• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data organization and management of mine typical object spectral libraries*

    2015-02-15 02:19:22JiMinJinFengxiangLiTingSunYongGuoLifeng
    High Technology Letters 2015年1期

    Ji Min (季 民), Jin Fengxiang, Li Ting, Sun Yong, Guo Lifeng

    (*Geomatics College, Shandong University of Science and Technology, Qingdao 266590, P.R.China)(**President Office, Shandong Jianzhu University, Jinan 250101, P.R.China)

    ?

    Data organization and management of mine typical object spectral libraries*

    Ji Min (季 民)**, Jin Fengxiang**, Li Ting*, Sun Yong*, Guo Lifeng*

    (*Geomatics College, Shandong University of Science and Technology, Qingdao 266590, P.R.China)(**President Office, Shandong Jianzhu University, Jinan 250101, P.R.China)

    With the development of mining industry, people have obtained profits from it, but they are facing environmental damages. In order to monitor these environmental changes, a spectral library is set up for the spectrum data organization and management of mine typical objects. Most of the spectrum data come from the long-term field measuring in mining area and other spectral libraries. For the data quality control and error detection in the measuring data, an inner precision calculation method is presented and a series of interactive graphical controls are developed for the spectrum visualization and analysis. Through extracting and saving spectrum characters for the mine typical objects, realizs spectrum matching and classification for new measured spectrum samples are realized by using Euclidean distance, Aitchison distance, Pearson correlation coefficient and vector angular cosine methods. Based on the matching result, this work is able to gather dynamically physicochemical environment parameters from the library and gives an early warning for the mine environmental changes.

    spectral library, mine typical object, data organization, data quality control, spectrum matching, spectrum analyzing

    0 Introduction

    Mining is the basic industry of national economy. For several decades disorder mining in some areas, geological disasters and environmental damage have become the obstacle to the sustainable development of the mining industry. Scholars and some government departments began using RS (Remote Sensing), GPS, and GIS technologies to monitor and measure those environmental damages or changes. By using spatial database, researchers can save objects’ measured spectrum data and their physicochemical parameters into these libraries and can extract them for spectrum analyzing of the next step. For this reason, mine spectral libraries have become an important part for monitoring mine environmental changes.

    Many institutions and departments have established a variety of typical spectral libraries for different purposes, such as the JPL library, the USGS library, the ASTER library, and so on. The JPL library is the first geological spectral library which was built by the U.S. Jet Propulsion Laboratory (JPL) in 1981. This library has saved amount of rocks and minerals’ spectra and their related auxiliary information, and its latest version is 2.0[1]. Combined with the JPL library, the United States Geological Survey (USGS) also established a mineral resources spectral library. Its newest version splib06a contains over 1300 spectra including mid-infrared data as well as spectra from splib05a and additional visible and near-infrared spectra[2]. Coming from the JPL and USGS libraries, the ASTER (Advanced Spaceborne Thermal Emission Reflection Radiometer) library also provides a comprehensive collection of over 2300 spectra of natural and man-made materials[3]. In China, from the late of 1980s, the Institute of Remote Sensing Applications of China Academy of Science and other institutes also established more than 10 spectral libraries[4-6]. These libraries are the foundation of remote sensing research, and can give a strong support for the application of remote sensing in different research fields.

    In order to dynamically monitor and analyze environmental changes in mining areas, supported by several national foundations, we began to measure typical objects’ spectra at several coal mine areas from 2009. And based on the study of those upper libraries, we also established a mine typical object spectral library[7,8]. For the organization of the measured spectra, a mine typical object spectral library management system is developed which can be used for the spectral data quality control, spectrum visualization, spectra classification, spectrum features extracting, and spectral analysis.

    1 Data resources

    In the proposed library, there are three data resources: historical data from official publications, download data from the ASTER library, and measuring data from the mining research areas.

