• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update*

    2015-02-15 02:30:46HuZhentao胡振濤FuChunlingCaoZhiweiLiCongcong
    High Technology Letters 2015年1期

    Hu Zhentao (胡振濤), Fu Chunling, Cao Zhiwei, Li Congcong

    (*Instituteof Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**School of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China)

    ?

    Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update*

    Hu Zhentao (胡振濤)*, Fu Chunling***, Cao Zhiwei*, Li Congcong*

    (*Instituteof Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**School of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China)

    Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target. Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method, a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed. Firstly, aiming to the structural features of cubature Kalman filter, the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update. Secondly, the improved cubature Kalman filter is used as the model filter of interacting multiple model, and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step. In the simulations, compared with classic improved interacting multiple model algorithms, the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.

    maneuvering target tracking, nonlinear filtering, cubature Kalman filter(CKF), interacting multiple model(IMM)

    0 Introduction

    Target tracking is used by subjects that realize a process of state modeling, estimation and tracking about the objects observed by means of various observation and calculation methods. As an emerging technique, target tracking is widely applied to the military, civilian and economic fields[1]. Target tracking is classified to maneuvering target tracking and non-maneuvering target tracking by the type and intensity of motions. In the maneuvering case, owing to the variety and complexity of target motion features, it is difficult to describe precisely the motion state of via the single and stationary models, therefore, the multiple model structure is commonly adopted[2]. Compared with the single-model approach, a set for describing the behavior pattern of the system is selected or designed through the multi-model approach where each model matches with a specific system pattern, and the estimation for system state is the reasonable synthesis of filtering results of parallel running filters[3]. Among various multiple model methods and their improved methods, the interacting multiple model (IMM) algorithm is recognized as an effective approach to handle the system model switch problem, which adopts the modeling soft switch mechanism and effectively keeps the balance between model identification and state estimation precision[4,5]. In the conventional IMM structure, the Kalman filter meeting the criterion of the linear minimum variance estimation is selected as the model filter which is able to obtain high precision for linear Gaussian system. However, the performance of the selected nonlinear filter will directly determine the estimation precision of the system state and computation complexity of the algorithm when the estimated system has strong nonlinear or non-Gaussian feature[6,7].

    In recent years, the research in nonlinear filter catches much attention by domestic and international experts and scholars in related fields, and some phasic achievements are made. Considering the superiority of Kalman filter in realizing recursive Bayesian estimation, combining with local linearization techniques, the extended Kalman filter (EKF) is constructed under the framework of KF[8,9]. Its basic idea is to linearize the nonlinear systems by taking the advantage of the Taylor series, but this linearization error is large, and it is difficult to get the Jacobian matrix from nonlinear function in many practical problems. To solve such problems, some new nonlinear filtering methods have been proposed combining with the UT transform or numerical differencing technique, such as Unscented Kalman filter (UKF)[10,11], central difference filter (CDF)[12], Ensemble Kalman filter (EKF)[13,14], etc. However, these methods can hardly meet the engineering demands because they lead to sharp decline of estimation accuracy or even filter divergence when handling strong nonlinear and non-Gaussian problems. With the rapid improvement in computer performance, combining with sequential Monte-Carlo simulation method and recursive Bayesian thought, Gordon et al. proposed the particle filter (PF) which consists of two basic steps of prediction and update. Unlike Kalman filter, the prediction step combines a priori model information with sequential Monte-Carlo simulation technique (SMC), and the update step is completed through re-sampling technique. PF can achieve a better filtering accuracy than the EKF and UKF, also it is suitable for the nonlinear systems with arbitrary noise distribution[15]. However, the implementation mechanism sequential of importance sampling and re-sampling makes PF cannot effectively overcome the problems of particle degeneracy and re-sampling particle diversity impoverishment. Moreover, the filtering precision of PF is closely related with the number of system dimension and the amount of particles which limits the universality of its parameters for application objects[16]. In addition, based on the third cubature rule, Arasaratnam et al, proposed the cubature Kalman filter (CKF)[17]. CKF approximates the weighted Gaussian integration by numerical integration, which takes the advantage of high efficiency of calculating the multi-dimensional function integration by using cubature integration numerical value. With 2nequalweightedcubaturepoints(nisthenumberofsystemstatedimension),CubatureKalmanfilteringisprovedthatitsprobabilitydistributionprecisionisbetterthanUKF’safterapproximatingnonlineartransformation.

