• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Autonomous map query: robust visual localization in urban environments using Multilayer Feature Graph*

    2015-02-15 02:19:18LiHaifeng李海豐WangHongpengLiuJingtai
    High Technology Letters 2015年1期
    關(guān)鍵詞:海豐

    Li Haifeng (李海豐), Wang Hongpeng, Liu Jingtai

    (*College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, P.R.China)(**Insititute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, P.R.China)

    ?

    Autonomous map query: robust visual localization in urban environments using Multilayer Feature Graph*

    Li Haifeng (李海豐)*, Wang Hongpeng***, Liu Jingtai**

    (*College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, P.R.China)(**Insititute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, P.R.China)

    When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization by registering ground images to a 2D building boundary map which is generated from aerial images. Multilayer feature graphs (MFG) is employed to model building facades from the ground images. MFG was reported in the previous work to facilitate the robot scene understanding in urban areas. By constructing MFG, the 2D/3D positions of features can be obtained, including line segments, ideal lines, and all primary vertical planes. Finally, a voting-based feature weighted localization method is developed based on MFGs and the 2D building boundary map. The proposed method has been implemented and validated in physical experiments. In the proposed experiments, the algorithm has achieved an overall localization accuracy of 2.2m, which is better than commercial GPS working in open environments.

    visual localization, urban environment, multilayer feature graph(MFG), voting-based method

    0 Introduction

    Localization is a key component in many mobile robot applications. GPS is popularly used for location-awareness. However the measurement error of low-cost GPS sensors for civil services may be up to tens of meters. Especially when working in an urban area, the GPS signal may be disrupted by high-rise buildings and becomes more unreliable. When a mobile robot equipped with a GPS sensor is traveling in urban environments, it can only obtain the inaccurate GPS data, which can only provide the robot with a rough location region in the 2D map, as shown in Fig.1, where the dashed circle represents the potential location region obtained from inaccurate GPS data, triangleAin Fig.1(b) from multi-pair of camera frames taken at two different locations ofAandBin succession, given the inaccurate GPS data and a 2D top-down view building boundary map which is extracted from Google Maps in our experiments. Thus, it is needed to further determine the accurate location of robotAwith the aid of other sensors. As cameras become small and cheap, the focus in this work is to develop an accurate visual localization method for mobile robots working in urban environments.

    Fig.1 Estimating camera location

    Ref.[1] reported MFG to facilitate the robot scene understanding in urban area. MFG also connects the features in two views and the corresponding 3D coordinate system. An MFG is constructed from overlapping and dislocated two views and contains five different features ranging from raw key points to planes and vanishing points in 3D. By constructing MFG, the 2D/3D positions of features can be obtained including line segments, ideal lines, and all primary vertical planes.

    It is an immediate application to employ MFG for localization applications. In this paper, MFG is applied to robot localization, given a 2D map with building outlines in top-down view with no 3D geometric information or appearance data. The 2D building outline map is extracted from Google Maps in our experiments. The proposed method has been implemented and validated in physical experiments. The localization error of the proposed algorithm in physical experiments is around 2m.

    1 Related work

    Visual localization[2,3]utilizes images taken from on-board camera(s) to estimate the robot location. The ability of accurate localization is an essential building block of robot navigation[4]and simultaneous localization and mapping (SLAM)[5].

    Visual localization can have different camera configurations including omnidirectional camera and stereo vision systems. In Ref.[6], a fast indoor SLAM method using vertical lines from an omnidirectional camera was proposed. Nister et al. developed a visual odometry system to estimate the ego-motion of a stereo head[7]. In the proposed method, a regular pinhole camera is employed.

    A way of classifying visual localization methods is based on what kinds of features are used. Point features, such as Harris corners, scale invariant feature translation (SIFT)[8], and speed up robust feature (SURF) points[9]are the most popular and reliable ones. Many researchers developed their point feature-based visual localization methods[10,11]. However, compared with line features, point features usually contain more noise and result in high computation cost due to their large amount. Line features are easy to extract[12]more robust, and insensitive to lighting condition or shadows. Therefore, many visual localization applications employed line features and achieved quite accurate results[13-15]. Several recent works[16,17]reconstructed building facades to localize robots in urban scenes. Delmerico[18]proposed a method to determine a set of candidate planes by sampling and clustering points from stereo images with random sample consensus (RANSAC), using local normal estimates derived from principal component analysis (PCA) to inform the planar model. This method is a point-based method whose shortcomings have been discussed above. Cham[17]tried to identify vertical corner edges of buildings as well as the neighboring plane normals from a single ground-view omnidirectional image to estimate the camera pose from a 2D plan-view building outline map. However, this method is not robust for plane analysis due to missing vertical hypotheses. Those methods provide the inspiration that planes are important and robust features to be extracted in reconstruction and localization. Furthermore, a very recent work[18]developed a footprint orientation (FPO) descriptor, which is computed from an omnidirectional image, to match in 2D urban terrain model that is generated from aerial imagery to estimate the position and orientation of a camera.