    From 1980 to 1982, the Institute of Remote Sensing Applications of China Academy of Science and several other organizations measured the spectra of vegetation, soils, rocks, and water at Beijing, Tianjin, Hebei, and Anhui provinces. Tong and Tian published those data at Ref.[9]. There were 277 pieces of spectra which were collected at various phenological phases, under different polluted conditions, and with different geochemical effects. The spectral ranges were from 400nm to 1100nm. These data were officially published, had a higher authority and imported into our library as the basis for the next data analysis.

    The ASTER library provides a comprehensive collection of over 2300 spectra of wide variety of materials covering the wavelength range of 0.4~15.4μm[3]. For further spectral feature analyzing and contrasting, the spectra of minerals, vegetation, rocks, soils, and manmade materials were downloaded, and imported into our mine spectral library.

    From June 2009 to June 2013, spectra of nature water, sinking water, tailings, soils, crops, vegetations, rocks, and manmade materials were measured at the coal mining areas in Beijing, Shandong, Shanxi, and Xinjiang provinces. Almost 500 spectra samples were collected which were under a variety of environmental conditions. The auxiliary information for each sample includes basic measuring information, meteorological condition, physicochemical parameters, and some special parameters for different types of objects, such as management, construction, and soil parameters for crops. According to the sample types, all of these data were organized in their sub-databases in the library. Because the proposed library has collected more information than other libraries, these new measured data would be the basis for the further mine typical object spectrum analysis.

    2 Designs of database architecture and system functions

    2.1 Design ofdatabase architecture

    According to the types of mine typical objects, our spectral library is divided into seven sub-databases: vegetation, manmade material, soil, mineral, rock, water, and tailing sub-libraries. The designed database architecture is shown as Fig.1.

    Fig.1 Database architecture of the mine spectral library

    In mining areas, the growth status of vegetation can reflect the degree of environmental pollution directly. By measuring the spectrum of crops, grasses, and other plants, more than 300 pieces of data were got, and all the data were saved in the vegetation sub-library. In order to organize the spectral data more clearly, the data were sorted in tree shaped structures such as crops including wheat and rice, where the wheat includes fall wheat and spring wheat, the rice includes single-cropping rice and double-cropping rice, and so on. At the same time, the auxiliary attributes and parameters were also saved into the databases. Auxiliary attributes include temperature, wind direction, wind speed, weather conditions, surveyors, and surveying instrument. And parameters include crops management data, physicochemical data, and phenological data.

    In rock, mineral, and soil sub-libraries, almost 2000 pieces of object spectrum data and their auxiliary data were saved. According to the tree shaped structure, minerals were divided into oxide, silicate, carbonate, hydroxide, sulfide, borate, phosphate, halide, arsenate, chloride, and tungstate. Rocks were divided into igneous, metamorphic and sedimentary rocks. And soils were divided into cambisols, soft soil, dry soil, alfisols, ultisols, entisols, and etc.

    In the coal mine area, water includes nature water and sink water. In order to study the pollution degree of water, about 150 water samples were collected and their quality parameters were also measured, such as the pH, conductivity, water temperature, total phosphorus, total nitrogen, chemical oxygen demand, and so on. All of these parameters were saved into the water sub-library.

    2.2 Design of system functions

    In order to manage and analyze typical objects’ spectral data and their attribute data more efficiently, the spectrum data management system is designed as four modules: spectrum data management module, spectrum data analysis module, system parameter setting module, and spectrum mapping and visualization module. The system function architecture is shown as Fig.2.

    Fig.2 Data management system function design

    The spectrum management module is used to import typical objects’ spectral data and their auxiliary data into different sub-libraries, and manage these data in different related dialogs. The spectrum data analysis module includes system’s core functions, such as data quality control and evaluation, spectral data matching, and spectral features extracting. The spectrum mapping and visualization module can draw spectral curves and analyze spectral features interactively.

    3 Key techniques researched in the system development

    3.1 Development of graphical interactive controls based on GDI+

    In recent years, Microsoft has presented a series of new characters in the GDI+ (Graphics Device Interface Plus) techniques[10]. The managed interface of GDI+ includes almost 60 classes, 50 enumeration types, and 8 data structures. It brings forward many new functions, such as the gradient brushes, cardinal spline functions, persistent path objects, transform matrix objects, and various image data formats supporting. Based on these new characters of GDI+, several graphical controls are developed which can be used for drawing spectral curves, derivative spectra, spectrum matching results, and box-whisker diagrams interactively. Fig.3 shows the mapping result of these controls.

