区三区综合在线观看| 午夜免费鲁丝| 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 久久99热这里只频精品6学生| 精品一品国产午夜福利视频| 国产成人免费观看mmmm| 亚洲成人免费av在线播放| 日韩一卡2卡3卡4卡2021年| 老熟女久久久| 操美女的视频在线观看| 亚洲国产毛片av蜜桃av| 人妻久久中文字幕网| 日本欧美视频一区| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 欧美中文综合在线视频| 他把我摸到了高潮在线观看 | 亚洲精品成人av观看孕妇| av超薄肉色丝袜交足视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品久久久久成人av| 久久中文字幕一级| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 国产精品免费视频内射| 国产色视频综合| 国产一级毛片在线| 欧美日韩精品网址| 丝袜人妻中文字幕| 不卡一级毛片| 国产极品粉嫩免费观看在线| 乱人伦中国视频| 性少妇av在线| 国产在线观看jvid| 午夜成年电影在线免费观看| 精品乱码久久久久久99久播| 久久人人爽av亚洲精品天堂| 岛国毛片在线播放| 美国免费a级毛片| 日韩欧美免费精品| 黄色视频在线播放观看不卡| 免费人妻精品一区二区三区视频| 午夜视频精品福利| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| 亚洲欧洲日产国产| a级片在线免费高清观看视频| 国产精品一区二区免费欧美 | 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 又紧又爽又黄一区二区| 成年人黄色毛片网站| 久久久久久久大尺度免费视频| 亚洲人成电影免费在线| 国产日韩欧美亚洲二区| 亚洲国产中文字幕在线视频| 免费在线观看完整版高清| 久久青草综合色| 91成年电影在线观看| 热re99久久国产66热| 久久天堂一区二区三区四区| 777米奇影视久久| 国产97色在线日韩免费| 成年人午夜在线观看视频| 久久免费观看电影| 欧美日韩黄片免| 日本一区二区免费在线视频| 国产在线一区二区三区精| 欧美黄色淫秽网站| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图| www.999成人在线观看| 国产免费视频播放在线视频| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| 久久天躁狠狠躁夜夜2o2o| 国产日韩欧美视频二区| 一进一出抽搐动态| 搡老岳熟女国产| 黑人猛操日本美女一级片| 欧美黄色片欧美黄色片| 男男h啪啪无遮挡| 少妇裸体淫交视频免费看高清 | 十八禁网站网址无遮挡| 丝袜美足系列| 高清黄色对白视频在线免费看| 久久久久国产精品人妻一区二区| 波多野结衣一区麻豆| 久久精品国产a三级三级三级| 精品久久蜜臀av无| 亚洲成人国产一区在线观看| 91精品国产国语对白视频| 精品国产乱码久久久久久男人| 下体分泌物呈黄色| tocl精华| 亚洲成人免费av在线播放| 日本猛色少妇xxxxx猛交久久| 国产伦理片在线播放av一区| 美女福利国产在线| 亚洲国产精品一区二区三区在线| 天堂俺去俺来也www色官网| bbb黄色大片| 亚洲欧美色中文字幕在线| 男女国产视频网站| 国产在线免费精品| 老司机亚洲免费影院| 亚洲人成电影观看| 女人被躁到高潮嗷嗷叫费观| 一本色道久久久久久精品综合| av视频免费观看在线观看| 看免费av毛片| 男女之事视频高清在线观看| 建设人人有责人人尽责人人享有的| 女警被强在线播放| 搡老岳熟女国产| av天堂久久9| 美女高潮到喷水免费观看| 无限看片的www在线观看| 亚洲一区二区三区欧美精品| 18禁观看日本| 2018国产大陆天天弄谢| 捣出白浆h1v1| 亚洲va日本ⅴa欧美va伊人久久 | 91九色精品人成在线观看| 亚洲中文av在线| 久久ye,这里只有精品| 久久 成人 亚洲| 另类亚洲欧美激情| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 午夜福利在线观看吧| a 毛片基地| 男女下面插进去视频免费观看| 又黄又粗又硬又大视频| 俄罗斯特黄特色一大片| 咕卡用的链子| 久久中文字幕一级| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 老司机影院毛片| 亚洲国产精品成人久久小说| 国产欧美日韩一区二区精品| 亚洲欧美色中文字幕在线| 欧美久久黑人一区二区| www.av在线官网国产| 五月天丁香电影| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 国产精品一区二区免费欧美 | 色视频在线一区二区三区| 天天添夜夜摸| 老司机在亚洲福利影院| 精品国产乱码久久久久久小说| 日韩视频在线欧美| 国产精品一区二区在线不卡| 久久久欧美国产精品| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 亚洲欧美色中文字幕在线| 视频区图区小说| 性色av一级| 国产免费福利视频在线观看| 亚洲成人手机| 亚洲精品美女久久av网站| xxxhd国产人妻xxx| www.av在线官网国产| 午夜福利视频精品| 成在线人永久免费视频| 午夜福利影视在线免费观看| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| 黄频高清免费视频| 在线观看舔阴道视频| 中亚洲国语对白在线视频| 好男人电影高清在线观看| 多毛熟女@视频| 久久久国产精品麻豆| 国产精品免费视频内射| 菩萨蛮人人尽说江南好唐韦庄| 热99久久久久精品小说推荐| 欧美乱码精品一区二区三区| 汤姆久久久久久久影院中文字幕| 精品亚洲成国产av| 50天的宝宝边吃奶边哭怎么回事| 狠狠狠狠99中文字幕| 多毛熟女@视频| 深夜精品福利| 久久精品亚洲熟妇少妇任你| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 91大片在线观看| 亚洲九九香蕉| 蜜桃国产av成人99| 亚洲精品国产一区二区精华液| 国产精品.久久久| 欧美日韩av久久| 日本wwww免费看| 国产精品国产av在线观看| 亚洲国产欧美网| 免费人妻精品一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 看免费av毛片| 国产精品 国内视频| 精品亚洲乱码少妇综合久久| 黑人欧美特级aaaaaa片| 成年美女黄网站色视频大全免费| 国产高清视频在线播放一区 | 精品亚洲成国产av| 欧美久久黑人一区二区| 亚洲av日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 美女福利国产在线| 欧美精品人与动牲交sv欧美| 乱人伦中国视频| 久久热在线av| 久久99一区二区三区| 天天躁夜夜躁狠狠躁躁| 搡老乐熟女国产| 狠狠婷婷综合久久久久久88av| 免费在线观看影片大全网站| √禁漫天堂资源中文www| 俄罗斯特黄特色一大片| 国产一级毛片在线| svipshipincom国产片| 最近中文字幕2019免费版| 超碰97精品在线观看| 亚洲avbb在线观看| 黑丝袜美女国产一区| 蜜桃国产av成人99| 多毛熟女@视频| 国产有黄有色有爽视频| 女人被躁到高潮嗷嗷叫费观| 男女国产视频网站| 天堂中文最新版在线下载| 亚洲全国av大片| 国产人伦9x9x在线观看| 亚洲欧美精品自产自拍| 18禁观看日本| 精品第一国产精品| 91av网站免费观看| 三上悠亚av全集在线观看| 国产精品一区二区在线不卡| 亚洲国产精品一区二区三区在线| 成人国产一区最新在线观看| 精品第一国产精品| 精品福利永久在线观看| 男女午夜视频在线观看| 看免费av毛片| 国产黄色免费在线视频| 国产xxxxx性猛交| 亚洲av成人一区二区三| 亚洲熟女精品中文字幕| 在线永久观看黄色视频|