    A number of papers have addressed the problem of matching ground view images to aerial images[19], but they assume that 3D models in the aerial image are available, and focus on specific buildings rather than a broad search across the entire aerial image. Tracking using line correspondences between ground view video and an aerial image was carried out in Ref.[3].

    The research group has worked on robot navigation using passive vision system in past years. A vertical line-based method for visual localization tasks[15]has been developed. In recent work[1], an multilayer feature graph (MFG) was reported to facilitate the robot scene understanding in urban area. Nodes of an MFG are features such as SIFT feature points, line segments, lines, and planes while edges of the MFG represented different geometric relationships such as adjacency, parallelism, collinearity, and coplanarity. MFG also connects the features in two views and the corresponding 3D coordinate system. The localization method based on MFGs will be shown.

    2 System architecture and problem definition

    2.1 System architecture and assumptions

    Fig.2 illustrates the system architecture. The proposed approach consists of off-line map generation and on-line robot localization. There are two main steps in off-line map generation: (1) Extracting an aerial image where the robot locates from the aerial image database based on the inaccurate GPS data, and (2) Generating a 2D map from the aerial image. On-line robot localization consists of three main steps: (1) Constructing MFG from each pair of overlapped camera images; (2) Conducting the perspective projection to obtain the 2D building facade outlines with line features on them from the top-down view; and (3) Estimating the robot location using a voting-based method based on the 2D map and the MFGs after perspective projection. These steps are illustrated in Fig.2 and each step is described in detail in the following sections.

    Fig.2 System architecture

    To formulate the problem and focus on the most relevant issues, the following assumptions are developed.

    ? The 2D map is up-to-date.

    ? The intrinsic parameters of the finite perspective camera are known by pre-calibration. The lens distortion has been removed.

    ? The robot knows its relative movements between places where two views are taken, which can be achieved with on-board inertial sensors or wheel encoders. These sensors are good at short distance measurement. This assumption is for the construction of MFG.

    2.2 Problem definition

    In this paper, all the coordinate systems are right hand systems. The superscript denotes the corresponding notation in the second view. For example, notations in the format of (a,a′)refertoapairofcorrespondingfeaturesacrosstwoviews.

    ?Define{W}asa3DCartesianworldcoordinatesystem(WCS)withitsx-zplanehorizontalandy-axispointingupwards.

    ?Define{C}and{C′}astwo3DCartesiancameracoordinatesystems(CCS)atthefirstandsecondviews,respectively.ForeachCCS,itsoriginisatthecameraopticalcenter,itsz-axiscoincideswiththeopticalaxisandpointstotheforwarddirectionofthecamera,itsx-axisandy-axisareparalleltothehorizontalandverticaldirectionsoftheCCDsensorplane,respectively.

    ?Define{I}and{I′}astwo2Dimagecoordinatesystems(ICS)atthefirstandsecondviews,respectively.ForeachICS,itsoriginisattheprincipalpointanditsu-axisandv-axisareparalleltoxandyaxesof{C},respectively.

    ? DefineXas the estimated robot location in {W}whentakingF.DenoteX=[x,z]T, where (x,z)istherobotlocationonthex-zplaneof{W}.

    Withthesenotationsdefined,definitionisthefollowing.

    Definition 1. MFG-based Localization: GivenFandF′,theinaccurateGPSdataanda2Dbuildingboundarymapfromtop-downview,constructMFGstoestimateX.

    3 Approach

    3.1 Aerial image extraction and map generation

    The publicly available Google Maps are chosen as the proposed aerial image database. Based on the GPS data, it can be easily to obtain the aerial image where the robot locates from the database.

    Fig.3 Visibility of building facades in a 2D map

    3.2 Multilayer feature graph construction

    Since the proposed visual localization algorithm is based on MFGs, it will be to start with a brief review of MFG, which was firstly presented in the previous work[1]. Fig.4 illustrates how MFG organizes different types of features according to their geometric relationships. MFG is a data structure consisting of five layers of features, i.e., key points, line segments, ideal lines, vertical planes and vanishing points. Edges between nodes of different layers represent geometric relationships such as adjacency, collinearity, coplanarity, and parallelism. MFG also connects the features in two views and the corresponding 3D coordinate system.

    Fig.4 The structure of an MFG

    In an MFG, key points and line segments are raw features extracted from images using methods like SIFT[8]and line segment detector (LSD)[12], while other layers of features are estimated based on them. In Ref.[1], a feature fusion algorithm is presented to construct an MFG based on two views by verifying the geometric relationships incrementally, iteratively, and extensively. As an important part of MFG, the algorithm is able to detect all primary vertical planes and line features in them with a reasonable accuracy. In this work, the localization application using MFGs will be focused on.