    Fig.3 Spectral data visualization diagrams achieved by GDI+

    3.2 Data quality control for measured data

    The accuracy of field spectrum measurement is affected by a variety of factors, such as measuring time, spectrometer FOV (Field of View) size, observation angles, solar azimuth and elevation angles, atmospheric environmental factors, operation procedures of surveyor, etc. For this reason, measured data must be detected before they are imported into the library. An inner precision formula is put forward which can be used for the quality evolution of the measured data. It is shown as

    (1)

    As it is known, the curve features of one group measured spectra should have almost the same characters under the same measuring conditions. If a set of data has great volatility, it shows that the measuring condition is unstable. The inner precision can be used to evaluate volatility. First, the average reflectance curve of those data should be calculated, and then each curve’s inner precision by using Eq.(1). In the equation,δijis the difference between thej-th measured curve and the average curve at thei-th common wavelength,mis the measured curve number,nis the common wavelength point. This equation reflects the standard deviation of a single spectral curve which must contain accident errors or systematic errors. In order to eliminate the affection of accident errors, another formula is presented as

    (2)

    εis named as the total inner precision for one group measured spectra. If the value ofεmeets the required tolerance, the measured data can be imported into the library, otherwise the original data should be checked again. Fig.4 shows an example for data quality control in the proposed system by using these two equations.

    Fig.4 The result of the inner precision calculating

    3.3 Spectrum matching

    The degree of environment changing in mine area can be reflected by the vegetation’s degradation level, the contaminants of pollution in nature or sinking water, and atmospheric aerosol content. Through the long-term field spectrum measurements and laboratory analysis in the demonstration mine areas, a lot of mine typical objects spectral data and their corresponding environmental parameters, biochemical parameters and physiochemical parameters have been collected. By the spectrum matching algorithm, the consistency for the sample spectra with the standard spectra in the library can be checked, and those parameters can be retrieved from the database. The parameters can show the pollution degree of the mine environment and will give an early warning. In order to achieve this purpose, this work provides four methods in the system for the spectra similarity measuring in the data matching procedure, which are the Euclidean distance[11], Aitchison distance, Pearson correlation coefficient and vector angular cosine methods.

    Aitchison distance is used to calculate the distance between two objects defined in the simplex space[12]. In the spectrum matching procedure, if there arepband sampling positions in the selected wavelength range, the similarity of two spectral datauandvin the simplex space can be measured by the distance of two vector points in thep-dimensional space. The calculation is

    (3)

    (4)

    Fig.5 Spectrum matching result based on Pearson correlation coefficient

    3.4 Spectral features visualized analyzing and extracting

    The reflection and absorption features in the spectral reflectance curve, not only describe the different characters between different objects, but also reflect the spectra volatility of the same objects which were under different background conditions. In order to analyze the spectral features at the microscopic level for the mine typical object, visualized analysis tools were developed for characteristic parameters extraction. The principle is shown as Fig.6. The parameters include the value of absorption valley (ρm), the absorption depth (h), the absorption width (W), the absorption area (A), the absorption band (λm), the variable drive angle (θ), the symmetry of absorption area (T), the symmetry of absorption bands (Л). In that, absorption areaAis generated by subsection integration just as the shaded area in Fig.6. The symmetry of absorption area is asT=A1/A. The symmetry of absorption bands is as Л = (λm-λ1) / (λ2-λ1). By using these parameters, the researchers can make a step for the library’s application in different areas.

    Fig.6 Extracting of spectral characteristic parameters

    4 Conclusions

    The measurement of spectral data in the field has an important role in remote sensing[13], and the spectral library has become one of the important supports for remote sensing applications. Through filed measurement and experimental analysis at mine areas, the preliminary frame architecture of the mine typical object spectral library and its management system has been set up. Based on the GDI+ technique, a series of graphical controls for drawing spectral curves and box-and-whisker diagrams, and extracting spectral characteristic parameters interactively are realized. Spectrum matching and classification are achieved by four spectral similarity measurement methods. By using the spectral information extracting and analyzing functions, the system can realize dynamic warning for the mine environment changes, and will provide a strong technical support for the mine environment protecting and the mine sustainable development.