    Based on the above analysis, in the framework of CKF, combining with the mechanism of observation iterated update, a novel improved cubature Kalman filter (ICKF) is constructed to improve the estimation precision of CKF. Then applying ICKF into the algorithm framework of IMM, that is, ICKF is used as the model filter to improve the performance of IMM. On the basis of that, this paper proposes a novel maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update (IMM-ICKF). The simulations have verified the superiority of the algorithm.

    1 Cubature Kalman filter with observation iterated update

    1.1 Cubature Kalman filter

    The key idea of CKF is to calculate the normal weighted Gaussian integration of functionf(x) by the third cubature integration rule[18], that is

    (1)

    whereN(x;μ,P) denotes that the random variablexis subject to the normal distribution with meanμand covariance matrixP.L=2ndenotesthenumberofcubaturepoints,andξirepresentstheith cubature point.

    (2)

    Pk-1/k-1=Sk-1/k-1(Sk-1/k-1)Τ

    (3)

    Then the estimation for cubature points in the mechanism of state one-step prediction is achieved bySk-1/k-1.

    (4)

    The diffusion of cubature points in the mechanism of state one-step prediction is realized by the state transform equation.

    (5)

    (6)

    Then the prediction error covariance matrixPk/k-1is calculated.

    (7)

    Pk/k-1=Sk/k-1(Sk/k-1)Τ

    (8)

    Next, according toSk/k-1, the estimation of cubature point in the mechanism of observation update is realized.

    (9)

    The diffusion of cubature points in the mechanism of observation update is achieved by observation equation.

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    1.2 The observation iterated update strategy

    Pk-1/k-1,J=Sk-1/k-1,J(Sk-1/k-1,J)Τ

    (17)

    (18)

    (19)

    (20)

    (21)

    Pk/k,j-1=Sk/k,j-1(Sk/k,j-1)Τ

    (22)

    (23)

    (24)

    (25)

    (26)

    (27)

    (28)

    (29)

    (30)

    The repeating utilization of observation iterated update for improving the estimation performance is limited, and in the practical applications, in view of the balance between the filtering precision and the computation complexity, the number of iterations should not be too large, andJisusually1or2.

    2 ManeuveringtargettrackingalgorithmbasedoniteratedcubatureKalmanfilterwithobservationiteratedupdate

    2.1 Interacting multiple model

    Consider the following multi-model nonlinear system with model switching.

    xk=f(xk-1,rk,uk-1)

    (31)

    zk=h(xk,rk,vk)

    (32)

    rk~p(rk|rk-1)

    (33)

    xkandzkdenotethesystemstatevariableandobservation,respectively.ukandvkdenotethesystemprocessnoiseandtheobservationnoisewiththeindependentandidenticaldistributioncharacteristic,respectively.rkdenotesthesystemmodelstate,andD{1,2,…,d}isdefinedasthesetoffirstorderMarkovchainmodelstatesatisfyingthediscretetime,homogeneousandlimitedstate.=Pr{r0=a}denotestheinitialprobabilityofthemodel,andtheprioritransformprobabilityofmodelstateisπab=Pr{rk+1=b|rk=a}.Π=[π1,π2,…,πd]Τdenotes the model transform probability matrix, whereπa=[πa1,πa2,…,πad], andπab=1, anda,b,d∈D.ThebasicprincipleofIMMliesonkeepingallthemodelsinsystemparallelrunningandtheestimationsynthesisofeachmodelfilteringresultsthroughcalculatingtheirmodelprobabilityweight.IMMconsistsoffourpartswhichincludeinputinteraction,modelfiltering,modelprobabilityupdateandoutputinteraction.Thepartofinputinteractioncalculatesthepredictionprobabilityofeachmodel,themodelmixtureprobability,themodelmixturestateestimationofeachmodeland the mixture state estimation error covariance. The part of model filtering implements the filtering process on each model, the state estimationof each model, the state estimation error covariance matrixand the partial error covariance matrixare obtained in this part. Using, the model probability update part calculates each model likelihoodand model probabilityof each model from the model set at timek.Accordingto,andobtained through the above three parts, the output interaction part realizes the calculation of system state estimationk/kand the state estimation error covariance matrixPk/k.