    3.3 Perspective projection

    Since the building boundary map obtained from the aerial image is a 2D map, it also needs to project MFGs to the 2D ground plane to prepare for the following matching. The vertical planes in MFG are parallel toy-axisin{W} (andthereforealsothegroundplanenormal),thus,theproblemreducestoa1Dperspectiveprojection.

    Fig.5 Perspective projection of an MFG

    3.4 Feature-weighted localization using a single MFG

    After the perspective projection step, the localization problem using a single MFG converts into matchingPintoMtofindtheaccuratecameralocationX.

    Fig.6 An illustration of matching evaluation

    (1)

    (2)

    l+is defined as an index set for li∈Psuch that ?i∈l+, lihas at least one correspondence inMh.Similarly, l-is defined as an index set for lj∈Psuch that ?j∈l-, ljhas no correspondence inM.

    (3)

    In Eq.(3), the first two terms are to evaluate the overlapping between horizontal/vertical line segments inPandbuildingboundariesinM,andthelasttermistodemonstratethecasethatthereisnobuildingboundaryinMcorrespondingtoverticalplaneπb.

    Therefore,thelocalizationproblemusingasingleMFGbasedonthemapquerycanbeconvertedintothefollowingoptimizationproblem,

    (4)

    TheaboveoptimizationproblemcanbesolvedusingtheLevenberg-Marquardtalgorithm[21].

    Bynow,thecameralocationcanbeobtainedfromanMFGanda2Dbuildingboundarymapbysolvingtheaboveoptimizationproblem.However,thismethodcannotguaranteethecorrectnessofsolution.Inthe2DbuildingboundarymapM,ifthereexistmorethanonegroupofsimilarbuildingboundariesthatcanmatchwithP,maximizingEq.(4)directlymayleadtothewrongsolution.ThecasewillhappenmorelikelywhenthenumberofverticalplanesinPissmall.Tosolvethisproblem,avoting-basedcamerapositionestimationmethodisproposedasfollows.

    3.5Voting-basedlocalizationusingmultipleMFGs

    Inthevoting-basedlocalizationstage,first,the2DbuildingboundarymapisdividedintoaNa×NagridGanddefineazero-initializedNa×NaaccumulatorarrayAcccorrespondingly.Denote(xi,zj)asthecenterofG(i,j).Intheproposedvoting-basedmethod,eachMFGdoesnotonlydetermineonesolutionfromEq.(4).Instead,eachMFGcanprovidemultiplecandidatesolutions.TraverseG,andsetG(i,j)asacandidatesolutionregionif

    (5)

    wherefmaxisthemaximumvalueobtainedfromEq.(4),Trisaspecificratiothreshold,and

    Correspondingly,Acc(i,j)incrementsby1ifG(i,j)isselectedtobeacandidatesolutionregion.Inordertoobtainthecorrectandoptimalcameraposition,thecombinationofcandidatesolutionswiththebestconsensusobtainedfromdifferentMFGsmustbedetermined.Thus,thecandidatesolutionregionwiththelargestscore(numberinAcc)isselectedasthecorrectsolutionregion.ThefinaloptimalsolutionisdeterminedbasedonEq.(4),andtheonlydifferenceisthatmultipleMFGsareutilizedhereandthesearchingregioniswithinthesub-regionwiththelargestscore.

    Theproposedvoting-basedcamerapositionestimationmethodusingmultipleMFGsisdescribedasAlgorithm1.

    4 Experiments

    The proposed visual localization method has been implemented by using Matlab 2008b on a laptop PC. In the physical experiments, a BenQ DCE1035 camera with a resolution of 1095×821 pixels is used. It is to run 7 tests (Ai,Bi),i=1,…,7onauniversitycampus,asshowninFig.7,wherepointsAi,i=1,…,7denotethefirstpositionsineachtesttotakepictures,respectively,andpointsBi,i=1,…,7arethesecondpositionstocapturepictures,respectively.Forthefivetests(A1,B1)-(A5,B5), 4pairsofcameraframesaretakenwithsignificantoverlappingineachtest.Fortheothertwotests(A6,B6)and(A7,B7), 3pairsofcameraframesaretakenineachtest.Thebaselinedistancebetweentwopositionsineachtestismeasuredwithatapemeasure.Theorientationsettingsofthecameraaresettoensureagoodoverlappingbetweeneachpairofimages.Inordertodeterminethegroundtruthofcamerapositions,therelativedistancesfromthecameracentertothesurroundingbuildingfacadesaremeasuredusingaBOSCHGLR225laserdistancemeasurerwitharangeupto70mandmeasurementaccuracyof±1.5mm.ConsideringthelocalizationerrorofGPSinurbanenvironments,thewholesearchingregionissettobe150m×150m,centeredatGPSdata.Gissettobe60×60,withthesizeofeachsub-regionbeing2.5m×2.5m.ThresholdTrissettobe0.7.