    [1] JPL. Speclib[EB/OL]. http://speclib.jpl.nasa.gov/, 2010

    [2] Clark R N, Swayze G A, Wise R, et al. USGS Digital Spectral Library. http://speclab.cr.usgs.gov/spectral-lib.html, 2007

    [3] Baldridge A M, Hook S J, Grove C I, et al. The ASTER spectral library version 2.0.RemoteSensingofEnvironment, 2009, 113(4):711-715

    [4] Tian Z K, Liu S H, Fu Y Y. Design and realization of spectral data management in the standard spectral knowledge base.ComputerEngineeringandApplications, 2005,(1):210-213

    [5] Tian Q J, Gong P. The spectral database research status and development trend.RemoteSensingInformation, 2002, (3):1-6

    [6] Wang J D. Chinese Typical Spectral Knowledge Database. Bejing: Science Press, 2009

    [7] Ji M, Fan J F, Li T, et al. Research on visualized data quality control methods of ground object spectrum in Yanzhou mining Area. In: Proceedings of the 2nd International Conference on Computer Engineering and Technology, Chendu, China, 2010. 457-462

    [8] Fan J F. Study on construction and implementation of typical ground object spectrum database in Yanzhou mining area: [Master dissertation]. Qingdao: Shandong University of Science and Technology. 2011. 20-45 (In Chinese)

    [9] Tong Q X, Tian G L. Typical Objects Spectral and Characteristics Analysis of China. Bejing: Science Press, 1990. 36-589 (In Chinese)

    [10] Chand M. GDI+Graphics Programming. Beijing: Publishing House of Electronics Industry, 2005.15-110

    [11] Freek v d M. The effectiveness of spectral similarity measure for the analysis of hyperspectral imagery.Internationaljournalofappliedearthobservationandgeoinformation, 2006, 8 : 3-17

    [12] Clark R N, King T V V, Klejwa M, et al. High spectral resolution reflectance spectroscopy of minerals.JournalofGeophysicalResearch, 1990, 95(B8): 12653-12680

    [13] Edward J M, Michael E S, Karen A, et al. Progress in field spectroscopy.RemoteSensingofEnvironment, 2009, 113(S1): S92-S109

    Ji Min, born in 1970. He received his Ph.D degrees in Geomatics Collage of Shandong University of Science & Technology in 2004. He also received his B.S. and M.S. degrees from Shandong Institute of Mining Technology in 1992 and 1997 respectively. His research interests include the spatial data organization, GIS application developing and spatial data minin.

    10.3772/j.issn.1006-6748.2015.01.014

    *Supported by the National Key Technology R&D Program of China (No. 2012BAH27B04, 2011BAC03B03), the National Natural Science Foundation of China (No. 41471330), Research Fund for the Doctoral Program of Higher Education of China ( 20113718110001), and SDUST Research Fund ( 2011KYTD103).

    *To whom correspondence should be addressed. E-mail: jamesjimin@126.comReceived on July 9, 2013