    2.2 Interacting multiple model based on cubature Kalman filter with observation iterated update

    In the practical application of IMM, the improvement of filtering precision lies on the reasonable selection of sub-filter according to the feature and performance requirements of estimated system. Considering that ICKF has high estimation precision and universality, ICKF is selected as sub-filter in the filtering part of the IMM framework and it promotes the overall performance of IMM by improving the state estimation result of each model. On the basis of that, this section proposes the interacted multi-model algorithm based on cubature Kalman filter with observation iterated update (IMM-ICKF). The recursive implementation process of IMM-ICKF is as follows.

    (34)

    (35)

    (36)

    (37)

    (38)

    (39)

    (40)

    (41)

    3 Simulation result and analysis

    To verify the feasibility and availability of the proposed algorithm, the observations based on two-coordinate radar are adopted to realize the typical maneuvering target tracking setting in the X-Y plane. The motion of the observed target in Radar scanning area is as follows: uniform circular motion with the turning angular velocity +0.4rad/s2in the first 10 sampling periods; uniform circular motion with the turning angular velocity -0.2rad/s2in 11th to 25th sampling periods; uniform circular motion with the turning angular velocity -0.4rad/s2in the following 10 sampling periods, where plus sign and minus sign denote the different uniform turning directions and plus sign represent the clockwise direction and minus sign counterclockwise. Combining with dynamic characteristics of maneuvering target motion and physical properties of Radar sensors, maneuvering target tracking system state equation and the observation equation are as follows.

    θk=tan-1(yk/xk)

    Fig.1showstherealmotiontrajectoryandtheobservationinformationofthetargetinthesimulatedexperimentalsettings.Withmodelprobabilityasmodelidentificationreliabilityindex,Fig.2toFig.6givethemodelutilizationsrespectivelyofthefilteringimplementationofIMM-EKF,IMM-UKF,IMM-CKF,IMM-PFandIMM-ICKF.Fig.7andFig.8showthecomparisonofrootmeansquareerror(RMSE)ofstateestimationofthesefivealgorithmsin50independentexperiments.FromthemodelidentificationeffectivenessofthesefivealgorithmsgivenbyFig.2toFig.6,IMM-EKFisclearlyshowntohavethepooreststabilityoftheaccuracy,theessentialreasonofwhichisthatIMM-EKFcannotprovidestateestimationresultwithhighprecision.Next,IMM-UKFissuperiortoIMM-EKF,whileIMM-PFandIMM-CKFaresuperiortoIMM-UKFtoacertaindegree,butthedefectwhichthesefouralgorithmsmentionedabovehaveincommonisthatthereislargefluctuationofmodelidentificationinthefilteringimplementingprocess.Comparedwiththeotherfouralgorithms,IMM-ICKFimprovestheaccuracyandstabilityofmodelidentificationobviously.Asisknowntoall,intheIMMframework,thesub-filterwithhighprecisionwillsupportIMMtoachievetheeffectiveidentificationofstateevolutionmodelatthecurrenttime,andtheaccuratemodelidentificationwillsupportinturnsub-filtertoobtainnicestateestimationresultinthenexttimefiltering,andthefeatureisreflectedinFig.7andFig.8.Regardingtothefilteringprecisionofalgorithms,accordingtothestateestimationprecision,therankingfromthebesttoworstofallthefivealgorithmsisasfollows:IMM-ICKF,IMM-PF,IMM-CKF,IMM-UKFandIMM-EKF.ItisworthynotingthatthefilteringprecisionofIMM-PFandIMM-CKFissimilar,andIMM-ICKFisbetterthanIMM-CKF,thefundamentalreasonofwhichisthatICKFrealizesimprovementoffilteringestimationprecisionbyintroducingobservationiteratedupdatestrategy.Toquantitativelyanalyzethefilteringprecisionandreal-timeperformanceofthesefivealgorithms,theirmeansofRMSEandaveragerunningtimeiscomparedin50independentsimulationsshowninTable1,andthedataofmeansofRMSEdescribingalgorithmfilteringprecisioninthetableverifiestheresultsanalyzedabove.Inaddition,inthesamesimulationcondition,regardingthetimeconsumedofthesealgorithms,IMM-PFtakethefirstplace,and IMM-ICKF comes to the second but with the highest precision. The above results are conducive to reasonable selection of filters in practical engineering applications.