    Fig.7 Positions and orientations of camera in 7 tests

    4.1 MFG construction results

    Table 1 Percentile relative errors of the reconstructed 3D points

    Table 1 gives a sample output where the MFG construction algorithm has identified vertical planes in the images, which results in the different numbers of vertical planes for the image pairs in test (A1,B1).Therelativeerrorsofpointsonplanesarereasonablysmallwhichindicatesthattheestimatedplanesarereasonablyaccurate.

    4.2Voting-basedlocalizationresults

    Toinformallyevaluatetheeffectivenessofourvoting-basedlocalizationmethod,solutionuniquenessisinspectedbyvisualizingscoresina2Drobot-positionversionoftheaccumulatorarray.AnexampleresultisshowninFig.8.Givenonlyonebinwiththehighestscore,itisevidentthatfinalsolutionisunique.

    Fig.8 Example distribution of camera position scores in a 2D position version of the accumulator array, with 2D map overlay. Arrow shows ground truth position.

    The MFG-based localization method is compared with the line-based method[15]. Table 2 shows the localization errors using the two methods, respectively. From the table we can conclude that, both methods can localize the camera correctly in all tests. The localization errors of the MFG-based method are obviously smaller than those of line-based method. And in comparison with the ground truth, all the localization errors using the proposed MFG-based method are no more than 2.8m, and the average error is 2.2m. This result is superior to that of the standard positioning service by GPS. The localization error is caused by many factors, such as MFG construction error and map generation error.

    Table 2 Comparison of localization errors between MFG-based and line-based methods

    5 Conclusions

    A robust visual localization method is reported based on MFGs and a 2D top-down view building boundary map. By constructing MFGs from camera frames, the 2D/3D positions of multiple features, including line segments, ideal lines, and all primary vertical planes are obtained. A voting-based map query method has been proposed to find the accurate location of camera in the 2D map. The localization method has been implementedand tested in the physical experiments. Results showed that the localization error of the proposed method is around 2m, which is better than commercial GPS working in open environments. More experiments will be done in the following, and it is also planed to integrate the proposed approach with other localization methods and sensors.

    [1] Li H F, Song D Z, Lu Y, et al. A two-view based multilayer feature graph for robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, USA, 2012. 3580-3587

    [2] Royer E, Lhuillier M, Dhome M, et al. Monocular vision for mobile robot localization and autonomous navigation.InternationalJournalofComputerVision, 2007, 74(3): 237-260

    [3] Leung K, Clark C, Huissoon J. Localization in urban environments by matching ground level video images with an aerial image. In: Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, USA, 2008. 551-556

    [4] Song D Z, Lee H, Yi J G. On the analysis of the depth error on the road plane for monocular vision-based robot navigation. In: Proceedings of the 8th International Workshop on the Algorithmic Foundations of Robotics, Guanajuato, Mexico, 2008. 301-315

    [5] Davison A, Reid I, Molton N, et al. Monoslam: Realtime single camera slam.IEEETransactionsonPatternAnalysisandMachineIntelligence, 2007, 29(6): 1052-1067

    [6] Wongphati M, Niparnan N, Sudsang A. Bearing only Fast-SLAM using vertical line information from an omnidirectional camera. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009. 1188-1193

    [7] Nister D, Naroditsky O, Bergen J. Visual odometry for ground vehicle applications.JournalofFieldRobotics, 2006, 23(1): 3-20

    [8] Lowe D. Distinctive image features from scale-invariant keypoints.InternationalJournalofComputerVision, 2004, 60(2): 91-110

    [9] Bay H, Tuytelaars T, Van G L. Surf: Speeded up robust features. In: Proceedings of European Conference on Computer Vision, Graz, Austria, 2006. 404-417

    [10] Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001. 2051-2058

    [11] Wolf J, Burgard W, Burkhardt H. Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization.IEEETransactionsonRobotics, 2005, 21(2): 208-216

    [12] Gioi R V, Jakubowicz J, Morel J, et al. LSD: A fast line segment detector with a false detection control.IEEETransactionsonPatternAnalysisandMachineIntelligence, 2010, 32(4): 722-732

    [13] Lemaire T, Lacroix S. Monocular-vision based SLAM using line segments. In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007. 2791-2796

    [14] Elqursh A, Elgammal A. Line-based relative pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Colorado Springs, USA, 2011. 3049-3056

    [15] Li H F, Liu J T, Lu X. Visual localization in urban area using orthogonal building boundaries and a GIS database.ROBOT, 2012, 34(5): 604-613

    [16] Delmerico J, David P, Adelphi M, et al. Building fa?ade detection, segmentation, and parameter estimation for mobile robot localization and guidance. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. 1632-1639

    [17] Cham T, Ciptadi A, Tan W, et al. Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 366-373