    18在线观看网站| 亚洲av免费高清在线观看| a级毛色黄片| 老女人水多毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 伊人久久国产一区二区| 久久久久精品人妻al黑| 亚洲av中文av极速乱| 日韩大片免费观看网站| 亚洲精品av麻豆狂野| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 精品一区二区三区四区五区乱码 | 一级爰片在线观看| 亚洲成人av在线免费| 又大又黄又爽视频免费| 亚洲精品av麻豆狂野| 亚洲精品456在线播放app| 两个人免费观看高清视频| 亚洲第一区二区三区不卡| 日本wwww免费看| 免费观看无遮挡的男女| 超碰97精品在线观看| 国产不卡av网站在线观看| 欧美精品人与动牲交sv欧美| 2018国产大陆天天弄谢| 老司机亚洲免费影院| 午夜福利视频在线观看免费| 99视频精品全部免费 在线| 精品国产一区二区久久| 亚洲婷婷狠狠爱综合网| 老熟女久久久| 国产毛片在线视频| 免费高清在线观看视频在线观看| 国产亚洲最大av| 人妻少妇偷人精品九色| 秋霞伦理黄片| 久久久亚洲精品成人影院| 久久久国产一区二区| 久久国内精品自在自线图片| 在线观看一区二区三区激情| av.在线天堂| 我的女老师完整版在线观看| 欧美日韩国产mv在线观看视频| 热re99久久精品国产66热6| 午夜视频国产福利| 在线天堂最新版资源| 色婷婷av一区二区三区视频| av电影中文网址| 精品亚洲乱码少妇综合久久| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 亚洲精品av麻豆狂野| 亚洲精品国产av蜜桃| www.av在线官网国产| 婷婷色综合大香蕉| 久久国产亚洲av麻豆专区| 97人妻天天添夜夜摸| 久久婷婷青草| 午夜日本视频在线| 精品第一国产精品| 久久久精品区二区三区| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说| 亚洲欧洲日产国产| 一级黄片播放器| 午夜免费男女啪啪视频观看| 大香蕉久久成人网| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 色5月婷婷丁香| 国产精品偷伦视频观看了| 成人漫画全彩无遮挡| 欧美3d第一页| 国产在线免费精品| 亚洲国产精品专区欧美| 国内精品宾馆在线| 日韩一区二区视频免费看| 22中文网久久字幕| 亚洲国产精品一区三区| 香蕉精品网在线| 日韩,欧美,国产一区二区三区| 日韩中字成人| 好男人视频免费观看在线| 国产日韩欧美亚洲二区| 狠狠婷婷综合久久久久久88av| 免费不卡的大黄色大毛片视频在线观看| 另类精品久久| 国产一区二区三区综合在线观看 | 久久久久久久亚洲中文字幕| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 人妻系列 视频| 伦精品一区二区三区| 国产 一区精品| 国产av国产精品国产| 国产欧美日韩一区二区三区在线| 少妇高潮的动态图| 久久久久久伊人网av| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 男女啪啪激烈高潮av片| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 欧美成人午夜精品| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 在现免费观看毛片| 宅男免费午夜| 日韩伦理黄色片| 大片免费播放器 马上看| 男女午夜视频在线观看 | 亚洲精品第二区| 99re6热这里在线精品视频| 日韩中字成人| 久久国内精品自在自线图片| 97超碰精品成人国产| 国产精品偷伦视频观看了| 午夜激情久久久久久久| 美国免费a级毛片| 一边摸一边做爽爽视频免费| 男女高潮啪啪啪动态图| 丰满少妇做爰视频| 欧美 日韩 精品 国产| 精品视频人人做人人爽| 亚洲精品美女久久av网站| 1024视频免费在线观看| 国产一区二区在线观看av| 有码 亚洲区| 午夜91福利影院| 秋霞在线观看毛片| 久久久久久久国产电影| 另类亚洲欧美激情| 国产av码专区亚洲av| 成人黄色视频免费在线看| 成人国产av品久久久| 亚洲成人手机| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 中国国产av一级| 中文字幕免费在线视频6| 插逼视频在线观看| 国产高清国产精品国产三级| 免费黄网站久久成人精品| 欧美xxⅹ黑人| 欧美另类一区| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| 欧美性感艳星| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 