    Fig.1 The target trajectory and observation

    Fig.2 Model probability in IMM-EKF

    Fig.3 Model probability in IMM-UKF

    Fig.4 Model probability in IMM-CKF

    Fig.5 Model probability in IMM-PF

    Fig.6 Model probability in IMM-ICKF

    Fig.7 Horizontal direction

    Fig.8 Vertical direction

    Table1 The comparison for the mean of RMSE and the average time over 50 independent runs

    AlgorithmHorizontaldirectionVerticaldirectionTime-consumingIMM-EKF0.19250.18670.0054IMM-UKF0.14910.14780.0145IMM-CKF0.08300.08250.0182IMM-PF0.06850.06771.4480IMM-ICKF0.01740.01670.0276

    4 Conclusions

    Maneuvering target tracking is always the hot spot and difficulty of researches in target tracking field, this paper gives a maneuvering target tracking algorithm based on CKF with observation iterated update. CKF presented in recent years is an efficient handling method to solve the problem of nonlinear system estimation. In the framework of CKF, the CKF with observation iterated update is proposed by introducing the observation iterated update process. By synthesizing the results of multiple parallel running filters which match the system model, IMM can deal with the problems of uncertainty and variation of system structure and parameters. The novel algorithm realizes the effective identification and estimation of pattern and state by means of dynamically combining ICKF and IMM. Results from practical simulation examples have verified that the proposed algorithm with these effective measures is superior to the existing IMM and its improved algorithms.

    [1] Ronald P S Mahler. Statistical Multisource-multitarget Information Fusion. Boston,London: Artech House Publishers,2007

    [2] Li W L, Jia Y M. Consensus-based distributed multiple model UKF for jump Markov nonlinear systems.IEEETransactionsonAutomaticControl, 2012,57(1):227- 233.

    [3] Jian L, Li X R, Jilkov V P, et al. Second-order Markov Chain based multiple-model algorithm for maneuvering target tracking.IEEETransactionsonAerospaceandElectronicSystems,2013,49(1): 3-19

    [4] Nadarajah N, Tharmarasa R, McDonald M, et al. IMM forward filtering and backward smoothing for maneuvering target tracking.IEEETransactionsonAerospaceandElectronicSystems,2012,48(3):2673- 2678

    [5] Hammes U, Zoubir A M. Robust MT tracking based on M-Estimation and interacting multiple model algorithm.IEEETransactionsonSignalProcessing, 2011,59(7):3398-3409

    [6] Bilik I, Tabrikian J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture Kalman filter.IEEETransactionsonAerospaceandElectronicSystems, 2010, 46(1): 246-262

    [7] Foo P H, Ng G W. Combining the interacting multiple model method with particle filters for maneuvering target tracking.IETRadar,Sonar&Navigation, 2011, 5(3):234 -255

    [8] Kai X, Wei C L, Liu L D. Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties.IEEETransactionsonSystems,ManandCybernetics,PartA:SystemsandHumans, 2010, 40(2): 399-405

    [9] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters.IEEETransactionsonSignalProcessing, 2012, 60(2):545-555

    [10] Dunik J, Simandl M, Straka O. Unscented Kalman filter: aspects and adaptive setting of scaling parameter.IEEETransactionsonAutomaticControl, 2012,57(9): 2411-2416

    [11] Dini D H, Mandic D P, Julier S J. A widely linear complex unscented Kalman filter.IEEESignalProcessingLetters, 2011,18(11):623 -626

    [12] Wang Y F, Sun F C, Zhang Y A, et al. Central difference particle filter applied to transfer alignment for SINS on missiles.IEEETransactionsonAerospaceandElectronicSystems, 2012, 48(1):375- 387

    [13] Evensen G. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics.Geophys,1994, 99(5):143-162.

    [14] Evensen G. The ensemble Kalman filter for combined state and parameter estimation.IEEEControlSystems, 2009, 29(3): 83-104

    [15] Karlsson R. Particle filter for positioning and tracking applications[D dessertation]. Linkoping: PhD thesis of Linkoping University, 2005

    [16] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo.ProceedingsoftheIEEE, 2007,95(5):899-924

    [17] Arasaratnam I, Haykin S. Cubature Kalman filters.IEEETransactionsonAerospaceandElectronicSystems, 2009, 54(6):1254-1269

    [18] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous discrete systems: theory and simulations.IEEETransactionsonSignalProcessing, 2010,58(10): 4977-4993

    Hu Zhentao, born in 1979. He received his Ph.D degrees in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of college of computer and information engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2015.01.006

    *Supported by the National Nature Science Foundations of China (No. 61300214, U1204611, 61170243), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (No.13IRTSTHN021), the Science and Technology Research Key Project of Education Department of Henan Province (No.13A413066), the Basic and Frontier Technology Research Plan of Henan Province (No.132300410148), the Funding Scheme of Young Key Teacher of Henan Province Universities, and the Key Project of Teaching Reform Research of Henan University (No.HDXJJG2013-07).