    [18] David P, Ho S. Orientation descriptors for localization in urban environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. 494-501

    [19] Lee S, Jung S, Nevatia R. Automatic pose estimation of complex 3d building models. In: Proceedings of the 6th IEEE Workshop on App of Computer Vision, Orlando, USA, 2002. 148-152

    [20] Li H F, Xiang J L, Liu J T. An automatic building extraction method from high resolution satellite image. In: Proceedings of the China Control Conference, Hefei, China, 2012. 4884-4889

    [21] More J. The Levenberg-Marquardt algorithm: implementation and theory.Numericalanalysis, 1978, 630: 105-116

    Li Haifeng, born in 1984. He is the lecture of Civil Aviation University of China. He received his Ph.D degree in Institute of Robotics and Automatic Information System of Nankai University in 2012. He also received his B.S. degree from Nankai University in 2007. His research interests include robot navigation and computer vision.

    10.3772/j.issn.1006-6748.2015.01.005

    *Supported by the National High Technology Research and Development Program of China (No. 2012AA041403), National Natural Science Foundation of China (No. 60905061, 61305107), the Fundamental Research Funds for the Central Universities (No. ZXH2012N003), the Scientific Research Funds for Civil Aviation University of China (No. 2012QD23x).

    *To whom correspondence should be addressed. E-mail: wanghp@robot.nankai.edu.cn; lihf_cauc@126.comReceived on Apr. 25, 2013