久久人人97超碰香蕉20202| 成年美女黄网站色视频大全免费| 亚洲精品国产色婷婷电影| 黄色 视频免费看| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 久久精品国产a三级三级三级| 永久免费av网站大全| 国产日韩一区二区三区精品不卡| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 久热这里只有精品99| 哪个播放器可以免费观看大片| 性色avwww在线观看| 亚洲丝袜综合中文字幕| av福利片在线| 一本大道久久a久久精品| 亚洲精品一二三| 免费在线观看黄色视频的| 亚洲四区av| 高清视频免费观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 免费黄色在线免费观看| 99精国产麻豆久久婷婷| 久久ye,这里只有精品| 如何舔出高潮| 国产欧美亚洲国产| 国产成人精品婷婷| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 国产综合精华液| av黄色大香蕉| 一区二区三区精品91| 嫩草影院入口| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 又黄又爽又刺激的免费视频.| 蜜臀久久99精品久久宅男| 精品少妇内射三级| a级片在线免费高清观看视频| 国产精品秋霞免费鲁丝片| 国产精品一区www在线观看| 国产欧美亚洲国产| 国产片内射在线| 伊人久久国产一区二区| 亚洲美女黄色视频免费看| 我要看黄色一级片免费的| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 水蜜桃什么品种好| 免费高清在线观看日韩| 大码成人一级视频| 国产精品久久久久久精品古装| 免费大片黄手机在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷成人精品国产| 亚洲国产精品一区二区三区在线| 一区二区三区四区激情视频| 人妻 亚洲 视频| 极品人妻少妇av视频| 99热全是精品| 在线看a的网站| 亚洲国产精品一区三区| 国产高清三级在线| 免费播放大片免费观看视频在线观看| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 久久韩国三级中文字幕| 成年av动漫网址| 亚洲精品aⅴ在线观看| 精品久久国产蜜桃| 久久人人爽人人片av| 成人亚洲欧美一区二区av| 精品第一国产精品| 亚洲三级黄色毛片| 免费在线观看黄色视频的| 亚洲国产精品成人久久小说| 老司机影院毛片| 搡老乐熟女国产| 免费黄网站久久成人精品| 国产黄色免费在线视频| 成年人午夜在线观看视频| 国产成人一区二区在线| 国产男女内射视频| 国产日韩欧美亚洲二区| 26uuu在线亚洲综合色| a 毛片基地| 90打野战视频偷拍视频| 青青草视频在线视频观看| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 另类精品久久| av网站免费在线观看视频| 午夜福利视频精品| 欧美+日韩+精品| 亚洲综合色网址| 婷婷成人精品国产| 美女大奶头黄色视频| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 精品第一国产精品| 精品一品国产午夜福利视频| 日韩大片免费观看网站| 晚上一个人看的免费电影| 永久免费av网站大全| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 国产一区亚洲一区在线观看| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 99热这里只有是精品在线观看| 亚洲一码二码三码区别大吗| av电影中文网址| www.av在线官网国产| av天堂久久9| 日韩视频在线欧美| 黑人高潮一二区| 国产欧美日韩一区二区三区在线| 亚洲熟女精品中文字幕| 国产精品国产三级国产专区5o| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 五月开心婷婷网| 久久影院123| 青春草视频在线免费观看| 精品国产一区二区久久| 亚洲精品国产av蜜桃| 日本与韩国留学比较| 成年人午夜在线观看视频| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 搡老乐熟女国产| 精品一品国产午夜福利视频| 一级片'在线观看视频| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 激情视频va一区二区三区| 22中文网久久字幕| 在现免费观看毛片| 