    *To whom correspondence should be addressed. E-mail: fuchunling@henu.edu.cnReceived on Oct. 25, 2013

    大片免费播放器 马上看| 国产精品久久久人人做人人爽| 日韩欧美一区二区三区在线观看 | 精品高清国产在线一区| 黄色a级毛片大全视频| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久 | 日本wwww免费看| 91大片在线观看| a级毛片黄视频| 国产亚洲精品第一综合不卡| 国产精品九九99| 中文欧美无线码| √禁漫天堂资源中文www| 亚洲av片天天在线观看| 涩涩av久久男人的天堂| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| 欧美日韩国产mv在线观看视频| 久久久久久免费高清国产稀缺| 欧美午夜高清在线| 亚洲精品自拍成人| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 欧美激情 高清一区二区三区| 一级,二级,三级黄色视频| 人妻久久中文字幕网| 一边摸一边做爽爽视频免费| 国产不卡av网站在线观看| 电影成人av| 成人三级做爰电影| 757午夜福利合集在线观看| 午夜福利视频在线观看免费| 国产免费福利视频在线观看| 国产在线免费精品| 精品国产一区二区久久| 中文字幕精品免费在线观看视频| 国产日韩欧美在线精品| 国产精品久久久久久人妻精品电影 | 欧美国产精品va在线观看不卡| av天堂在线播放| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 久久久久久久久免费视频了| 亚洲色图av天堂| 日韩 欧美 亚洲 中文字幕| 51午夜福利影视在线观看| 一本色道久久久久久精品综合| 欧美乱码精品一区二区三区| 精品亚洲成国产av| 男女下面插进去视频免费观看| 老司机午夜福利在线观看视频 | 捣出白浆h1v1| 国产成人一区二区三区免费视频网站| 女人爽到高潮嗷嗷叫在线视频| 国产在线一区二区三区精| 19禁男女啪啪无遮挡网站| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 女人被躁到高潮嗷嗷叫费观| 老司机影院毛片| 精品久久久久久电影网| av不卡在线播放| 日韩视频在线欧美| a在线观看视频网站| 久久人妻av系列| 中文亚洲av片在线观看爽 | a在线观看视频网站| 91大片在线观看| 一区二区三区激情视频| 国产欧美亚洲国产| e午夜精品久久久久久久| 黑人操中国人逼视频| av天堂在线播放| 99国产综合亚洲精品| 夜夜夜夜夜久久久久| av电影中文网址| tube8黄色片| 狠狠婷婷综合久久久久久88av| 欧美黄色淫秽网站| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月 | 国产高清国产精品国产三级| 飞空精品影院首页| 国内毛片毛片毛片毛片毛片| 美女扒开内裤让男人捅视频| 久久久精品区二区三区| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 搡老熟女国产l中国老女人| 涩涩av久久男人的天堂| 久久精品成人免费网站| 青青草视频在线视频观看| 老汉色∧v一级毛片| 欧美日本中文国产一区发布| 成人国语在线视频| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 亚洲第一av免费看| 又大又爽又粗| 青青草视频在线视频观看| 久久久久久人人人人人| 亚洲av第一区精品v没综合| 亚洲精品国产一区二区精华液| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡| 国产成人免费观看mmmm| 色老头精品视频在线观看| 在线观看免费视频网站a站| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 精品福利永久在线观看| 天堂8中文在线网| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 桃花免费在线播放| 变态另类成人亚洲欧美熟女 | 91九色精品人成在线观看| 日本欧美视频一区| 亚洲熟女精品中文字幕| av不卡在线播放| 欧美变态另类bdsm刘玥| 人人妻人人澡人人看| av电影中文网址| 一区福利在线观看| 99香蕉大伊视频| netflix在线观看网站| 波多野结衣av一区二区av| cao死你这个sao货| 精品国内亚洲2022精品成人 | 久久精品国产亚洲av香蕉五月 | 国产精品电影一区二区三区 | 少妇裸体淫交视频免费看高清 | 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 亚洲精品久久成人aⅴ小说| 汤姆久久久久久久影院中文字幕| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 欧美日韩福利视频一区二区| 成年版毛片免费区| 五月开心婷婷网| 