    猜你喜歡
    海豐
    海豐國際
    Accurate prediction of the critical heat flux for pool boiling on the heater substrate
    阿什河哈爾濱段水質(zhì)評(píng)價(jià)
    海豐古驛道歷史遺存修繕設(shè)計(jì)的思考
    新海豐集裝箱運(yùn)輸有限公司船期表
    新海豐集裝箱運(yùn)輸有限公司船期表
    新海豐集裝箱運(yùn)輸有限公司船期表
    新海豐集裝箱運(yùn)輸有限公司船期表
    新海豐集裝箱運(yùn)輸有限公司船期表
    新海豐集裝箱運(yùn)輸有限公司船期表
    热99国产精品久久久久久7| 人妻制服诱惑在线中文字幕| 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 欧美成人a在线观看| 成年免费大片在线观看| 国产伦理片在线播放av一区| 成人毛片a级毛片在线播放| 成人国产麻豆网| 亚洲精品久久午夜乱码| 一级av片app| 美女中出高潮动态图| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片 | 欧美日韩一区二区视频在线观看视频在线| 高清日韩中文字幕在线| 我要看黄色一级片免费的| 国产欧美日韩一区二区三区在线 | 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 美女高潮的动态| 97超碰精品成人国产| 男女边摸边吃奶| 国产亚洲欧美精品永久| 国产 精品1| 欧美97在线视频| 欧美日韩一区二区视频在线观看视频在线| 一级片'在线观看视频| 免费观看的影片在线观看| 尤物成人国产欧美一区二区三区| 日本免费在线观看一区| 国产成人精品婷婷| 久久人人爽人人片av| 国产av一区二区精品久久 | 成人无遮挡网站| 中文字幕免费在线视频6| 亚洲最大成人中文| 亚洲美女视频黄频| 亚洲国产最新在线播放| 涩涩av久久男人的天堂| 人妻夜夜爽99麻豆av| 国产精品人妻久久久影院| 一本久久精品| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 久久这里有精品视频免费| 身体一侧抽搐| 91久久精品国产一区二区三区| 国产 精品1| 日韩一区二区视频免费看| av网站免费在线观看视频| 国产成人精品婷婷| a级毛色黄片| 中文资源天堂在线| 日本av免费视频播放| 嫩草影院入口| 成人二区视频| 亚洲,欧美,日韩| 街头女战士在线观看网站| 久久ye,这里只有精品| 少妇 在线观看| 免费看不卡的av| 成人毛片a级毛片在线播放| 国产精品三级大全| 久久精品久久久久久久性| 中国美白少妇内射xxxbb| 精品亚洲乱码少妇综合久久| h日本视频在线播放| 国产精品秋霞免费鲁丝片| 欧美成人a在线观看| 国产乱人偷精品视频| 成人亚洲精品一区在线观看 | 精品一区二区三区视频在线| kizo精华| 久久精品久久久久久噜噜老黄| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美 | 日日摸夜夜添夜夜添av毛片| 亚洲精品乱码久久久久久按摩| 国产亚洲午夜精品一区二区久久| 麻豆乱淫一区二区| 综合色丁香网| av一本久久久久| 97精品久久久久久久久久精品| 成人综合一区亚洲| 日日啪夜夜撸| 天美传媒精品一区二区| 亚洲人成网站在线播| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 久久久久网色| 国产成人一区二区在线| 草草在线视频免费看| 大片免费播放器 马上看| 国产在线一区二区三区精| 全区人妻精品视频| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 亚洲人成网站在线观看播放| 黄片wwwwww| 校园人妻丝袜中文字幕| 热99国产精品久久久久久7| 国产乱来视频区| 欧美日韩亚洲高清精品| 夜夜爽夜夜爽视频| 人人妻人人爽人人添夜夜欢视频 | 99久久人妻综合| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 日韩制服骚丝袜av| 一级毛片 在线播放| 日韩制服骚丝袜av| 久久久成人免费电影| 噜噜噜噜噜久久久久久91| 国产免费视频播放在线视频| 国产精品99久久99久久久不卡 | 国产精品国产三级专区第一集| 七月丁香在线播放| 欧美一区二区亚洲| 色婷婷久久久亚洲欧美| 九九爱精品视频在线观看| 色网站视频免费| 国产一区亚洲一区在线观看| 久久久久性生活片| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 免费看日本二区| 网址你懂的国产日韩在线| 亚州av有码| 最近的中文字幕免费完整| 欧美+日韩+精品| 亚洲欧洲国产日韩| 日韩 亚洲 欧美在线| 熟女av电影| 亚洲真实伦在线观看| 久久6这里有精品| 涩涩av久久男人的天堂| 亚洲精品,欧美精品| 久久 成人 亚洲| 国产高清三级在线| 免费观看a级毛片全部| 91精品伊人久久大香线蕉| 久久久久久久亚洲中文字幕| 只有这里有精品99| 精品久久久精品久久久| 日韩成人伦理影院| 日本vs欧美在线观看视频 | a级一级毛片免费在线观看| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 日韩在线高清观看一区二区三区| 日本午夜av视频| 日韩欧美精品免费久久| 成年女人在线观看亚洲视频| 美女主播在线视频| 国产精品99久久99久久久不卡 | 在线播放无遮挡| 日韩伦理黄色片| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 少妇人妻久久综合中文| 午夜福利影视在线免费观看| 久久久欧美国产精品| 日韩中字成人| 简卡轻食公司| 久久久久久久久久久免费av| 九色成人免费人妻av| 成年免费大片在线观看| 亚洲欧美一区二区三区黑人 | 香蕉精品网在线| 插逼视频在线观看| 一级毛片电影观看| 中文字幕人妻熟人妻熟丝袜美| av网站免费在线观看视频| 免费观看性生交大片5| 国产高清三级在线| 黄片wwwwww| 热99国产精品久久久久久7| 久久av网站| 日本vs欧美在线观看视频 | 