亚洲欧美一区二区三区黑人 | 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 亚洲美女视频黄频| 精品99又大又爽又粗少妇毛片| av在线观看视频网站免费| 国产成人aa在线观看| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 久久国产精品大桥未久av| 一二三四中文在线观看免费高清| 免费看光身美女| 国产高清国产精品国产三级| 国产精品不卡视频一区二区| av一本久久久久| 成年女人在线观看亚洲视频| 久久久久视频综合| 午夜福利视频在线观看免费| 一本—道久久a久久精品蜜桃钙片| 男人舔女人的私密视频| 26uuu在线亚洲综合色| 亚洲精品456在线播放app| 一区二区三区精品91| 久久人人爽人人片av| 久久久亚洲精品成人影院| 亚洲国产色片| 永久免费av网站大全| 亚洲国产最新在线播放| 插逼视频在线观看| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 母亲3免费完整高清在线观看 | 国产无遮挡羞羞视频在线观看| 91午夜精品亚洲一区二区三区| 久久久久网色| 22中文网久久字幕| 亚洲五月色婷婷综合| 亚洲av欧美aⅴ国产| 国产片特级美女逼逼视频| 狠狠婷婷综合久久久久久88av| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 免费观看无遮挡的男女| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 岛国毛片在线播放| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| 人妻人人澡人人爽人人| 欧美xxⅹ黑人| 欧美日韩av久久| 高清黄色对白视频在线免费看| av不卡在线播放| 你懂的网址亚洲精品在线观看| 亚洲综合精品二区| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 一本久久精品| 亚洲一码二码三码区别大吗| 亚洲人与动物交配视频| 国产黄色免费在线视频| 建设人人有责人人尽责人人享有的| 免费高清在线观看视频在线观看| 蜜桃国产av成人99| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 最近最新中文字幕免费大全7| 亚洲少妇的诱惑av| 在线观看三级黄色| av视频免费观看在线观看| www.熟女人妻精品国产 | 亚洲成人手机| 你懂的网址亚洲精品在线观看| 99久久精品国产国产毛片| 你懂的网址亚洲精品在线观看| 中文字幕精品免费在线观看视频 | 韩国av在线不卡| 18在线观看网站| 韩国高清视频一区二区三区| 69精品国产乱码久久久| 自线自在国产av| 精品久久久久久电影网| 国产成人精品一,二区| 国产国拍精品亚洲av在线观看| 久久精品熟女亚洲av麻豆精品| 国产国拍精品亚洲av在线观看| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 尾随美女入室| 一二三四中文在线观看免费高清| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 韩国av在线不卡| 中文欧美无线码| 美女视频免费永久观看网站| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| 日韩三级伦理在线观看| 赤兔流量卡办理| 黑人欧美特级aaaaaa片| 看十八女毛片水多多多| 精品国产国语对白av| 狠狠婷婷综合久久久久久88av| 国产老妇伦熟女老妇高清| 满18在线观看网站| 日本av手机在线免费观看| 日韩成人伦理影院| 卡戴珊不雅视频在线播放| 国产男女超爽视频在线观看| 国内精品宾馆在线| 最新的欧美精品一区二区| 国产亚洲一区二区精品| 最新中文字幕久久久久| 国产精品久久久av美女十八| 国产亚洲午夜精品一区二区久久| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 看免费成人av毛片| 成人无遮挡网站| 男女免费视频国产| 青春草国产在线视频| 亚洲色图 男人天堂 中文字幕 | 香蕉国产在线看| 香蕉精品网在线| 亚洲伊人久久精品综合| 成年女人在线观看亚洲视频| 久久久精品94久久精品| 日韩,欧美,国产一区二区三区| 18禁在线无遮挡免费观看视频| 成年美女黄网站色视频大全免费| 亚洲精品第二区| 波多野结衣一区麻豆| 国产在线一区二区三区精| 亚洲国产欧美在线一区| kizo精华| 精品少妇内射三级| 边亲边吃奶的免费视频| 亚洲成人一二三区av| 精品一区二区三区四区五区乱码 | 亚洲av男天堂| 人妻 亚洲 视频| 观看美女的网站| 性高湖久久久久久久久免费观看| 