成人国产av品久久久| 亚洲国产精品一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 男女午夜视频在线观看| 亚洲五月婷婷丁香| 女人爽到高潮嗷嗷叫在线视频| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 无限看片的www在线观看| 国产av一区二区精品久久| 免费观看a级毛片全部| 国产成+人综合+亚洲专区| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 亚洲中文日韩欧美视频| 久久狼人影院| 三级毛片av免费| 成年人午夜在线观看视频| 91麻豆精品激情在线观看国产 | 777米奇影视久久| 国产日韩欧美视频二区| 国内毛片毛片毛片毛片毛片| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 亚洲第一av免费看| 国产精品美女特级片免费视频播放器 | 深夜精品福利| 欧美一级毛片孕妇| 美女视频免费永久观看网站| cao死你这个sao货| 99九九在线精品视频| avwww免费| 后天国语完整版免费观看| netflix在线观看网站| 久久精品aⅴ一区二区三区四区| 久久九九热精品免费| 色综合婷婷激情| 精品视频人人做人人爽| 69精品国产乱码久久久| 午夜激情av网站| 亚洲精品粉嫩美女一区| 欧美中文综合在线视频| 欧美 日韩 精品 国产| 精品免费久久久久久久清纯 | 999精品在线视频| 国产精品av久久久久免费| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 亚洲av成人一区二区三| 99国产精品免费福利视频| 亚洲成a人片在线一区二区| 水蜜桃什么品种好| 国产精品av久久久久免费| 欧美大码av| 乱人伦中国视频| 久久精品成人免费网站| 黑人操中国人逼视频| 日韩欧美一区二区三区在线观看 | √禁漫天堂资源中文www| 久久久久久久国产电影| 男女边摸边吃奶| 啦啦啦视频在线资源免费观看| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 国产福利在线免费观看视频| 国精品久久久久久国模美| 国产淫语在线视频| 日本撒尿小便嘘嘘汇集6| 久久国产精品影院| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频 | 黄片播放在线免费| 免费少妇av软件| 国产精品偷伦视频观看了| 又黄又粗又硬又大视频| 国产三级黄色录像| 国产激情久久老熟女| 18禁观看日本| 这个男人来自地球电影免费观看| 国产老妇伦熟女老妇高清| 亚洲av美国av| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 纵有疾风起免费观看全集完整版| 国产在视频线精品| 国产免费现黄频在线看| 黄色怎么调成土黄色| 男女无遮挡免费网站观看| 中文字幕人妻熟女乱码| 日韩中文字幕欧美一区二区| 91av网站免费观看| 亚洲国产欧美网| 热99久久久久精品小说推荐| av网站在线播放免费| 成人av一区二区三区在线看| 欧美亚洲 丝袜 人妻 在线| 成人永久免费在线观看视频 | 女人爽到高潮嗷嗷叫在线视频| 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 老司机靠b影院| 老鸭窝网址在线观看| 午夜91福利影院| 日韩欧美三级三区| 免费av中文字幕在线| 国产精品影院久久| 中文字幕人妻熟女乱码| 精品一区二区三区视频在线观看免费 | 在线观看免费视频日本深夜| 亚洲精品中文字幕一二三四区 | 69av精品久久久久久 | 亚洲精华国产精华精| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| 黄色a级毛片大全视频| 日韩精品免费视频一区二区三区| 日韩中文字幕视频在线看片| av天堂在线播放| 亚洲色图 男人天堂 中文字幕| 757午夜福利合集在线观看| 90打野战视频偷拍视频| 久久 成人 亚洲| 精品乱码久久久久久99久播| 久久久精品94久久精品| 精品一区二区三卡| 狂野欧美激情性xxxx| 精品一区二区三区视频在线观看免费 | 动漫黄色视频在线观看| 男女边摸边吃奶| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区综合在线观看| 人人澡人人妻人| 男女无遮挡免费网站观看| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 久久99一区二区三区| 亚洲成人手机| 久久久国产精品麻豆| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 大码成人一级视频| 亚洲专区国产一区二区| 国产av精品麻豆| 精品少妇久久久久久888优播| 一区福利在线观看| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线| 欧美日韩视频精品一区| 在线观看66精品国产| 久久人妻福利社区极品人妻图片| 