亚洲av男天堂| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 久久精品久久久久久久性| 最近中文字幕2019免费版| a级毛片免费高清观看在线播放| 中文字幕亚洲精品专区| 91午夜精品亚洲一区二区三区| 免费大片18禁| 美女中出高潮动态图| av免费观看日本| 日韩欧美精品免费久久| 国产在线视频一区二区| 多毛熟女@视频| 免费观看a级毛片全部| 丰满少妇做爰视频| 欧美激情国产日韩精品一区| 免费久久久久久久精品成人欧美视频 | 毛片一级片免费看久久久久| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 亚洲欧美一区二区三区国产| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 老司机影院毛片| 国产视频首页在线观看| 亚洲第一av免费看| 国产精品av视频在线免费观看| 男人爽女人下面视频在线观看| 黄色配什么色好看| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| 成人毛片60女人毛片免费| 欧美日韩视频高清一区二区三区二| 国产高清三级在线| 亚洲美女视频黄频| 美女视频免费永久观看网站| 亚洲精品视频女| 好男人视频免费观看在线| 欧美高清成人免费视频www| 一级毛片 在线播放| 日本黄色片子视频| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 一级毛片aaaaaa免费看小| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 中文天堂在线官网| 国内精品宾馆在线| 黑丝袜美女国产一区| 日韩强制内射视频| 美女中出高潮动态图| 97在线人人人人妻| 在线观看一区二区三区| 成年免费大片在线观看| 久久精品人妻少妇| 久久久久网色| 欧美三级亚洲精品| 成人无遮挡网站| 国产精品99久久久久久久久| av又黄又爽大尺度在线免费看| 亚洲精品日本国产第一区| 观看免费一级毛片| 人人妻人人澡人人爽人人夜夜| 男女下面进入的视频免费午夜| 亚洲,一卡二卡三卡| 干丝袜人妻中文字幕| a级一级毛片免费在线观看| 这个男人来自地球电影免费观看 | 中文字幕久久专区| 三级国产精品欧美在线观看| 国产精品三级大全| 一级黄片播放器| 亚洲精品一二三| 午夜日本视频在线| 成人漫画全彩无遮挡| 国产精品久久久久久精品古装| 黄色配什么色好看| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| 全区人妻精品视频| 能在线免费看毛片的网站| 国产探花极品一区二区| 中国国产av一级| 男人添女人高潮全过程视频| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 黄片无遮挡物在线观看| 三级国产精品片| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 在线天堂最新版资源| 久久6这里有精品| 91精品一卡2卡3卡4卡| 自拍欧美九色日韩亚洲蝌蚪91 | 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 成人一区二区视频在线观看| 国产欧美另类精品又又久久亚洲欧美| av在线app专区| 美女主播在线视频| 香蕉精品网在线| 日产精品乱码卡一卡2卡三| 成年人午夜在线观看视频| 亚洲av二区三区四区| 色视频在线一区二区三区| 人妻 亚洲 视频| 十分钟在线观看高清视频www | 国产成人a区在线观看| 男女下面进入的视频免费午夜| 成年免费大片在线观看| 在线观看免费日韩欧美大片 | 亚洲四区av| h日本视频在线播放| 久久久久久久精品精品| 国产伦在线观看视频一区| 久久久精品94久久精品| 赤兔流量卡办理| 亚洲av福利一区| 97在线人人人人妻| 99热网站在线观看| 久久久久久久久久久丰满| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 毛片女人毛片| 亚洲欧美一区二区三区黑人 | 欧美一级a爱片免费观看看| 少妇人妻久久综合中文| 新久久久久国产一级毛片| 视频区图区小说| 成人二区视频| 哪个播放器可以免费观看大片| 亚洲精品第二区| 国产免费一级a男人的天堂| 婷婷色综合www| 久久久久久久久久人人人人人人| 成人无遮挡网站| 久久久久久久久久久免费av| 六月丁香七月| 一个人看的www免费观看视频| av国产精品久久久久影院| 亚洲精华国产精华液的使用体验| 男女国产视频网站| 蜜桃在线观看..| 久久久精品94久久精品| kizo精华| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 夫妻午夜视频| 国产午夜精品一二区理论片| 久久精品国产亚洲av涩爱| 亚洲国产精品一区三区| 国产成人一区二区在线| 成人漫画全彩无遮挡| 少妇的逼水好多| 少妇的逼好多水| 中文字幕久久专区| 精品久久国产蜜桃| 午夜视频国产福利| 在线观看国产h片| 国产在线男女| 成人18禁高潮啪啪吃奶动态图 | 美女高潮的动态| 亚洲真实伦在线观看| 亚洲精品成人av观看孕妇| 91午夜精品亚洲一区二区三区| a 毛片基地| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 久久国产精品大桥未久av | 老师上课跳d突然被开到最大视频| 亚洲怡红院男人天堂| 中文字幕制服av| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 婷婷色综合大香蕉| 久久久久久人妻| 亚洲欧洲国产日韩| 涩涩av久久男人的天堂| 五月玫瑰六月丁香| 精品一品国产午夜福利视频| 男女国产视频网站| 91狼人影院| 99九九线精品视频在线观看视频| 在线播放无遮挡| 亚洲av电影在线观看一区二区三区| 另类亚洲欧美激情| 天堂8中文在线网| 国产伦在线观看视频一区| 青青草视频在线视频观看| 久久av网站| 人人妻人人添人人爽欧美一区卜 | 男女国产视频网站| 国产成人一区二区在线| 国精品久久久久久国模美| 精品酒店卫生间| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区 | 两个人的视频大全免费| 国产黄色视频一区二区在线观看| 