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 成人亚洲精品一区在线观看| 精品一区二区三区视频在线| 日本av免费视频播放| 老熟女久久久| 午夜久久久在线观看| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 午夜福利在线观看免费完整高清在| 最近的中文字幕免费完整| 免费观看a级毛片全部| 国产日韩欧美亚洲二区| 激情五月婷婷亚洲| 国产欧美亚洲国产| 亚洲四区av| 亚洲精品久久久久久婷婷小说| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 深夜精品福利| av国产久精品久网站免费入址| 日本黄大片高清| 在线免费观看不下载黄p国产| 婷婷色综合大香蕉| 免费少妇av软件| 在线观看国产h片| videosex国产| 中文乱码字字幕精品一区二区三区| 超色免费av| 99久久人妻综合| 日本猛色少妇xxxxx猛交久久| 欧美+日韩+精品| 国语对白做爰xxxⅹ性视频网站| 边亲边吃奶的免费视频| 飞空精品影院首页| 在线观看三级黄色| 精品少妇黑人巨大在线播放| 我要看黄色一级片免费的| 最新的欧美精品一区二区| 自线自在国产av| 九色成人免费人妻av| 亚洲性久久影院| 午夜老司机福利剧场| 亚洲精品乱码久久久久久按摩| 国产欧美日韩一区二区三区在线| 中文精品一卡2卡3卡4更新| 久久亚洲国产成人精品v| 王馨瑶露胸无遮挡在线观看| 日韩av在线免费看完整版不卡| 欧美 日韩 精品 国产| 精品久久蜜臀av无| 国产成人一区二区在线| 亚洲欧美清纯卡通| 国产精品国产三级专区第一集| 99久久人妻综合| 久久久精品94久久精品| 久久女婷五月综合色啪小说| 欧美xxxx性猛交bbbb| 少妇被粗大猛烈的视频| 精品视频人人做人人爽| 黄色毛片三级朝国网站| 国产女主播在线喷水免费视频网站| 成人二区视频| 777米奇影视久久| 十八禁网站网址无遮挡| 国内精品宾馆在线| 哪个播放器可以免费观看大片| 国产精品久久久av美女十八| 免费大片18禁| 你懂的网址亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 国产麻豆69| 国产av一区二区精品久久| 午夜福利视频精品| 1024视频免费在线观看| 亚洲少妇的诱惑av| 欧美性感艳星| 成年美女黄网站色视频大全免费| 国产69精品久久久久777片| 亚洲av.av天堂| 亚洲欧美成人精品一区二区| 99九九在线精品视频| 亚洲激情五月婷婷啪啪| av线在线观看网站| 在线观看国产h片| 国产熟女欧美一区二区| 免费看av在线观看网站| 在线观看三级黄色| 黄色配什么色好看| 下体分泌物呈黄色| 久久精品久久久久久噜噜老黄| 日韩欧美一区视频在线观看| 国产免费视频播放在线视频| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 国产亚洲午夜精品一区二区久久| 国产免费现黄频在线看| 久久久久国产精品人妻一区二区| 亚洲欧洲国产日韩| 久久这里有精品视频免费| 国产成人免费无遮挡视频| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 两个人看的免费小视频| 亚洲欧美精品自产自拍| 国产欧美日韩一区二区三区在线| √禁漫天堂资源中文www| 久久久国产精品麻豆| 少妇熟女欧美另类| 桃花免费在线播放| 亚洲精品美女久久久久99蜜臀 | 国产 一区精品| 青春草视频在线免费观看| 国产成人免费无遮挡视频| 男女边摸边吃奶| 精品亚洲成国产av| 免费观看性生交大片5| 国产女主播在线喷水免费视频网站| 天天躁夜夜躁狠狠躁躁| 丰满乱子伦码专区| 亚洲成色77777| 久久99热6这里只有精品| 爱豆传媒免费全集在线观看| 久久鲁丝午夜福利片| a 毛片基地| av片东京热男人的天堂| 91精品三级在线观看| 9热在线视频观看99| 亚洲国产av新网站| 熟女av电影| 在线 av 中文字幕| 久久这里只有精品19| 人妻一区二区av| 国产片特级美女逼逼视频| 草草在线视频免费看| 宅男免费午夜| 亚洲精品日本国产第一区| 精品国产一区二区久久| 亚洲性久久影院| av女优亚洲男人天堂| 草草在线视频免费看| 久久av网站| 免费日韩欧美在线观看| 草草在线视频免费看| 人人妻人人爽人人添夜夜欢视频| a级毛片黄视频| 国产一区二区在线观看av| 欧美+日韩+精品| 国产 精品1| 久久久久精品久久久久真实原创| 国产精品不卡视频一区二区| 国产老妇伦熟女老妇高清| www.色视频.com| 国产一区二区三区综合在线观看 | 亚洲av成人精品一二三区| 亚洲欧美成人精品一区二区| 国产精品嫩草影院av在线观看| 精品国产一区二区久久| 亚洲久久久国产精品| 国产精品一区www在线观看|