热re99久久国产66热| 久久中文看片网| 国产激情久久老熟女| 亚洲少妇的诱惑av| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线免费观看网站| 一区二区三区国产精品乱码| 在线天堂中文资源库| 欧美久久黑人一区二区| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 亚洲精品一二三| 一区二区av电影网| 少妇粗大呻吟视频| 在线天堂中文资源库| 国产成人av教育| 色老头精品视频在线观看| 免费高清在线观看日韩| 伦理电影免费视频| av天堂在线播放| 香蕉国产在线看| 一二三四在线观看免费中文在| 天堂中文最新版在线下载| 91九色精品人成在线观看| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| a级片在线免费高清观看视频| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 日韩大片免费观看网站| tube8黄色片| 国产区一区二久久| 日韩成人在线观看一区二区三区| 首页视频小说图片口味搜索| 国产成人系列免费观看| 成人三级做爰电影| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 99久久国产精品久久久| 丝瓜视频免费看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 日韩 精品 国产| 后天国语完整版免费观看| 建设人人有责人人尽责人人享有的| 中亚洲国语对白在线视频| 色老头精品视频在线观看| 久久精品国产亚洲av高清一级| 一本久久精品| 51午夜福利影视在线观看| 亚洲专区字幕在线| 日本a在线网址| 高清欧美精品videossex| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 日本a在线网址| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩在线播放| 超碰成人久久| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影| 又大又爽又粗| 不卡一级毛片| 国产精品美女特级片免费视频播放器 | 亚洲av欧美aⅴ国产| 欧美国产精品va在线观看不卡| 天堂中文最新版在线下载| 不卡av一区二区三区| 国产伦人伦偷精品视频| 日韩免费高清中文字幕av| 欧美日韩亚洲综合一区二区三区_| 一区二区三区国产精品乱码| 99国产综合亚洲精品| 一区二区三区乱码不卡18| 香蕉丝袜av| 国产亚洲精品一区二区www | 午夜久久久在线观看| 美女午夜性视频免费| 亚洲avbb在线观看| 国产不卡av网站在线观看| 最新美女视频免费是黄的| 日韩欧美一区视频在线观看| 91大片在线观看| 午夜福利,免费看| 我的亚洲天堂| 19禁男女啪啪无遮挡网站| 国精品久久久久久国模美| av有码第一页| 天天躁日日躁夜夜躁夜夜| 少妇裸体淫交视频免费看高清 | 色尼玛亚洲综合影院| 国产精品国产av在线观看| 国产高清国产精品国产三级| 久久久久精品人妻al黑| 大片免费播放器 马上看| 黑丝袜美女国产一区| 国产在视频线精品| 亚洲av欧美aⅴ国产| 国产精品免费视频内射| 成年人黄色毛片网站| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲国产毛片av蜜桃av| √禁漫天堂资源中文www| 亚洲视频免费观看视频| 国产99久久九九免费精品| 国产精品九九99| 亚洲av成人一区二区三| 亚洲av第一区精品v没综合| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 美女福利国产在线| 国产av一区二区精品久久| 国产男女内射视频| 日本五十路高清| 日本一区二区免费在线视频| 国产高清视频在线播放一区| 这个男人来自地球电影免费观看| 咕卡用的链子| 99精品欧美一区二区三区四区| 久久久国产一区二区| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 黑人操中国人逼视频| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 国产精品 欧美亚洲| 精品亚洲成a人片在线观看| 男人操女人黄网站| 九色亚洲精品在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久 成人 亚洲| 国产精品九九99| 黄色怎么调成土黄色| 久久精品国产亚洲av香蕉五月 | 制服人妻中文乱码| 99精品欧美一区二区三区四区| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 色老头精品视频在线观看| 18在线观看网站| 12—13女人毛片做爰片一| 日韩一卡2卡3卡4卡2021年| 国产xxxxx性猛交| 久久久精品94久久精品| 亚洲精品粉嫩美女一区| 欧美 亚洲 国产 日韩一| 亚洲av欧美aⅴ国产| 国产亚洲一区二区精品| 