久久99精品国语久久久| 久热久热在线精品观看| 亚洲av成人精品一二三区| 国产在线一区二区三区精| 国产精品一及| 免费人成在线观看视频色| 国产亚洲午夜精品一区二区久久| 中文资源天堂在线| 日日摸夜夜添夜夜爱| 国产黄片美女视频| 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 一区在线观看完整版| 99热这里只有精品一区| 亚洲综合色惰| 美女中出高潮动态图| 欧美少妇被猛烈插入视频| 熟女av电影| 久久青草综合色| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 欧美亚洲 丝袜 人妻 在线| 亚洲av综合色区一区| 26uuu在线亚洲综合色| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 国产伦在线观看视频一区| 欧美zozozo另类| av天堂中文字幕网| 在现免费观看毛片| 男人舔奶头视频| 51国产日韩欧美| 身体一侧抽搐| 亚洲欧美清纯卡通| 免费黄色在线免费观看| 妹子高潮喷水视频| 亚洲欧美精品专区久久| 久久精品国产亚洲网站| 亚洲av日韩在线播放| 亚洲高清免费不卡视频| 国产毛片在线视频| 舔av片在线| 久久久欧美国产精品| 黑人猛操日本美女一级片| 午夜视频国产福利| 麻豆国产97在线/欧美| videos熟女内射| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 高清视频免费观看一区二区| 97在线视频观看| 免费少妇av软件| 亚洲av男天堂| 内地一区二区视频在线| 一区在线观看完整版| 国产精品一二三区在线看| 男女边摸边吃奶| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 免费大片黄手机在线观看| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 亚洲国产欧美在线一区| 在线观看人妻少妇| 精品一区二区免费观看| 99热这里只有精品一区| 看非洲黑人一级黄片| 一级av片app| 少妇丰满av| 亚洲av不卡在线观看| 亚洲天堂av无毛| 日日啪夜夜爽| 色哟哟·www| 亚洲,欧美,日韩| 一区二区三区免费毛片| 久久精品久久久久久噜噜老黄| 美女福利国产在线 | 国产有黄有色有爽视频| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三卡| 国产精品人妻久久久影院| videos熟女内射| 草草在线视频免费看| 亚洲精品国产av蜜桃| 欧美日韩在线观看h| 午夜激情福利司机影院| 久久热精品热| 久久久久网色| 寂寞人妻少妇视频99o| 国产亚洲精品久久久com| 成人亚洲欧美一区二区av| 在线观看免费高清a一片| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 久热这里只有精品99| 男女边吃奶边做爰视频| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区| 街头女战士在线观看网站| 又爽又黄a免费视频| 成人特级av手机在线观看| 黄色一级大片看看| 女性被躁到高潮视频| 日本av免费视频播放| 观看免费一级毛片| 偷拍熟女少妇极品色| 欧美区成人在线视频| 人妻少妇偷人精品九色| 又大又黄又爽视频免费| 午夜免费观看性视频| 高清不卡的av网站| 久久久久久九九精品二区国产| 18禁动态无遮挡网站| 一本色道久久久久久精品综合| 中文资源天堂在线| 最近手机中文字幕大全| 在线免费观看不下载黄p国产| 亚洲欧美成人综合另类久久久| 成年女人在线观看亚洲视频| 日日摸夜夜添夜夜爱| 永久免费av网站大全| 特大巨黑吊av在线直播| 日韩av免费高清视频| 伊人久久精品亚洲午夜| 成年人午夜在线观看视频| av国产免费在线观看| 一级爰片在线观看| 免费观看性生交大片5| 男女免费视频国产| 美女视频免费永久观看网站| 啦啦啦在线观看免费高清www| 国产成人freesex在线| 在线 av 中文字幕| 亚洲成人中文字幕在线播放| 男人添女人高潮全过程视频| 久久6这里有精品| 91久久精品电影网| 九九爱精品视频在线观看| 欧美另类一区| 黑丝袜美女国产一区| 三级国产精品片| 日韩大片免费观看网站| 亚洲国产精品999| 免费观看的影片在线观看| 国产 一区精品| 日韩视频在线欧美| 久久 成人 亚洲| 久久久亚洲精品成人影院| 成年av动漫网址| a级毛片免费高清观看在线播放| .国产精品久久| 99热6这里只有精品| 久久久久久伊人网av| 人妻一区二区av| 热99国产精品久久久久久7| av国产免费在线观看| h视频一区二区三区| 欧美成人a在线观看| 日日啪夜夜撸| 亚洲国产毛片av蜜桃av| av在线播放精品| 日韩人妻高清精品专区| 97在线人人人人妻| 一级毛片久久久久久久久女| 天堂中文最新版在线下载| 女的被弄到高潮叫床怎么办| 亚洲国产欧美人成| 99精国产麻豆久久婷婷| 超碰97精品在线观看| 国产国拍精品亚洲av在线观看| 亚洲色图av天堂| 日韩一区二区三区影片| 亚洲精品色激情综合| 伊人久久精品亚洲午夜| 欧美精品亚洲一区二区| 亚洲av男天堂| 不卡视频在线观看欧美| 丝袜脚勾引网站| 国产精品av视频在线免费观看| 欧美老熟妇乱子伦牲交| 色婷婷久久久亚洲欧美| 成人国产麻豆网| 91精品一卡2卡3卡4卡| av不卡在线播放| 国内揄拍国产精品人妻在线| 18+在线观看网站| 国产在视频线精品| 日韩中字成人| 国产精品人妻久久久久久| 国产亚洲精品久久久com| 久久精品国产自在天天线| 欧美高清成人免费视频www| 大香蕉97超碰在线| 欧美bdsm另类| 97超碰精品成人国产| 一本一本综合久久| 99热国产这里只有精品6| 赤兔流量卡办理| 国产亚洲精品久久久com| 国内揄拍国产精品人妻在线| 日韩成人伦理影院| 成年人午夜在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 欧美激情国产日韩精品一区| 熟女人妻精品中文字幕| 中国三级夫妇交换| 亚洲中文av在线| 久久精品久久久久久久性| 精品久久国产蜜桃| 全区人妻精品视频| 久久久久久久国产电影| 国产视频首页在线观看| 国产成人精品久久久久久| 久久精品国产a三级三级三级| 色视频在线一区二区三区|