久久这里只有精品19| 丝袜喷水一区| 国产精品一区二区在线不卡| 色94色欧美一区二区| 国产精品久久久久成人av| 欧美在线一区亚洲| 亚洲精品中文字幕在线视频| 国产区一区二久久| 国产精品国产av在线观看| av国产精品久久久久影院| 久久中文字幕人妻熟女| av免费在线观看网站| 欧美日韩视频精品一区| 亚洲美女黄片视频| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区久久| 色精品久久人妻99蜜桃| 免费在线观看影片大全网站| 成人国产av品久久久| 亚洲午夜精品一区,二区,三区| 十八禁人妻一区二区| 999久久久国产精品视频| 国产单亲对白刺激| 黄片小视频在线播放| 看免费av毛片| 天堂中文最新版在线下载| 精品少妇一区二区三区视频日本电影| 国产国语露脸激情在线看| 久久国产精品男人的天堂亚洲| 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区 | 国产日韩欧美视频二区| 国产精品秋霞免费鲁丝片| 亚洲第一av免费看| 淫妇啪啪啪对白视频| 精品国产一区二区三区久久久樱花| 99国产精品一区二区三区| 久久精品成人免费网站| 亚洲av成人不卡在线观看播放网| 国产激情久久老熟女| 久久久久精品人妻al黑| 不卡av一区二区三区| 国产精品偷伦视频观看了| 人人妻,人人澡人人爽秒播| 亚洲国产中文字幕在线视频| 人妻一区二区av| 欧美乱码精品一区二区三区| 国产黄色免费在线视频| 亚洲精品在线观看二区| www.熟女人妻精品国产| 人人妻人人澡人人爽人人夜夜| a级毛片黄视频| 国产熟女午夜一区二区三区| 巨乳人妻的诱惑在线观看| 国产一区二区 视频在线| 黄色视频,在线免费观看| 午夜激情av网站| 精品国产乱码久久久久久小说| 日韩视频在线欧美| 看免费av毛片| 男女下面插进去视频免费观看| 欧美亚洲日本最大视频资源| 大码成人一级视频| 捣出白浆h1v1| 成年人午夜在线观看视频| 成人黄色视频免费在线看| 国产在线观看jvid| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻丝袜制服| 超碰97精品在线观看| 国产单亲对白刺激| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美软件| 如日韩欧美国产精品一区二区三区| 丝袜喷水一区| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区黑人| 亚洲国产欧美日韩在线播放| 高清av免费在线| 亚洲精品粉嫩美女一区| 欧美日韩精品网址| 国产精品秋霞免费鲁丝片| 日韩欧美一区二区三区在线观看 | 九色亚洲精品在线播放| 热99re8久久精品国产| 国产av一区二区精品久久| 精品高清国产在线一区| 母亲3免费完整高清在线观看| 欧美日韩亚洲高清精品| 午夜久久久在线观看| 国产精品.久久久| 国产精品98久久久久久宅男小说| 久久这里只有精品19| 欧美午夜高清在线| 咕卡用的链子| 欧美精品一区二区免费开放| 啦啦啦免费观看视频1| 国产精品电影一区二区三区 | 国产高清videossex| 天天添夜夜摸| 亚洲精品在线美女| 色综合欧美亚洲国产小说| 亚洲精品粉嫩美女一区| av免费在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 国产成+人综合+亚洲专区| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产av品久久久| 亚洲精品久久成人aⅴ小说| 婷婷丁香在线五月| 日韩精品免费视频一区二区三区| 啦啦啦中文免费视频观看日本| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 一级毛片电影观看| 叶爱在线成人免费视频播放| 蜜桃国产av成人99| www.精华液| 黑丝袜美女国产一区| 精品国产超薄肉色丝袜足j| 大码成人一级视频| 国产精品.久久久| 亚洲欧美激情在线| 18禁裸乳无遮挡动漫免费视频| 老汉色av国产亚洲站长工具| av免费在线观看网站| 女人精品久久久久毛片| 日本黄色日本黄色录像| 97人妻天天添夜夜摸| 精品久久久久久电影网| 亚洲成av片中文字幕在线观看| 激情在线观看视频在线高清 | 久久精品国产综合久久久| 久久性视频一级片| 日韩成人在线观看一区二区三区| 亚洲 欧美一区二区三区| 亚洲精华国产精华精| 精品亚洲成国产av| 日日夜夜操网爽| 丝袜人妻中文字幕| 啦啦啦免费观看视频1| 中文字幕高清在线视频| 大香蕉久久成人网| 99re在线观看精品视频| 色播在线永久视频| 如日韩欧美国产精品一区二区三区| 在线观看免费视频网站a站| 91九色精品人成在线观看| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看 | 精品国产亚洲在线| 熟女少妇亚洲综合色aaa.| 国产精品一区二区在线观看99| 妹子高潮喷水视频| 午夜久久久在线观看| 欧美激情高清一区二区三区| 12—13女人毛片做爰片一| 成人影院久久| 在线看a的网站|